首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 932 毫秒
1.
In order to investigate the action of somatostatin-28 (SS-28) on the metabolic homeostasis of insulin-dependent diabetics, we compared its effects to those of somatostatin-14 (SS-14) in terms of insulin sparing, changes in dextrose demands, glucose fluctuations and behavior of growth hormone and glucagon secretion. Eight insulin-dependent subjects were connected to Artificial Endocrine Pancreas (Biostator) for 84 hours during which they received intravenous infusions of either SS-14, SS-28 or isotonic saline in a randomized order, after a steady state of metabolism had been achieved. Five of the patients received SS-28 100 micrograms/h and SS-14 250 micrograms/h for 10 hours and three of them SS-28, 50 micrograms/h and SS-14 250 micrograms/h for 12 hours. Identical doses of both peptides were administered as bolus infusions prior to the continuous ones. Under SS-28 100 micrograms/h and SS-14 250 micrograms/h patients required 13.5 +/- 2.3 and 14.5 +/- 1.9 U of insulin respectively vs 40 +/- 5.6 U under isotonic saline infusion (mean +/- SEM, P less than 0.005 and P less than 0.01). At the same period the apparatus delivered 15 times more dextrose under SS-28 and 20 times more under SS-14. The magnitude of glucose fluctuations diminished from 64.6 +/- 2.47 mg% without to 41.4 +/- 2 mg% under SS-14 (P less than 0.01) and 46 +/- 3.8 mg% under SS-28 (P less than 0.02). Similar changes were observed in the remaining three patients who received SS-28 in the dose of 50 micrograms/h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
In order to compare the effects of somatostatin-28 (SS-28) with those of somatostatin-14 (SS-14) in humans, we administered both compounds randomly in 5 healthy persons and 3 patients with active acromegaly. Blood glucose, growth hormone, insulin, glucagon, TSH, FSH, LH and prolactin were estimated after arginine, TRH and LHRH stimulation in the normals and without stimulation in the acromegalics. Both substances were administered in doses of 25, 50, 200 and 250 micrograms. Our results indicate that SS-28 is at least 5 times more potent in man than SS-14 as far as inhibition of growth hormone, insulin, glucagon and prolactin secretion is concerned. On the other hand SS-28 is at least 2 times more potent than SS-14 in the inhibition of TSH, FSH and LH. If this difference in potency is calculated on the basis of equimolarity, the action of SS-28 becomes even much greater. According to these findings, SS-28 appears to be either the main hormone and SS-14 a fragment of it with a lesser degree of biologic activity, or the prohormone with special properties.  相似文献   

3.
The gastric exocrine inhibitory activities of somatostatin-28 (SS-28) and somatostatin-14 (SS-14) were determined in conscious cats prepared with gastric fistulae. Gastric acid and pepsin secretions were stimulated with pentagastrin. Expressed in terms of exogenous doses, SS-14 (ID50: 1.49 nmol . kg-1 . h-1) was 3.4 times more potent than SS-28 (ID50: 5.12 nmol . kg-1 . h-1) as an inhibitor of gastric acid secretion. Similarly SS-14 (ID50: 0.25 nmol . kg-1 . h-1) was 3.8 times more potent than SS-28 (ID50: 0.96 nmol . kg-1 . h-1) as an inhibitor of pepsin secretion. Expressed in terms of circulating plasma concentration measured by radioimmunoassay, SS-14 (ID50: H+, 232 and pepsin 73 pM) was 8-9 times more potent than SS-28 (ID50: H+, 2112 and pepsin, 611 pM) as an inhibitor of gastric exocrine secretions. The plasma immunoreactive half-life of SS-28 (6.1 min) was double that for SS-14 (2.4 min) possibly due to a slower theoretical metabolic clearance rate of the larger peptide (30 and 87 ml . kg-1 . min-1, respectively). Both peptides had similar apparent distribution volumes (SS-14, 306 and SS-28, 263 ml . kg-1). As judged by gel chromatography of plasma samples, there was no evidence for the conversion of SS-28 to SS-14 in vivo. The reduced activity of SS-28, compared with SS-14, against gastric exocrine secretions contrasts with its more potent effects in the pituitary and pancreas.  相似文献   

