首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loucks, A. B., M. Verdun, and E. M. Heath. Low energyavailability, not stress of exercise, alters LH pulsatility in exercising women. J. Appl. Physiol.84(1): 37-46, 1998.We tested two hypotheses about the disruptionof luteinizing hormone (LH) pulsatility in exercising women by assayingLH in blood samples drawn at 10-min intervals over 24 h from nineyoung, habitually sedentary, regularly menstruating women ondays 8,9, or10 of two menstrual cycles after 4 days of intense exercise [E = 30 kcal · kg leanbody mass(LBM)1 · day1at 70% of aerobic capacity]. To test the hypothesis that LHpulsatility is disrupted by low energy availability, we controlled thesubjects' dietary energy intakes (I) to set theirenergy availabilities (A = I  E) at 45 and 10 kcal · kgLBM1 · day1during the two trials. To test the hypothesis that LH pulsatility isdisrupted by the stress of exercise, we compared the resulting LHpulsatilities to those previously reported in women with similar controlled energy availability who had not exercised. In the exercising women, low energy availability reduced LH pulse frequency by 10% (P < 0.01) during thewaking hours and increased LH pulse amplitude by 36%(P = 0.05) during waking and sleepinghours, but this reduction in LH pulse frequency was blunted by 60%(P = 0.03) compared with that in thepreviously studied nonexercising women whose low energy availabilitywas caused by dietary restriction. The stress of exercise neitherreduced LH pulse frequency nor increased LH pulse amplitude (allP > 0.4). During exercise, theproportion of energy derived from carbohydrate oxidation was reducedfrom 73% while A = 45 kcal · kgLBM1 · day1to 49% while A = 10 kcal · kgLBM1 ·day1(P < 0.0001). These resultscontradict the hypothesis that LH pulsatility is disrupted by exercisestress and suggest that LH pulsatility in women depends on energyavailability.

  相似文献   

2.
The aim of this study was to investigate dietaryprotein-induced changes in whole body leucine turnover and oxidationand in skeletal muscle branched chain 2-oxo acid dehydrogenase (BCOADH) activity, at rest and during exercise. Postabsorptive subjects receiveda primed constant infusion ofL-[1-13C,15N]leucinefor 6 h, after previous consumption of a high- (HP; 1.8 g · kg1 · day1,n = 8) or a low-protein diet (LP; 0.7 g · kg1 · day1,n = 8) for 7 days. The subjects werestudied at rest for 2 h, during 2-h exercise at 60% maximum oxygenconsumption, then again for 2 h at rest. Exercise induced a doubling ofboth leucine oxidation from 20 µmol · kg1 · h1and BCOADH percent activation from 7% in all subjects. Leucine oxidation was greater before (+46%) and during (+40%,P < 0.05) the first hour of exercisein subjects consuming the HP rather than the LP diet, but there was noadditional change in muscle BCOADH activity. The results suggest thatleucine oxidation was increased by previous ingestion of an HP diet,attributable to an increase in leucine availability rather than to astimulation of the skeletal muscle BCOADH activity.

