首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A serratial protease with an apparent molecular weight of 56,000 (56K protease), which had been purified from the culture supernatant of a strain of Serratia marcescens isolated from a corneal lesion of a human eye [Matsumoto, K. et al. (1984) J. Bacteriol. 157, 225-232], greatly enhanced vascular permeability when injected into guinea pig skin. The 56K protease, which requires zinc ion for activity, was found to possess plasma kallikrein-like properties in vitro as judged by (i) preferential amidolysis of carbobenzoxy-Phe-Arg-4-methylcoumaryl-7-amide and Pro-Phe-Arg-4-methylcoumaryl-7-amide, which are known substrates for plasma kallikrein; (ii) release of kinin from high-molecular-weight kininogen; and (iii) prompt activation of Hageman factor followed by generation of kallikrein from plasma prekallikrein. These results suggest that the 56K protease enhances vascular permeability through activation of a Hageman factor-kallikrein-kinin pathway in vivo, and this molecular process appears to be a rational mechanism of enhancement of permeability and serratial pathogenesis.  相似文献   

2.
The effect of Wen-Pi-Tang extract on influenza virus infection in mice was investigated. The administration of Wen-Pi-Tang extract at a dose of 100 mg/kg body wt. for 8 consecutive days to influenza virus-infected mice reversed the lack of body wt. gain and prevented the increase in lung weight caused by the infection in comparison with uninfected mice, while allopurinol, a xanthine oxidase (XOD) inhibitor, did not show these effects. The serum levels of uric acid and allantoin in influenza virus-infected mice were reduced by Wen-Pi-Tang extract administration. Moreover, Wen-Pi-Tang extract reduced the uric acid level more as the dose increased, although it exerted lower activity than allopurinol. The XOD activity of the lungs was elevated by influenza virus infection, but Wen-Pi-Tang extract administration inhibited this activity, indicating prevention of lung damage by oxygen free radicals generated by XOD. After the administration of Wen-Pi-Tang extract to influenza virus-infected mice, the lung superoxide dismutase activity was not significantly different from that of uninfected mice, whereas lung catalase activity was lower in the former than the latter, but slightly higher than that of influenza virus-infected mice, suggesting that Wen-Pi-Tang extract may prevent the generation of highly toxic hydroxyl radicals in the lung. In addition, the administration of both Wen-Pi-Tang extract and allopurinol reduced the degree of lung consolidation caused by influenza virus infection. In particular, Wen-Pi-Tang extract reduced the consolidation score in a dose-dependent manner and more markedly than allopurinol did. This study suggests that Wen-Pi-Tang extract could improve pathological conditions of the lungs induced by influenza virus infection.  相似文献   

3.
Innate immune response is important for viral clearance during influenza virus infection. Galectin-1, which belongs to S-type lectins, contains a conserved carbohydrate recognition domain that recognizes galactose-containing oligosaccharides. Since the envelope proteins of influenza virus are highly glycosylated, we studied the role of galectin-1 in influenza virus infection in vitro and in mice. We found that galectin-1 was upregulated in the lungs of mice during influenza virus infection. There was a positive correlation between galectin-1 levels and viral loads during the acute phase of viral infection. Cells treated with recombinant human galectin-1 generated lower viral yields after influenza virus infection. Galectin-1 could directly bind to the envelope glycoproteins of influenza A/WSN/33 virus and inhibit its hemagglutination activity and infectivity. It also bound to different subtypes of influenza A virus with micromolar dissociation constant (K(d)) values and protected cells against influenza virus-induced cell death. We used nanoparticle, surface plasmon resonance analysis and transmission electron microscopy to further demonstrate the direct binding of galectin-1 to influenza virus. More importantly, we show for the first time that intranasal treatment of galectin-1 could enhance survival of mice against lethal challenge with influenza virus by reducing viral load, inflammation, and apoptosis in the lung. Furthermore, galectin-1 knockout mice were more susceptible to influenza virus infection than wild-type mice. Collectively, our results indicate that galectin-1 has anti-influenza virus activity by binding to viral surface and inhibiting its infectivity. Thus, galectin-1 may be further explored as a novel therapeutic agent for influenza.  相似文献   