4.
The effects of a cyclic hexapeptide analog of somatostatin, [cyclo(Pro-Phe-D-Trp-Lys-Thr-Phe)] (cyclo-SS), administered intravenously (iv) or instilled into the duodenum (id) on the pancreatic response to endogenous (meal and duodenal acidification) and exogenous (secretin, CCK) stimulants were compared in five dogs with esophageal, gastric, and pancreatic fistulae. Cyclo-SS given iv in graded doses against a constant background stimulation with secretin caused a similar and dose-dependent inhibition of pancreatic HCO3 and protein secretion being about twice as potent as somatostatin-14 (SS-14). Cyclo-SS, whether applied topically to the duodenal mucosa in a dose of 1 microgram/kg or given iv at a dose of 0.5 microgram/kg-hr, resulted in a similar inhibition of pancreatic secretion induced by feeding a meat meal, sham-feeding, duodenal acidification, or infusion of secretin or CCK. The inhibition of pancreatic secretion by cyclo-SS was due in part to direct inhibitory action on the exocrine pancreas as well as to the suppression of the release of secretin, insulin, and pancreatic polypeptide. It is concluded that cyclo-SS is a more potent inhibitor of pancreatic secretion than SS-14 and that it is active when administered both parenterally and intraduodenally.  相似文献   

5.
The effects on pancreatic responses of highly potent cyclic hexapeptide (cyclo (N-Me-Ala-Phe-D-Trp-Lys-Thr-Phe)) (Veber analog) and octapeptide analogs of somatostatin such as D-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-ol (SMS 201-995), D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2 (RC-121), and D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Trp-NH2 (RC-160) have been compared with somatostatin tetradecapeptide (SS-14) and atropine. The parameters evaluated were pancreatic responses to secretin and meat feeding in conscious dogs with chronic pancreatic fistula and amylase release from the dispersed pancreatic acini. The analogs were administered intravenously or intraduodenally. The cyclic hexapeptide and octapeptide analogs, given iv in graded doses against a constant background stimulation with secretin, produced similar and dose-dependent inhibition of pancreatic HCO3- and protein secretion. Analogs RC-121, RC-160, and the Veber analog were about two to four times more active than SS-14 in suppressing HCO3- secretion and equipotent in reducing protein secretion, but SMS 201-995 was only about half as potent as somatostatin in inhibiting HCO3-. RC-160 was effective in inhibiting secretin-induced protein secretion at lower doses than other analogs. In tests with feeding, SMS 201-995, the Veber analog, RC-121, and RC-160 were more potent inhibitors of exocrine pancreatic secretion of HCO3- and protein and exhibited more prolonged inhibitory effects than SS-14. The Veber analog, RC-121, and RC-160 were also more effective after intraduodenal administration. Atropine also caused significant inhibition of both HCO3- and protein responses to secretin and meal feeding. All four analogs decreased the postprandial insulin and pancreatic polypeptide release to a similar degree as SS-14. Neither SS-14 nor the analogs tested significantly affected basal or caerulein-, gastrin-, secretin-, or bethanechol-stimulated amylase release from the dispersed canine pancreatic acini. Atropine reduced amylase release induced by bethanechol, but not that stimulated by caerulein, gastrin, or secretin. This indicated that the analogs, as somatostatin, are ineffective as secretory inhibitors in vitro. We conclude that cyclic hexapeptide and octapeptide analogs are more potent and longer acting inhibitors of pancreatic secretion than somatostatin-14 in vivo.  相似文献   