  相似文献   

3.
We examined the hypothesis that glucose flux wasdirectly related to relative exercise intensity both beforeand after a 12-wk cycle ergometer training program [5days/wk, 1-h duration, 75% peakO2 consumption(O2 peak)] inhealthy female subjects (n = 17; age23.8 ± 2.0 yr). Two pretraining trials (45 and 65% of O2 peak)and two posttraining trials [same absolute workload (65% of oldO2 peak)and same relative workload (65% of new O2 peak)] wereperformed on nine subjects by using a primed-continuous infusion of[1-13C]- and[6,6-2H]glucose.Eight additional subjects were studied by using[6,6-2H]glucose.Subjects were studied postabsorption for 90 min of rest and 1 h ofcycling exercise. After training, subjects increased O2 peak by 25.2 ± 2.4%. Pretraining, the intensity effect on glucose kinetics wasevident between 45 and 65% ofO2 peak with rates ofappearance (Ra: 4.52 ± 0.25 vs. 5.53 ± 0.33 mg · kg1 · min1),disappearance (Rd: 4.46 ± 0.25 vs. 5.54 ± 0.33 mg · kg1 · min1),and oxidation (Rox: 2.45 ± 0.16 vs. 4.35 ± 0.26 mg · kg1 · min1)of glucose being significantly greater(P  0.05) in the 65% thanin the 45% trial. Training reducedRa (4.7 ± 0.30 mg · kg1 · min1),Rd (4.69 ± 0.20 mg · kg1 · min1),and Rox (3.54 ± 0.50 mg · kg1 · min1)at the same absolute workload (P  0.05). When subjects were tested at the same relative workload,Ra,Rd, andRox were not significantlydifferent after training. However, at both workloads after training,there was a significant decrease in total carbohydrate oxidation asdetermined by the respiratory exchange ratio. These results show thefollowing in young women: 1)glucose use is directly related to exercise intensity;2) training decreasesglucose flux for a given power output;3) when expressed asrelative exercise intensity, training does not affect the magnitude ofblood glucose flux during exercise; but4) training does reduce totalcarbohydrate oxidation.

  相似文献   

4.
Katz, Stuart D., Jeannette Yuen, Rachel Bijou, and ThierryH. LeJemtel. Training improves endothelium-dependent vasodilation in resistance vessels of patients with heart failure.J. Appl. Physiol. 82(5):1488-1492, 1997.The effects of physical training onendothelium-dependent vasodilation in skeletal muscle resistance vessels were investigated in patients with heart failure. Forearm bloodflows(ml · min1 · 100 ml1) in response tobrachial arterial administration of acetylcholine (5 × 105 and 5 × 104 M at 1 ml/min) andnitroglycerin (5 × 106 and 5 × 105 M at 1 ml/min) weredetermined by strain-gauge venous occlusion plethysmography before andafter 8 wk of daily handgrip exercise in 12 patients with chronic heartfailure. After 8 wk of daily handgrip exercise, the vasodilatoryresponses to acetylcholine significantly increased from pretrainingvalues, i.e., 16.6 ± 2.0 vs. 8.6 ± 1.3 ml · min1 · 100 ml1(P < 0.05) and 27.5 ± 1.5 vs. 14.6 ± 1.7 ml · min1 · 100 ml1(P < 0.05), respect- ively,whereas the vasodilatory responses to nitroglycerin did notchange. Handgrip exercise training appears to specificallyenhance endothelium-dependent vasodilation in the forearm skeletalmuscle circulation of patients with heart failure.

  相似文献   

5.
Kolka, Margaret A., and Lou A. Stephenson. Effect ofluteal phase elevation in core temperature on forearm blood flow duringexercise. J. Appl. Physiol. 82(4):1079-1083, 1997.Forearm blood flow (FBF) as an index of skinblood flow in the forearm was measured in five healthy women by venousocclusion plethysmography during leg exercise at 80% peak aerobicpower and ambient temperature of 35°C (relative humidity 22%;dew-point temperature 10°C). Resting esophagealtemperature (Tes) was 0.3 ± 0.1°C higher in the midluteal than in the early follicular phase ofthe menstrual cycle (P < 0.05).Resting FBF was not different between menstrual cycle phases. TheTes threshold for onset of skinvasodilation was higher (37.4 ± 0.2°C) in midluteal than inearly follicular phase (37.0 ± 0.1°C; P < 0.05). The slope of the FBF toTes relationship was not different between menstrual cycle phases (14.0 ± 4.2 ml · 100 ml1 · min1 · °C1for early follicular and 16.3 ± 3.2 ml · 100 ml1 · min1 · °C1for midluteal phase). Plateau FBF was higher during exercise inmidluteal (14.6 ± 2.2 ml · 100 ml1 · min1 · °C1)compared with early follicular phase (10.9 ± 2.4 ml · 100 ml1 · min1 · °C1;P < 0.05). The attenuation of theincrease in FBF to Tes occurred when Tes was 0.6°C higher andat higher FBF in midluteal than in early follicular experiments(P < 0.05). In summary, the FBF response is different during exercise in the two menstrual cycle phasesstudied. After the attenuation of the increase in FBF and whileTes was still increasing, thegreater FBF in the midluteal phase may have been due to the effects ofincreased endogenous reproductive endocrines on the cutaneousvasculature.