4.
Increased morbidity and mortality occur regularly during influenza epidemics. The exact mechanisms involved are not well defined but bacterial superinfection of influenza virus infected patients is considered to play an important role. In the present study, the effect of influenza virus infection on in vivo production of turnout necrosis factor (TNF) in response to bacterial stimuli was investigated. Release of TNF in mice infected by an aerosol of influenza virus was significant after administration of bacterial lipopolysaccharide (LPS) at 72 h, whereas administration of homologous influenza virus produced only modest amounts of TNF at 96 h. Significant production of TNF was observed 48 h after intravenous administration of infectious influenza in response to LPS but not with the homologous virus. TNF induced after influenza virus infection could be blocked by a specific murine anti-TNF monoclonal antibody. Higher TNF production following aerosol influenza infection correlated with peak titres of influenza virus in the lungs of infected mice and with enhanced generation of luminoldependent chemiluminscence.  相似文献   

5.
Extracellular cleavage of virus envelope fusion glycoproteins by host cellular proteases is a prerequisite for the infectivity of mammalian and nonpathogenic avian influenza viruses, and Sendai virus. Here we report a protease present in the airway that, like tryptase Clara, can process influenza A virus haemagglutinin and Sendai virus envelope fusion glycoprotein. This protease was extracted from the membrane fraction of rat lungs, purified and then identified as a mini-plasmin. Mini-plasmin was distributed predominantly in the epithelial cells of the upward divisions of bronchioles and potentiated the replication of broad-spectrum influenza A viruses and Sendai virus, even that of the plasmin-insensitive influenza A virus strain. In comparison with plasmin, its increased hydrophobicity, leading to its higher local concentrations on membranes, and decreased molecular mass may enable mini-plasmin to gain ready access to the cleavage sites of various haemagglutinins and fusion glycoproteins after expression of these viral proteins on the cell surface. These findings suggest that mini-plasmin in the airway may play a pivotal role in the spread of viruses and their pathogenicity.  相似文献   

6.
为探讨干扰素y诱导蛋白10(IP-10)在流行性感冒病毒致肺部炎性病变中的作用,用BALB/c小鼠做动物感染模型,对只感染流感病毒和注射IP-10后感染流感病毒小鼠的肺部炎性反应进行了比较。结果显示,注射IP-10后感染流感病毒小鼠的肺部炎性反应明显重于感染对照组。研究结果表明,IP-10对流感病毒造成的肺部炎性病变的严重程度具有重要影响。  相似文献   

7.
The protective role of neutrophils on intranasal infection of influenza virus was investigated in 3 strains of tumor-bearing mice with neutrophilic leukocytosis. In vitro multiplication of influenza virus was inhibited by neutrophils from both normal and tumor-bearing mice, and the inhibitory effect of neutrophils was augmented by an addition of fMLP to the culture. Pulmonary virus infectivities in the early phase after infection decreased in such ICR and BALB/c mice, and virus elimination in the late phase was accelerated in the ICR mice. However, no decrease in pulmonary virus infectivity was observed in tumor-bearing C57BL/6 mice. Intranasal administration of fMLP into normal and tumor-bearing C57BL/6 mice after infection significantly inhibited the virus propagation in the lungs. The decrease in neutrophil infiltration into the lung in tumor-bearing C57BL/6 mice was confirmed from histological observations of the lung and lung lavage after infection and from analysis of the neutrophil chemotactic activity induced by fMLP. This might be responsible for the high level of pulmonary virus titer in tumor-bearing C57BL/6 mice. Phagocytic activities of alveolar macrophages and productions of neutralizing antibody were suppressed in the 3 strains of tumor-bearing mice. These observations indicated that neutrophils could be significant effector cells as a host defense mechanism against influenza virus infection in vivo, and infiltration and functional activation of neutrophils could play a significant role in virus elimination from the infected site. Furthermore, the inhibition of virus propagation by neutrophils in vitro was almost completely abrogated by an addition of ZnSO4, suggesting that calprotectin could inhibit influenza virus multiplication.  相似文献   