6.
The actions of progressive doses of intraperitoneally (IP) administered somatostatin-14 (SS-14) and -28 (SS-28) on gastric secretion (acid, pepsin) and mucosal blood flow (MBF) were studied in conscious gastric fistula rats both under basal conditions and under additional administration of pentagastrin. Also, somatostatin-like immunoreactivity was measured in aortal blood in all groups as well as aortal gastrin levels under basal conditions. IP infusion of equimolar doses of SS-14 and SS-28 resulted in an equal and dose-dependent inhibition of basal as well as pentagastrin-stimulated gastric acid secretion. MBF was reduced by either peptide both in the basal and pentagastrin experiments. Under basal conditions pepsin secretion was significantly increased by infusion of SS-14 at the higher doses, by infusion of SS-28 only at the intermediate dose (3.1 nmole kg-1.hr-1). In the pentagastrin experiments, low and intermediate doses of SS-14 tended to lower pepsin outputs but the highest dose of SS-14 stimulated pepsin secretion, whereas SS-28 had no effect on pepsin. Administration of SS-28 inhibited gastrin only at the highest dose (12.3 nmole kg-1.hr-1), and SS-14 had no influence at all on gastrin. After IP infusion of both peptides, plasma SLI rose dose-dependently under basal and stimulated conditions. Gel chromatography indicated an in-vivo conversion of SS-28 to SS-14 or intermediate fragments. It is concluded that SS-14 and SS-28 delivered by IP infusion, inhibit basal and stimulated gastric acid equally in the rat without suppressing gastrin. The mechanism underlying SS-mediated pepsin stimulation is unknown.  相似文献   

7.
The somatostatin-related peptides somatostatin-14 (SS-14) and somatostatin-28 (aSS-28) are synthesized at the C-terminal end of two separate pre-pro-somatostatins in anglerfish pancreatic islets. The purpose of this study was to determine whether these peptides are expressed in the same or different cell types. Antisera R141 and R293, which recognize the central region of SS-14 and the C-terminal region of aSS-28 ([Tyr7,Gly10] SS-14), respectively, were used in an immunohistochemical examination of anglerfish islets. The R293 antiserum-labeled cells were distributed individually or in small clusters. These same cells, as well as a separate set of cells arranged in large clusters, were stained by the R141 antiserum. Pre-absorption of the R141 antiserum with [Tyr7,Gly10] SS-14 eliminated staining by R141 of only those cells also labeled by R293, whereas pre-absorption of R141 with SS-14 prevented all staining. Pre-absorption of R293 with [Tyr7,Gly10] SS-14 eliminated all staining, whereas pre-absorption with SS-14 had no effect on aSS-28-like immunoreactivity. These results suggest the existence of two separate cell types which express either SS-14 or aSS-28. The cells that contained the somatostatin-related peptides were found to be distinct from those cells that contained insulin, glucagon, or anglerfish peptide Y. However, the cells stained by the R293 antiserum were distributed in close association with glucagon-containing cells. The implications of the existence of separate cell types which express SS-14 or aSS-28 are discussed with regard to processing of the biosynthetic precursors to these peptides.  相似文献   

8.
A number of studies have suggested that somatostatin-14 (SS-14) and somatostatin-28 (SS-28) exhibit a similar spectrum of biological activities but have different potencies. In the present study the effects of SS-14, SS-28, and somatostatin-25 on electrically induced contractions of the guinea pig ileum have been compared. All three peptides exhibited equipotent inhibitory effects. Inhibition was obtained at a threshold concentration less than 10(-10) M, with maximal inhibition at 10(-7) M and IC50 values of 6.0-6.5 X 10(-10) M. The N-terminal 14 amino acid fragment of SS-28 had no effect either on motility, when added alone, or on the actions of SS-28, suggesting that this region of the molecule is not critical for biological activity.  相似文献   