  相似文献   

6.
Tyler, Catherine M., Lorraine C. Golland, David L. Evans,David R. Hodgson, and Reuben J. Rose. Changes in maximum oxygenuptake during prolonged training, overtraining, and detraining inhorses. J. Appl. Physiol. 81(5):2244-2249, 1996.Thirteen standardbred horses were trained asfollows: phase 1 (endurance training, 7 wk),phase 2 (high-intensity training, 9 wk),phase 3 (overload training, 18 wk), andphase 4 (detraining, 12 wk). Inphase 3, the horses were divided intotwo groups: overload training (OLT) and control (C). The OLT groupexercised at greater intensities, frequencies, and durations than groupC. Overtraining occurred after 31 wk of training and was defined as asignificant decrease in treadmill run time in response to astandardized exercise test. In the OLT group, there was a significantdecrease in body weight (P < 0.05).From pretraining values of 117 ± 2 (SE)ml · kg1 · min1,maximal O2 uptake(O2 max) increased by15% at the end of phase 1, and when signs of overtraining werefirst seen in the OLT group,O2 max was 29%higher (151 ± 2 ml · kg1 · min1in both C and OLT groups) than pretraining values. There was nosignificant reduction inO2 max until after 6 wk detraining whenO2 max was 137 ± 2 ml · kg1 · min1.By 12 wk detraining, meanO2 max was134 ± 2 ml · kg1 · min1,still 15% above pretraining values. When overtraining developed, O2 max was notdifferent between C and OLT groups, but maximal values forCO2 production (147 vs. 159 ml · kg1 · min1)and respiratory exchange ratio (1.04 vs. 1.11) were lower in the OLTgroup. Overtraining was not associated with a decrease inO2 max and, afterprolonged training, decreases inO2 max occurredslowly during detraining.

  相似文献   

7.
Madsen, Klavs, Dave A. MacLean, Bente Kiens, and DirkChristensen. Effects of glucose, glucose plus branched-chain aminoacids, or placebo on bike performance over 100 km. J. Appl. Physiol. 81(6): 2644-2650, 1996.This studywas undertaken to determine the effects of ingesting either glucose(trial G) or glucose plusbranched-chain amino acids (BCAA; trialB), compared with placebo (trialP), during prolonged exercise. Nine well-trained cyclists with a maximal oxygen uptake of 63.1 ± 1.5 mlO2 · min1 · kg1performed three laboratory trials consisting of 100 km of cycling separated by 7 days between each trial. During these trials, the subjects were encouraged to complete the 100 km as fast as possible ontheir own bicycles connected to a magnetic brake. No differences inperformance times were observed between the three trials (160.1 ± 4.1, 157.2 ± 4.5, and 159.8 ± 3.7 min, respectively). Intrial B, plasma BCAA levels increased from339 ± 28 µM at rest to 1,026 ± 62 µM after exercise(P < 0.01). Plasma ammoniaconcentrations increased during the entire exercise period for allthree trials and were significantly higher intrial B compared withtrials G andP (P < 0.05). The respiratory exchange ratio was similar in the threetrials during the first 90 min of exercise; thereafter, it tended todrop more in trial P than intrials G andB. These data suggest that neitherglucose nor glucose plus BCAA ingestion during 100 km of cyclingenhance performance in well-trained cyclists.