8.
Selenium (Se) deficiency is associated with decreased activities of Se-dependent antioxidant enzymes, glutathione peroxidase (GPx) and thioredoxin reductase (TR), and with changes in the cellular redox status. We have previously shown that host Se deficiency is responsible for increased virulence of influenza virus in mice due to changes in the viral genome. The present study examines the antioxidant defense systems in the lung and liver of Se-deficient and Se-adequate mice infected with influenza A/Bangkok/1/79. Results show that neither Se status nor infection changed glutathione (GSH) concentration in the lung. Hepatic GSH concentration was lower in Se-deficient mice, but increased significantly day 5 post infection. No significant differences due to Se status or influenza infection were found in catalase activities. As expected, Se deficiency was associated with significant decreases in GPx and TR activities in both lung and liver. GPx activity increased in the lungs and decreased in the liver of Se-adequate mice in response to infection. Both Se deficiency and influenza infection had profound effects on the activity of superoxide dismutase (SOD). The hepatic SOD activity was higher in Se-deficient than Se-adequate mice before infection. However, following influenza infection, hepatic SOD activity in Se-adequate mice gradually increased. Influenza infection was associated with a significant increase of SOD activity in the lungs of Se-deficient, but not Se-adequate mice. The maximum of SOD activity coincided with the peak of pathogenesis in infected lungs. These data suggest that SOD activation in the lung and liver may be a part of a compensatory response to Se deficiency and/or influenza infection. However, SOD activation that leads to increased production of H(2)O(2) may also contribute to pathogenesis and to influenza virus mutation in lungs of Se-deficient mice.  相似文献   

9.
Fatal human respiratory disease associated with the 1918 pandemic influenza virus and potentially pandemic H5N1 viruses is characterized by severe lung pathology, including pulmonary edema and extensive inflammatory infiltrate. Here, we quantified the cellular immune response to infection in the mouse lung by flow cytometry and demonstrate that mice infected with highly pathogenic (HP) H1N1 and H5N1 influenza viruses exhibit significantly high numbers of macrophages and neutrophils in the lungs compared to mice infected with low pathogenic (LP) viruses. Mice infected with the 1918 pandemic virus and a recent H5N1 human isolate show considerable similarities in overall lung cellularity, lung immune cell sub-population composition, and cellular immune temporal dynamics. Interestingly, while these similarities were observed, the HP H5N1 virus consistently elicited significantly higher levels of pro-inflammatory cytokines in whole lungs and primary human macrophages, revealing a potentially critical difference in the pathogenesis of H5N1 infections. Primary mouse and human macrophages and dendritic cells were also susceptible to 1918 and H5N1 influenza virus infection in vitro. These results together indicate that infection with HP influenza viruses such as H5N1 and the 1918 pandemic virus leads to a rapid cell recruitment of macrophages and neutrophils into the lungs, suggesting that these cells play a role in acute lung inflammation associated with HP influenza virus infection.  相似文献   

10.
Experiments in 400 non-inbred white mice indicated that the association of influenza virus A2 Hong Kong with H. influenzae enhanced the pathogenic action of the causative agents and led to the unfavorable clinical outcome only in those cases when these agents penetrated the body simultaneously, or when viral infection preceded bacterial infection. In those cases when influenza infection appeared in the presence of bacterial infection, the pathological process developed as a monoviral disease. The morphological changes in the lungs of the mice infected with H. influenzae corresponded to lesions caused by influenza virus and were manifested by pronounced hemodynamic disturbances.  相似文献   

11.
Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice   总被引:1,自引:0,他引:1  
The influenza virus PB1-F2 protein is a novel protein previously shown to be involved in induction of cell death. Here we characterize the expression and the function of the protein within the context of influenza viral infection in tissue culture and a mouse model. We show that the C-terminal region of the protein can be expressed from a downstream initiation codon and is capable of interaction with the full-length protein. Using this knowledge, we generated influenza viruses knocked out for the expression of PB1-F2 protein and its downstream truncation products. Knocking out the PB1-F2 protein had no effect on viral replication in tissue culture but diminished virus pathogenicity and mortality in mice. The viruses replicated to similar levels in mouse lungs by day 3 postinfection, suggesting that the knockout did not impair viral replication. However, while the PB1-F2 knockout viruses were cleared after day 5, the wild-type viruses were detectable in mouse lungs until day 7, implying that expression of PB1-F2 resulted in delayed clearance of the viruses by the host immune system. Based on our findings and on the fact that the PB1 genomic segment was always newly introduced into some pandemic influenza viruses of the last century, we speculate that the PB1-F2 protein plays an important role in pathogenesis of influenza virus infection and may be an important contributor to pathogenicity of pandemic influenza viruses.  相似文献   