9.
Summary The physiological effects of the pancreatic peptides somatostatin-14 and somatostatin-25 on lipid metabolism in rainbow trout were evaluated by in vitro culture of liver and adipose tissue. The culture medium was subsequently analyzed for glycerol and fatty acid content and triacylglycerol lipase activity was measured within the tissues. Both somatostatin-14 and somatostatin-25 stimulated hepatic fatty acid and glycerol release within 3 h after treatment. Liver triacylglycerol lipase activity was elevated following treatment with somatostatin-14 (76% above control) or somatostatin-25 (94% above control). Somatostatin-14 and somatostatin-25 also significantly stimulated the release of fatty acid and glycerol from adipose tissue. Triacylglycerol lipase activity in adipose tissue also was enhanced by both somatostatins. These results indicate that somatostatin-14 and somatostatin-25 directly stimulate the mobilization of triacylglycerol from liver and adipose tissue, suggesting that these peptides are important systemic modulators of lipid metabolism in fish.Abbreviations bw body weight - cAMP cyclic adenosine monophosphate - FA ratty acids - fw fresh weight - GLU glucagon - INS insulin - MS-222 tricaine-methane sulphonate - SS-14 somatostatin-14 - SS-25 somatostatin-25 - TG triacylglycerol  相似文献   

10.
The effects of intra-abomasal infusion of a mixture of -casomorphins on circulating concentrations of insulin and glucose prestimulated by either abomasal (experiment 1) or intravenous (experiment 2) glucose were studied using non-lactating dairy cows. In both experiments, bolus infusion of 240 mg of a mixture of three beta-casomorphins (beta-casomorphin-4-amide, -5 and -7) was given via an abomasal infusion line. The beta-casomorphins significantly lowered the responses of serum insulin to both abomasal and intravenous glucose infusions (P<0.05). However, the beta-casomorphins did not significantly affect circulating glucose concentrations. The insulinopenic action of the beta-casomorphins is consistent with the action of somatostatin-28 (SS-28) as judged from the effects of SS-28 on the insulin secretion when administered intravenously in experiment 1.  相似文献   

11.
Somatostatin inhibits growth of rainbow trout   总被引:8,自引:0,他引:8  
Implantation of rainbow trout Oncorhynchus mykiss with somatostatin-14 (SS-14) for 20 days resulted in reduced food conversion as well as significant growth retardation compared to controls. Relative growth as mass was reduced by 20%, whereas relative growth by length was reduced by 45%. A single intraperitoneal injection of SS-14 reduced plasma levels of growth hormone (GH), insulin-like growth factor-1 (IGF-I) and insulin. SS-14 injection also reduced [35S]-sulphate incorporation into gill cartilage compared to saline-injected fish. In addition, in vitro incubation of gill cartilage with SS-14 reduced [35S]-sulphate incorporation in a doserelated manner. These results indicate that SS-14 inhibits growth of rainbow trout and suggests that SS-14, in addition to influencing GH, may play an extra-pituitary role in the modulation of the GH-IGF-I axis.  相似文献   

12.
Biological activities of highly potent octapeptide analogs of somatostatin (SS), D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Trp-NH2 (RC-160) and D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2 (RC-121), were investigated in male rats. When analog RC-160 was administered to rats in which serum growth hormone (GH) levels were elevated by pentobarbital anesthesia, a dose-related inhibition of GH was obtained at dose range of 0.1 to 2.5 micrograms/kg. The time course of GH inhibition by RC-160, RC-121 and SS-14 was studied in rats treated with phenobarbital, morphine and chlorpromazine. Analogs RC-160 and RC-121 induced a prolonged inhibition of GH levels, in contrast to SS-14, whose effect was short-lived. The analogs suppressed the GH level for more than 2 hr, the peak inhibition being seen 30 to 60 min after the injection. The effects of analogs RC-160 and RC-121 on insulin secretion were observed in rats, in which insulin levels had been elevated by intravenous administration of glucose (500 mg/rat). Administration of RC-160 suppressed insulin secretion, dose-dependently, maximum but not complete inhibition being achieved at a dose of 100 micrograms/kg. In this model, RC-160 and RC-121, in doses of 30 micrograms/kg, induced a similar inhibition of insulin release as 200 micrograms/kg of SS-14, whose action of SS-14 was transient. The effect of analog RC-160 on glucagon release was studied in rats with glucagon levels elevated by hypoglycemia. RC-160 suppressed the secretion of glucagon, the inhibition being dose-dependent in the range of 0.1 to 2 micrograms/kg. Doses of 2 and 10 micrograms/kg of this analog completely suppressed the hypoglycemia-induced glucagon release. These results indicate that analogs RC-160 and RC-121 possess prolonged and enhanced biological activities, the former analog showing a high selectivity in inhibiting GH and glucagon release in vivo as compared with that of insulin secretion.  相似文献   