  相似文献   

8.
Young[n = 5, 30 ± 5 (SD) yr] andmiddle-aged (n = 4, 58 ± 4 yr) menand women performed single-leg knee-extension exercise inside a wholebody magnetic resonance system. Two trials were performed 7 days apartand consisted of two 2-min bouts and a third bout continued toexhaustion, all separated by 3 min of recovery.31P spectra were used to determinepH and relative concentrations ofPi, phosphocreatine (PCr), and-ATP every 10 s. The subjects consumed 0.3 g · kg1 · day1of a placebo (trial 1) or creatine(trial 2) for 5 days before eachtrial. During the placebo trial, the middle-aged group had a lowerresting PCr compared with the young group (35.0 ± 5.2 vs. 39.5 ± 5.1 mmol/kg, P < 0.05) and alower mean initial PCr resynthesis rate (18.1 ± 3.5 vs. 23.2 ± 6.0 mmol · kg1 · min1,P < 0.05). After creatinesupplementation, resting PCr increased 15%(P < 0.05) in the young group and30% (P < 0.05) in the middle-aged group to 45.7 ± 7.5 vs. 45.7 ± 5.5 mmol/kg, respectively. Mean initial PCr resynthesis rate also increased in the middle-aged group(P < 0.05) to a level not differentfrom the young group (24.3 ± 3.8 vs. 24.2 ± 3.2 mmol · kg1 · min1).Time to exhaustion was increased in both groups combined after creatinesupplementation (118 ± 34 vs. 154 ± 70 s,P < 0.05). In conclusion, creatinesupplementation has a greater effect on PCr availability andresynthesis rate in middle-aged compared with youngerpersons.

  相似文献   

9.
Fitzgerald, Margaret D., Hirofumi Tanaka, Zung V. Tran, andDouglas R. Seals. Age-related declines in maximal aerobic capacityin regularly exercising vs. sedentary women: a meta-analysis. J. Appl. Physiol. 83(1): 160-165, 1997.Our purpose was to determine the relationship between habitualaerobic exercise status and the rate of decline in maximal aerobiccapacity across the adult age range in women. A meta-analytic approachwas used in which mean maximal oxygen consumption(O2 max) values fromfemale subject groups (ages 18-89 yr) were obtained from thepublished literature. A total of 239 subject groups from 109 studiesinvolving 4,884 subjects met the inclusion criteria and werearbitrarily separated into sedentary (groups = 107; subjects = 2,256),active (groups = 69; subjects = 1,717), and endurance-trained (groups = 63; subjects = 911) populations.O2 max averaged 29.7 ± 7.8, 38.7 ± 9.2, and 52.0 ± 10.5 ml · kg1 · min1,respectively, and was inversely related to age within each population (r = 0.82 to 0.87, allP < 0.0001). The rate of decline inO2 max withincreasing subject group age was lowest in sedentary women (3.5ml · kg1 · min1· decade1), greater inactive women (4.4ml · kg1 · min1· decade1), andgreatest in endurance-trained women (6.2ml · kg1 · min1 · decade1)(all P < 0.001 vs. each other). Whenexpressed as percent decrease from mean levels at age ~25 yr, therates of decline inO2 max were similarin the three populations (10.0 to 10.9%/decade). Therewas no obvious relationship between aerobic exercise status and therate of decline in maximal heart rate with age. The results of thiscross-sectional study support the hypothesis that, in contrast to theprevailing view, the rate of decline in maximal aerobic capacity withage is greater, not smaller, in endurance-trained vs. sedentary women.The greater rate of decline inO2 max in endurance-trained populations may be related to their higher values asyoung adults (baseline effect) and/or to greater age-related reductions in exercise volume; however, it does not appear to berelated to a greater rate of decline in maximal heart rate with age.

  相似文献   

10.
The purpose ofthe present study was to determine the separate and combined effects ofaerobic fitness, short-term heat acclimation, and hypohydration ontolerance during light exercise while wearing nuclear, biological, andchemical protective clothing in the heat (40°C, 30% relativehumidity). Men who were moderately fit [(MF); <50ml · kg1 · min1maximal O2 consumption;n = 7] and highly fit[(HF); >55ml · kg1 · min1maximal O2 consumption;n = 8] were tested while theywere euhydrated or hypohydrated by ~2.5% of body mass throughexercise and fluid restriction the day preceding the trials. Tests wereconducted before and after 2 wk of daily heat acclimation (1-htreadmill exercise at 40°C, 30% relative humidity, while wearingthe nuclear, biological, and chemical protective clothing). Heatacclimation increased sweat rate and decreased skin temperature andrectal temperature (Tre) in HF subjects but had no effecton tolerance time (TT). MF subjects increased sweat rate but did notalter heart rate, Tre, or TT. In both MF and HF groups, hypohydration significantly increased Tre and heart rate and decreasedthe respiratory exchange ratio and the TT regardless of acclimationstate. Overall, the rate of rise of skin temperature was less, whileTre, the rate of rise of Tre, and the TTwere greater in HF than in MF subjects. It was concluded thatexercise-heat tolerance in this uncompensable heat-stress environmentis not influenced by short-term heat acclimation but is significantlyimproved by long-term aerobic fitness.