12.
Many poxviruses express a secreted protein that binds CC chemokines with high affinity and has been called viral CC chemokine inhibitor (vCCI). This protein is unrelated to any known cellular protein, yet can compete with host cellular CC chemokine receptors to modulate host inflammatory and immune responses. Although several strains of vaccinia virus (VV) express a vCCI, the best characterized VV strains Western Reserve and Copenhagen do not. In this study, we have expressed the vCCI from VV strain Lister in a recombinant Western Reserve virus (v Delta B8R-35K) and characterized its binding properties in vitro and its effect on virulence in vivo relative to wild-type virus (v Delta B8R) or a revertant virus (v Delta B8R-R) where Lister 35-kDa had been removed. Cells infected with v Delta B8R-35K secreted a 35-kDa protein that bound the CC chemokine macrophage-inflammatory protein 1 alpha. Expression of vCCI attenuated the virus in a murine intranasal model, characterized by reduced mortality and weight loss, decreased virus replication and spread, and a reduced recruitment of inflammatory cells into the lungs of VV-infected mice. The CC chemokines macrophage-inflammatory protein 1 alpha, eotaxin, and macrophage chemotactic protein 1 were detected in bronchoalveolar lavage fluids from v Delta B8R-infected mice; however, bronchoalveolar lavage fluids from v Delta B8R-35K-infected mice had lower levels of chemokines and a reduced chemotactic activity for murine leukocytes in vitro. These observations suggest that vCCI plays an important role in regulating leukocyte trafficking to the lungs during VV infection by binding to CC chemokines and blocking their chemotactic activities.  相似文献   

13.
Using M-TUR, a macrophage-adapted avian influenza A virus (Hav1, Nav3), antiviral resistance of peritoneal macrophages obtained from specifically or nonspecifically immunized mice towards in vitro infection was assessed. M-TUR grew to high titers in macrophages from nonimmune mice thereby causing a marked cytopathic effect. In contrast, peritoneal macrophages from mice specifically immunized with TUR virus were not affected by infection with M-TUR in vitro. This antiviral immunity was specific: mice immunized with antigenetically unrelated influenza strains such as influenza A/Hong Kong/1/68 (H3, N2) or influenza B/Lee yielded susceptible macrophages. Specific macrophage immunity could be abrogated by trypsin treatment in vitro. Susceptible macrophages from nonimmune hosts became resistant following in vitro exposure to homologous anti-TUR sera. Peritoneal exudate cells from BCG-infected animals were less susceptible to in vitro challenge with M-TUR than control macrophages. In vivo treatment of mice with the unspecific immunostimulants BCG or Corynebacterium parvum did not protect the animals against lethal infection with a hepatotropic variant of TUR.  相似文献   

14.
Influenza virus is a common respiratory tract viral infection. Although influenza can be fatal in patients with chronic pulmonary diseases such as chronic obstructive pulmonary disease, its pathogenesis is not fully understood. The Nrf2-mediated antioxidant system is essential to protect the lungs from oxidative injury and inflammation. In the present study, we investigated the role of Nrf2 in protection against influenza virus-induced pulmonary inflammation after cigarette smoke exposure with both in vitro and in vivo approaches. For in vitro analyses, peritoneal macrophages isolated from wild-type and Nrf2-deficient mice were treated with poly(I:C) and/or cigarette smoke extract. For in vivo analysis, these mice were infected with influenza A virus with or without exposure to cigarette smoke. In Nrf2-deficient macrophages, NF-κB activation and the induction of its target inflammatory genes were enhanced after costimulation with cigarette smoke extract and poly(I:C) compared with wild-type macrophages. The induction of antioxidant genes was observed for the lungs of wild-type mice but not those of Nrf2-deficient mice after cigarette smoke exposure. Cigarette smoke-exposed Nrf2-deficient mice showed higher rates of mortality than did wild-type mice after influenza virus infection, with enhanced peribronchial inflammation, lung permeability damage, and mucus hypersecretion. Lung oxidant levels and NF-κB-mediated inflammatory gene expression in the lungs were also enhanced in Nrf2-deficient mice. Our data indicate that the antioxidant pathway controlled by Nrf2 is pivotal for protection against the development of influenza virus-induced pulmonary inflammation and injury under oxidative conditions.  相似文献   