13.
Many bioactive peptides are initially synthesized via larger precursors from which they are released by proteolytic cleavage at basic amino acids. Some precursors contain more than one final product peptide, multiple copies of a single peptide, or both. Different product peptides can be produced from a common precursor in different tissues. It is not currently known whether this cell-type specific production of bioactive peptides is mediated by different, specific propeptide converting enzymes (PCEs) or by a small number of similar PCEs. To resolve this issue for the conversion of prosomatostatin, the processing of prosomatostatin-I (aPSS-I) and prosomatostatin-II (aPSS-II) to either somatostatin-14 (SS-14) or somatostatin-28 (aSS-28), respectively, was examined in anglerfish islets. Two distinct forms of PSS PCE activity were detected using a rapid, sensitive, and specific assay. Examination of the specificity of these two enzyme activities showed that one proteolytic activity performs the aPSS-I to SS-14 conversion, while the other protease liberates aSS-28 from aPSS-II. The SS-14-generating PCE also cleaves aPSS-II to produce [Tyr7,Gly10]SS-14 (a tetra-decapeptide analog of SS-14) and converts proinsulin to insulin. The aSS-28-generating PCE does not process proinsulin. These results provide direct evidence that different, specific PCEs are required for liberation of SS-14 and aSS-28 from their precursors.  相似文献   

14.
The tissue-selective binding of the two principal bioactive forms of somatostatin, somatostatin-14 (SS-14) and somatostatin-28 (SS-28), their ability to modulate cAMP-dependent and -independent regulation of post-receptor events to different degrees and the documentation of specific labelling of SS receptor subtypes with SS-28 but not SS-14 in discrete regions of rat brain suggest the existence of distinct SS-14 and SS-28 binding sites. Receptor binding of SS-14 ligands has been shown to be modulated by nucleotides and ions, but the effect of these agents on SS-28 binding has not been studied. In the present study we investigated the effects of adenine and guanine nucleotides as well as monovalent and divalent cations on rat brain SS receptors quantitated with radioiodinated analogs of SS-14 ([125I-Tyr11]SS14, referred to in this paper as SS-14) and SS-28 ([Leu8, D-Trp22, 125I-Tyr25] SS-28, referred to as LTT* SS-28) in order to determine if distinct receptor sites for SS-14 and SS-28 could be distinguished on the basis of their modulation by nucleotides and ions. GTP as well as ATP exerted a dose-dependent inhibition (over a concentration range of 10(-7)-10(-3) M) of the binding of the two radioligands. The nucleotide inhibition of binding resulted in a decrease the Bmax of the SS receptors, the binding affinity remaining unaltered. GTP (10(-4) M) decreased the Bmax of LTT* SS-28 binding sites to a greater extent than ATP (145 +/- 10 and 228 +/- 16 respectively, compared to control value of 320 +/- 20 pmol mg-1). Under identical conditions GTP was less effective than ATP in reducing the number of T* SS-14 binding sites (Bmax = 227 +/- 8 and 182 +/- 15, respectively, compared to 340 +/- 15 pmol mg-1 in the absence of nucleotides). Monovalent cations inhibited the binding of both radioligands, Li+ and Na+ inhibited the binding of T* SS-14 to a greater extent than K+. The effect of divalent cations on the other hand was varied. At low concentration (2 mM) Mg2+, Ba2+, Mn2+, Ca2+ and Co2+ augmented the binding of both T* SS-14 and LTT* SS-28, while higher than 4 mM Co2+ inhibited binding of both ligands. LTT* SS-28 binding was reduced in the presence of high concentrations of Ba2+ and Mn2+ also. Interestingly Ca2+ at higher than 10 mM preferentially inhibited LTT* SS-28 binding and increased the affinity of SS-14 but not SS-28 for LTT* SS-28 binding sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
A Inui  M Okita  T Inoue  N Sakatani  M Oya  H Morioka  T Ogawa  N Mizuno  S Baba 《Peptides》1988,9(5):1093-1100
We investigated the mechanism by which CCK-8 injected into the third cerebral ventricle (ITV administration) inhibits food intake and stimulates insulin and pancreatic polypeptide (PP) secretion in the dog. ITV administration of CCK-8 (4.08 micrograms/5 min) resulted in a significant elevation of plasma insulin and PP concentrations. This effect was abolished by truncal vagotomy and promptly inhibited by ITV administration of atropine (20 micrograms) and proglumide (10 mg). CCK-8 was less effective in increasing insulin and PP concentrations than in reducing feeding. Thus, 1.36 micrograms of ITV CCK-8 markedly reduced food intake to 14, 15, 29 and 31% of control values at 10, 30, 60 and 120 min, respectively. Atropine and naloxone (50 micrograms) had no blocking effect on CCK-8-induced satiety, whereas proglumide antagonized it. These results indicate that ITV CCK-8 effects the endocrine pancreas and food intake through atropine-sensitive and atropine-insensitive mechanisms, respectively, both of which are likely to be mediated by CNS CCK receptors. Intravenous CCK-8 also stimulated PP and insulin release, through mechanisms that were atropine-sensitive and atropine-insensitive, respectively. However, its mode of action, especially on insulin secretion, was quite different from that of ITV CCK-8. Therefore, exogenous CCK appears to act in the brain and the periphery in concert with and independently from cholinergic systems.  相似文献   