  相似文献   

11.
Acclimatization to altitude involves an increase in the acutehypoxic ventilatory response (AHVR). Because low-dose dopamine decreases AHVR and domperidone increases AHVR, the increase in AHVR ataltitude may be generated by a decrease in peripheral dopaminergicactivity. The AHVR of nine subjects was determined with and without aprior period of 8 h of isocapnic hypoxia under each of threepharmacological conditions: 1)control, with no drug administered;2) dopamine (3 µg · min1 · kg1);and 3) domperidone (Motilin, 40 mg).AHVR increased after hypoxia (P  0.001). Dopaminedecreased (P  0.01), and domperidone increased (P  0.005) AHVR. The effect of both drugs on AHVR appearedlarger after hypoxia, an observation supported by a significantinteraction between prior hypoxia and drug in the analysis of variance(P  0.05). Although the increasedeffect of domperidone after hypoxia of 0.40 l · min1 · %saturation1[95% confidence interval (CI) 0.11 to 0.92 l · min1 · %1]did not reach significance, the lower limit for this confidence interval suggests that little of the increase in AHVR after sustained hypoxia was brought about by a decrease in peripheral dopaminergic inhibition.

  相似文献   

12.
Hardarson, Thorir, Jon O. Skarphedinsson, and TorarinnSveinsson. Importance of the lactate anion in control ofbreathing. J. Appl. Physiol. 84(2):411-416, 1998.The purpose of this study was to examine theeffects of raising the arterialLa andK+ levels on minute ventilation(E) in rats. EitherLa or KCl solutions wereinfused in anesthetized spontaneously breathing Wistar rats to raisethe respective ion arterial concentration ([La] and[K+]) gradually tolevels similar to those observed during strenuous exercise.E, blood pressure, and heart rate wererecorded continuously, and arterial[La],[K+], pH, and bloodgases were repeatedly measured from blood samples. To prevent changesin pH during the Lainfusions, a solution of sodium lactate and lactic acid was used. Raising [La] to13.2 ± 0.6 (SE) mM induced a 47.0 ± 4.0% increase inE without any concomitant changes ineither pH or PCO2. Raising[K+] to 7.8 ± 0.11 mM resulted in a 20.3 ± 5.28% increase inE without changes in pH. Thus ourresults show that Laitself, apart from lactic acidosis, may be important in increasing E during strenuous exercise, and weconfirm earlier results regarding the role of arterial[K+] in the control ofE during exercise.

  相似文献   

13.
Griffin, M. Pamela. Role for anions in pulmonaryendothelial permeability. J. Appl.Physiol. 83(2): 615-622, 1997.-Adrenergic stimulation reduces albumin permeation across pulmonary artery endothelial monolayers and induces changes in cell morphology that aremediated by Cl flux. Wetested the hypothesis that anion-mediated changes in endothelial cellsresult in changes in endothelial permeability. We measured permeationof radiolabeled albumin across bovine pulmonary arterial endothelialmonolayers when the extracellular anion was Cl,Br,I,F, acetate(Ac), gluconate(G), and propionate(Pr). Permeability toalbumin (Palbumin)was calculated before and after addition of 0.2 mM of thephosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), whichreduces permeability. InCl, thePalbumin was 3.05 ± 0.86 × 106 cm/s andfell by 70% with the addition of IBMX. The initialPalbumin was lowest forPr andAc. InitialPalbumin was higher inBr,I,G, andF than inCl. A permeability ratiowas calculated to examine the IBMX effect. The greatest IBMX effect wasseen when Cl was theextracellular anion, and the order among halide anions wasCl > Br > I > F. Although the level ofextracellular Ca2+ concentration([Ca2+]o)varied over a wide range in the anion solutions,[Ca2+]odid not systematically affect endothelial permeability in this system.When Cl was theextracellular anion, varying[Ca2+]ofrom 0.2 to 2.8 mM caused a change in initialPalbumin but no changein the IBMX effect. The anion channel blockers4-acetamido-4-isothiocyanotostilbene-2,2-disulfonic acid(0.25 mM) and anthracene-9-carboxylic acid (0.5 mM) significantly altered initialPalbumin and the IBMXeffect. The anion transport blockers bumetanide (0.2 mM) and furosemide(1 mM) had no such effects. We conclude that extracellular anionsinfluence bovine pulmonary arterial endothelial permeability and thatthe pharmacological profile fits better with the activity of anionchannels than with other anion transport processes.