15.
Intragastric inoculation with whole-virion vaccine of inactivated influenza virus resulted in production of hemagglutinin (HA)-specific immunoglobulin A (IgA) and IgG both in lung lavage fluids and in serum samples of mice. HA-specific IgA was the predominant isotypic antibody secreted in the lung lavage fluids (average IgA/IgG ratio, 13:1), whereas HA-specific IgG was the major antibody class in serum (average IgA/IgG ratio, 0.3:1). These responses were similar to the antibody responses stimulated by intranasal infection with live influenza virus. In vitro cultures of lymphoid cells from lungs and Peyer's patches, but not from spleens, in the presence of homologous antigen, from mice vaccinated intragastrically synthesized mostly HA-specific IgA. Mice immunized parenterally with inactivated influenza virus produced only IgG in lung lavage fluids and sera. Cultures of lymphoid cells from their spleens, but not their lungs, synthesized HA-specific IgG upon antigenic stimulation in vitro; neither synthesized IgA. These in vitro cell culture results, as well as the inverse relationship of IgA/IgG ratios in lung lavage fluids and sera, demonstrated that the IgA antibody in lung lavage fluids was actively synthesized locally in the lungs of intragastrically immunized mice. This finding was consistent with the migratory distribution of antigen-primed lymphoid cells from Peyer's patches to distant lymphoid tissue such as lung. Intragastric vaccination conferred protection against intranasal challenge with a lethal dose of virulent virus.  相似文献   

16.
Xu L  Bao L  Li F  Lv Q  Ma Y  Zhou J  Xu Y  Deng W  Zhan L  Zhu H  Ma C  Shu Y  Qin C 《PloS one》2011,6(12):e28901
The experimental infection of a mouse lung with influenza A virus has proven to be an invaluable model for studying the mechanisms of viral adaptation and virulence. The mouse adaption of human influenza A virus can result in mutations in the HA and other proteins, which is associated with increased virulence in mouse lungs. In this study, a mouse-adapted seasonal H1N1 virus was obtained through serial lung-to-lung passages and had significantly increased virulence and pathogenicity in mice. Genetic analysis indicated that the increased virulence of the mouse-adapted virus was attributed to incremental acquisition of three mutations in the HA protein (T89I, N125T, and D221G). However, the mouse adaption of influenza A virus did not change the specificity and affinity of receptor binding and the pH-dependent membrane fusion of HA, as well as the in vitro replication in MDCK cells. Notably, infection with the mouse adapted virus induced severe lymphopenia and modulated cytokine and chemokine responses in mice. Apparently, mouse adaption of human influenza A virus may change the ability to replicate in mouse lungs, which induces strong immune responses and inflammation in mice. Therefore, our findings may provide new insights into understanding the mechanisms underlying the mouse adaption and pathogenicity of highly virulent influenza viruses.  相似文献   

17.
For influenza viruses to become infectious, the proteolytic cleavage of hemagglutinin (HA) is essential. This usually is mediated by trypsin-like proteases in the respiratory tract. The binding of plasminogen to influenza virus A/WSN/33 leads to the cleavage of HA, a feature determining its pathogenicity and neurotropism in mice. Here, we demonstrate that plasminogen also promotes the replication of other influenza virus strains. The inhibition of the conversion of plasminogen into plasmin blocked influenza virus replication. Evidence is provided that the activation of plasminogen is mediated by the host cellular protein annexin II, which is incorporated into the virus particles. Indeed, the inhibition of plasminogen binding to annexin II by using a competitive inhibitor inhibits plasminogen activation into plasmin. Collectively, these results indicate that the annexin II-mediated activation of plasminogen supports the replication of influenza viruses, which may contribute to their pathogenicity.  相似文献   