16.
Peripheral plasma somatostatin-like immunoreactivity (SLI) was estimated in non-extracted plasma using a specific somatostatin-14 (SS-14) antiserum. The basal plasma SLI level in healthy subjects (n = 18) was 43 +/- 2.9 pg/ml (mean +/- SE) and rose significantly to 8.3 +/- 2.7, 7.3 +/- 1.1 and 5.8 +/- 2.1 pg/ml above the mean basal level 20, 30, and 40 min after a mixed meal, respectively (P less than 0.05). Basal plasma SLI levels in diet (n = 8), sulfonyl urea (n = 8), and insulin groups (n = 8) of non-insulin-dependent maturity onset diabetics (NIDDM) were 50 +/- 1.6, 59 +/- 4.5, and 74 +/- 5.8 pg/ml, respectively. The basal levels for patients with NIDDM were significantly higher than those for healthy subjects (P less than 0.05). No significant increases in plasma SLI were observed after a mixed meal in any group of NIDDM subjects. Elevated plasma SLI levels are considered to be closely related to the severity of the diabetes. The ratios of SS-14 and SS-28 to the total amount of basal plasma SLI were analyzed using high pressure liquid chromatography (HPLC). The ratio of SS-14 to the total SLI was 71-80% in healthy subjects. The ratio of SS-28 to the total SLI increased from 26-30% in the diet group to 50-55% in the group on insulin. These findings suggest a possible pathophysiological role for gastrointestinal somatostatin in NIDDM.  相似文献   

17.
Substances with Somatostatin-Like Immunoreactivity (SLI) were extracted using 2 N acetic acid, from the three pancreatic lobes and the intestine of the duck. The concentration of SLI was found to be very high in the pancreas (4.2 micrograms/g wet weight), the splenic lobe containing 80% of pancreatic SLI compared with 10% for the dorsal and 10% for the ventral lobes. SLI was equally distributed between duodenum, jejunum and ileum and between their mucosal and muscular layers. Chromatography of pancreatic extracts, using a Sephadex G-25 column, showed mainly the tetradecapeptide form (somatostatin-14, S-14) with a small amount of big somatostatin. Chromatography of intestinal extracts revealed three peaks with SLI: big somatostatin, somatostatin-28 (S-28) and S-14. The substance represented by the predominant peak was co-eluted with that of synthetic S-28. In normal ducks, portal plasma SLI corresponded to big somatostatin S-28 and S-14. After total pancreatectomy the S-14 form disappeared from portal plasma, whereas, when the intestinal blood vessels were ligatured, the S-28 form disappeared. We therefore hypothesize that in portal blood, S-14 has a mainly pancreatic origin, and S-28 a mainly intestinal origin.  相似文献   