  相似文献   

14.
Dehydration and hyperthermia may impair gastricemptying (GE) during exercise; the effect of these alterations onintestinal water flux (WF) is unknown. Thus the purpose of this studywas to determine the effect of hypohydration (~2.7% body weight) on GE and WF of a water placebo (WP) during cycling exercise (85 min, 65%maximal oxygen uptake) in a cool environment (22°C) and to alsocompare GE and WF of three carbohydrate-electrolyte solutions (CES)while the subjects were hypohydrated. GE and WF were determined simultaneously by a nasogastric tube placed in the gastric antrum andvia a multilumen tube that spanned the duodenum and the first 25 cm ofjejunum. Hypohydration was attained 12-16 h before experiments bylow-intensity exercise in a hot (45°C), humid (relative humidity 50%) environment. Seven healthy subjects (age 26.7 ± 1.7 yr,maximal oxygen uptake 55.9 ± 8.2 ml · kg1 · min1)ingested either WP or a 6% (330 mosmol), 8% (400 mosmol), or a 9%(590 mosmol) CES the morning following hypohydration. For comparison,subjects ingested WP after a euhydration protocol. Solutions (~2.0liters total) were ingested as a large bolus (4.6 ml/kg body wt) 5 minbefore exercise and as small serial feedings (2.3 ml/kg body wt) every10 min of exercise. Average GE rates were not different amongconditions (P > 0.05). Mean(±SE) values for WF were also similar(P > 0.05) for the euhydration (15.3 ± 1.7 ml · cm1 · h1)and hypohydration (18.3 ± 2.6 ml · cm1 · h1)experiments. During exercise after hypohydration, waterabsorption was greater (P < 0.05)with ingestion of WP (18.3 ± 2.6) and the 6% CES (16.5 ± 3.7),compared with the 8% CES (6.9 ± 1.5) and the 9% CES (1.8 ± 1.7). Mean values for final core temperature (38.6 ± 0.1°C),heart rate (152 ± 1 beats/min), and change in plasma volume(5.7 ± 0.7%) were similar among experimental trials. Weconclude that 1) hypohydration to~3% body weight does not impair GE or fluid absorption duringmoderate exercise when ingesting WP, and2) hyperosmolality (>400 mosmol)reduced WF in the proximal intestine.