18.
目的 评价季节性流感裂解疫苗对流感病毒H7N9的免疫保护效力.方法 用我国2012~2013年度季节性流感裂解疫苗,以腹腔注射方式免疫BALB/c小鼠,并设PBS免疫模型组,末次免疫14 d后以5 LD50 A/Anhui/1(H7N9)进行攻试验.感染后观察记录小鼠临床表现,体重变化,并分别于第2天和第4天每组处死3只小鼠,取肺组织和鼻甲骨测病毒滴度和载量.结果 感染后疫苗与模型组小鼠体重下降明显,疫苗组存活率为10%,模型组全部死亡.感染后第4天疫苗组鼻甲骨滴度显著低于模型组.血凝抑制试验及中和实验表明免疫小鼠血清无中和H7N9病毒抗体.结论 季节性流感疫苗在小鼠中对于H7N9流感病毒感染无明显保护作用.  相似文献   

19.
The nucleoprotein (NP) of influenza A virus is the dominant antigen recognized by influenza virus-specific cytotoxic T lymphocytes (CTLs), and adoptive transfer of NP-specific CTLs protects mice from influenza A virus infection. BALB/c mouse cells (H-2d) recognize a single Kd-restricted CTL epitope of NP consisting of amino acids 147 to 155. In the present study, mice were immunized with various vaccinia virus recombinant viruses to examine the effect of the induction of primary pulmonary CTLs on resistance to challenge with influenza A/Puerto Rico/8/34 virus. The minigene ESNP(147-155)-VAC construct, composed of a signal sequence from the adenovirus E3/19K glycoprotein (designated ES) and expressing the 9-amino-acid NP natural determinant (amino acids 147 to 155) preceded by an alanine residue, a similar minigene NP(Met 147-155)-VAC lacking ES, and a full-length NP-VAC recombinant of influenza virus were analyzed. The two minigene NP-VAC recombinants induced a greater primary pulmonary CTL response than the full-length NP-VAC recombinant. However, NP-specific CTLs induced by immunization with ESNP(147-155)-VAC did not decrease peak virus titer or accelerate clearance of virus in the lungs of mice challenged intranasally with A/PR/8/34. Furthermore, NP-specific CTLs induced by immunization did not protect mice challenged intranasally with a lethal dose of A/PR/8/34. Sequence analysis of the NP CTL epitope of A/PR/8/34 challenge virus obtained from lungs after 8 days of replication in ESNP(147-155)-VAC-immunized mice showed identity with that of the input virus, demonstrating that an escape mutant had not emerged during replication in vivo. Thus, in contrast to adoptively transferred CTLs, pulmonary NP-specific CTLs induced by recombinant vaccinia virus immunization do not have protective in vivo antiviral activity against influenza virus infection.  相似文献   

20.
Two different subsets of T cells, Th1 and Th2 cells, have been demonstrated to secrete different profiles of cytokines and to influence various infections in different ways. Whereas cytokines secreted by Th1 cells, particularly gamma interferon, promote the generation of cell-mediated immunity, Th2 cells and their cytokines (interleukin-4 [IL-4], IL-5, IL-10, and IL-13) have been shown to function in recovery from parasitic infections and in antibody responses. In this study, we analyzed the effects of the dominant Th2 cytokine, IL-4, on immunity to virus infection. We assessed the effects of IL-4 on both secondary immune responses by an adoptive transfer assay and primary immune responses by in vivo treatment of influenza virus-infected mice with IL-4. The results demonstrated that IL-4 can function to inhibit antiviral immunity at both stages. We found that IL-4 treatment of sensitized cells during secondary stimulation in vitro had little effect on their ability to lyse virus-infected target cells in a 51Cr release assay. Nevertheless, the clearance of influenza A/PR/8/34 (H1N1) virus from the lungs of infected BALB/c mice was significantly delayed after the transfer of virus-specific T cells secondarily stimulated in the presence of IL-4 in comparison to virus clearance in recipients of cells stimulated in the absence of IL-4. In contrast to the adoptive transfer results, the treatment of PR8 virus-infected mice with IL-4 during primary infection greatly suppressed the generation of cytotoxic T-cell precursors, as assessed by secondary stimulation in vitro. In addition, culture supernatants of secondarily stimulated spleen cells from IL-4-treated mice contained significantly less gamma interferon and more IL-4 than did spleen cells from controls. More importantly, the treatment of mice with IL-4 resulted in an extremely significant delay in virus clearance. Thus, IL-4 can inhibit both primary and secondary antiviral immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号