18.
To better understand the effects of reduced feeding frequency on the GH–IGF-I axis, channel catfish (Ictalurus punctatus), were either fed (Fed control, commercial diet fed daily), fed every other day (FEOD, commercial diet fed every other day), or not fed (Unfed, no feed). Pituitary GH mRNA increased whereas hepatic growth hormone receptor (GHR), IGF-I mRNA, and plasma IGF-I decreased in the FEOD and Unfed fish (P < 0.05). In another study, fish were either continually fed (Fed) or fasted and then re-fed (Restricted) to examine the physiological regulation of somatostatin-14 (SS-14) and SS-22 mRNA. Fasting increased (P < 0.05) levels of SS-14 mRNA in the hypothalamus and pancreatic islets (Brockmann bodies) at d 30 while re-feeding decreased SS-14 mRNA to control values in all tissues examined by d 45. Fasting had no effect on levels of SS-22 mRNA in the pancreatic islets whereas SS-22 mRNA was not detected in the stomach or hypothalamus. The results demonstrate that feeding every other day has similar negative impacts on components of the GH–IGF-I axis as fasting. The observed increase in SS-14 mRNA in the hypothalamus and pancreatic islets suggests a role for SS-14 in modulating the GH–IGF-I axis in channel catfish.  相似文献   

19.
Pharmacological doses of oxytocin administered in basal conditions evoked a rapid surge in plasma glucose and glucagon levels followed by a later increase in plasma insulin and adrenaline levels. The effects of oxytocin on plasma glucagon and adrenaline levels were potentiated by hypoglycemia. When the endogenous pancreas secretion was suppressed by cyclic somatostatin (150 micrograms/h) and exogenous glucagon (3.5 micrograms/h) and insulin (0.2 mU/kg.min) were both replaced, oxytocin (0.2 U/min) evoked a transient but significant increase in plasma glucose levels suppressing the glucose infusion rate (GIR) in the first 60 min. On the contrary at higher insulin infusion rate (0.6 mU/kg.min) plasma glucose levels and GIR remained unaffected throughout the study. Oxytocin seems also to potentiate glucose-induced insulin secretion as evidenced by hyperglycemic glucose clamp. In conclusion, pharmacological doses of oxytocin seem to exert a prevalent hyperglycemic effect by a combined action at the liver site (as glycogenolytic agent) and at the endocrine pancreas (as a stimulatory agent of A cell secretion).  相似文献   

20.
Summary To evaluate the previously reported depletion of pancreatic somatostatin by cysteamine (-mercaptoethylamine), mice were injected subcutaneously with the drug at 300 mg/kg. Immunocytochemical analysis performed on sections from tissue taken at 4 h after the injection revealed an elimination of somatostatin-14-like immunoreactivity without alterations in the somatostatin-28(1 – 12)-like immunoreactivity. In sections from tissues taken at 24 h after injection, no differences between cysteamine-injected animals and controls were observed. Immunochemical analysis of somatostatin-14-like immunoreactivity in pancreatic extracts showed a significant reduction of the concentration (P< 0.001). In contrast, no change in the insulin concentration was observed. Functionally, cysteamine lowered the plasma glucose levels at l h after injection; this effect persisted for 6 h. Plasma insulin levels were likewise reduced transiently by cysteamine. Concomitant administration of somatostatin did not influence these effects of cysteamine. The plasma glucose-lowering effect of cysteamine was seen also in alloxan-diabetic mice. We conclude that cysteamine alters the immunoreactive characteristics of pancreatic somatostatin without affecting the immunoreactivity of insulin, and that cysteamine transiently reduces plasma glucose and insulin levels  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号