  相似文献   

15.
Training-induced alterations of glucose flux in men   总被引:5,自引:0,他引:5  
Friedlander, Anne L., Gretchen A. Casazza, Michael A. Horning, Melvin J. Huie, and George A. Brooks. Training-induced alterations of glucose flux in men. J. Appl.Physiol. 82(4): 1360-1369, 1997.We examined thehypothesis that glucose flux was directly related to relative exerciseintensity both before and after a 10-wk cycle ergometer trainingprogram in 19 healthy male subjects. Two pretraining trials [45and 65% of peak O2 consumption(O2 peak)] andtwo posttraining trials (same absolute and relative intensities as 65%pretraining) were performed for 90 min of rest and 1 h of cyclingexercise. After training, subjects increasedO2 peak by9.4 ± 1.4%. Pretraining, the intensity effect on glucose kinetics was evident with rates of appearance(Ra; 5.84 ± 0.23 vs. 4.73 ± 0.19 mg · kg1 · min1),disappearance (Rd; 5.78 ± 0.19 vs. 4.73 ± 0.19 mg · kg1 · min1),oxidation (Rox; 5.36 ± 0.15 vs. 3.41 ± 0.23 mg · kg1 · min1),and metabolic clearance (7.03 ± 0.56 vs. 5.20 ± 0.28 ml · kg1 · min1)of glucose being significantly greater(P  0.05) in the 65% than the 45%O2 peak trial. WhenRd was expressed as a percentage of total energy expended per minute(Rd E), there was nodifference between the 45 and 65% intensities. Training did reduceRa (4.63 ± 0.25),Rd (4.65 ± 0.24),Rox (3.77 ± 0.43), andRd E (15.30 ± 0.40 to12.85 ± 0.81) when subjects were tested at the same absolute workload (P  0.05). However, whenthey were tested at the same relative workload,Ra,Rd, andRd E were not different,although Rox was lowerposttraining (5.36 ± 0.15 vs. 4.41 ± 0.42, P  0.05). These results show1) glucose use is directly relatedto exercise intensity; 2) trainingdecreases glucose flux for a given power output;3) when expressed as relativeexercise intensity, training does not affect the magnitude of bloodglucose use during exercise; 4)training alters the pathways of glucose disposal.

  相似文献   

16.
Smaller lungs in women affect exercise hyperpnea   总被引:2,自引:0,他引:2  
We subjected 29 healthy young women (age: 27 ± 1 yr) with a wide range of fitness levels [maximal oxygenuptake (O2 max): 57 ± 6 ml · kg1 · min1;35-70ml · kg1 · min1]to a progressive treadmill running test. Our subjects had significantly smaller lung volumes and lower maximal expiratory flow rates, irrespective of fitness level, compared with predicted values for age-and height-matched men. The higher maximal workload in highly fit(O2 max > 57 ml · kg1 · min1,n = 14) vs. less-fit(O2 max < 56 ml · kg1 · min1,n = 15) women caused a higher maximalventilation (E) with increased tidal volume (VT)and breathing frequency (fb) atcomparable maximal VT/vitalcapacity (VC). More expiratory flow limitation (EFL; 22 ± 4% ofVT) was also observed duringheavy exercise in highly fit vs. less-fit women, causing higherend-expiratory and end-inspiratory lung volumes and greater usage oftheir maximum available ventilatory reserves.HeO2 (79% He-21%O2) vs. room air exercise trialswere compared (with screens added to equalize external apparatusresistance). HeO2 increasedmaximal expiratory flow rates (20-38%) throughout the range ofVC, which significantly reduced EFL during heavy exercise. When EFL wasreduced with HeO2, VT,fb, andE (+16 ± 2 l/min) weresignificantly increased during maximal exercise. However, in theabsence of EFL (during room air exercise),HeO2 had no effect onE. We conclude that smaller lungvolumes and maximal flow rates for women in general, and especiallyhighly fit women, caused increased prevalence of EFL during heavyexercise, a relative hyperinflation, an increased reliance onfb, and a greater encroachment onthe ventilatory "reserve." Consequently,VT andE are mechanically constrained duringmaximal exercise in many fit women because the demand for highexpiratory flow rates encroaches on the airways' maximum flow-volumeenvelope.

  相似文献   

17.
This studyexamined the effect of increased blood glucose availability on glucosekinetics during exercise. Five trained men cycled for 40 min at 77 ± 1% peak oxygen uptake on two occasions. During the second trial(Glu), glucose was infused at a rate equal to the average hepaticglucose production (HGP) measured during exercise in the control trial(Con). Glucose kinetics were measured by a primed continuous infusionofD-[3-3H]glucose.Plasma glucose increased during exercise in both trials and wassignificantly higher in Glu. HGP was similar at rest (Con, 11.4 ± 1.2; Glu, 10.6 ± 0.6µmol · kg1 · min1).After 40 min of exercise, HGP reached a peak of 40.2 ± 5.5 µmol · kg1 · min1in Con; however, in Glu, there was complete inhibition of the increasein HGP during exercise that never rose above the preexercise level. Therate of glucose disappearance was greater(P < 0.05) during the last 15 min ofexercise in Glu. These results indicate that an increase in glucoseavailability inhibits the rise in HGP during exercise, suggesting thatmetabolic feedback signals can override feed-forward activation of HGPduring strenuous exercise.

  相似文献   

18.
Skeletal muscle oxidative enzyme capacity is impaired inpatients suffering from emphysema and chronic obstructive pulmonary disease. This effect may result as a consequence of the physiological derangements because of the emphysema condition or, alternatively, as aconsequence of the reduced physical activity level in these patients.To explore this issue, citrate synthase (CS) activity was measured inselected hindlimb muscles and the diaphragm of Syrian Golden hamsters 6 mo after intratracheal instillation of either saline (Con,n = 7) or elastase [emphysema(Emp); 25 units/100 g body weight, n = 8]. Activity level was monitored, and no difference betweengroups was found. Excised lung volume increased with emphysema (Con,1.5 ± 0.3 g; Emp, 3.0 ± 0.3 g,P < 0.002). Emphysema significantly reduced CS activity in the gastrocnemius (Con, 45.1 ± 2.0; Emp, 39.2 ± 0.8 µmol · min1 · gwet wt1,P < 0.05) and vastus lateralis (Con,48.5 ± 1.5; Emp, 44.9 ± 0.8 µmol · min1 · gwet wt1,P < 0.05) but not in the plantaris(Con, 47.4 ± 3.9; Emp, 48.0 ± 2.1 µmol · min1 · gwet wt1,P < 0.05) muscle. In contrast, CSactivity increased in the costal (Con, 61.1 ± 1.8; Emp, 65.1 ± 1.5 µmol · min1 · gwet wt1,P < 0.05) and crural (Con, 58.5 ± 2.0; Emp, 65.7 ± 2.2 µmol · min1 · gwet wt1, P < 0.05) regions of the diaphragm. These data indicate that emphysema perse can induce decrements in the oxidative capacity of certainnonventilatory skeletal muscles that may contribute to exerciselimitations in the emphysematous patient.

  相似文献   

19.
Jeukendrup, A. E., M. Mensink, W. H. M. Saris, and A. J. M. Wagenmakers. Exogenous glucose oxidation during exercise in endurance-trained and untrained subjects. J. Appl.Physiol. 82(3): 835-840, 1997.To investigate theeffect of training status on the fuel mixture used during exercise withglucose ingestion, seven endurance-trained cyclists (Tr; maximumO2 uptake 67 ± 2.3 ml · kg1 · min1)and eight untrained subjects (UTr; 48 ± 2 ml · kg1 · min1)were studied during 120 min of exercise at ~60% maximumO2 uptake. At the onset of exercise, 8 ml · kg1 · min1of an 8% naturally enriched[13C]glucose solutionwas ingested and 2 ml/kg every 15 min thereafter. Energy expenditurewas higher in Tr subjects compared with UTr subjects (3,404 vs. 2,630 kJ; P < 0.01). During the secondhour, fat oxidation was higher in Tr subjects (37 ± 2 g) comparedwith UTr subjects (23 ± 1 g), whereas carbohydrateoxidation was similar (116 ± 8 g in Tr subjects vs. 114 ± 4 g in UTr subjects). No differences were observed in exogenousglucose oxidation (50 ± 2 g in Tr subjects and 45 ± 3 g in UTr subjects, respectively). Peak exogenous glucose oxidationrates were similar in the two groups (0.95 ± 0.07 g/min in Trsubjects and 0.96 ± 0.03 g/min in UTr subjects). It is concluded that the higher energy expenditure in Tr subjects during exercise atthe same relative exercise intensity is entirely met by a higher rateof fat oxidation without changes in the rates of exogenous andendogenous carbohydrates.

  相似文献   

20.
Parker, Janet L., Mildred L. Mattox, and M. Harold Laughlin.Contractile responsiveness of coronary arteries from exercise trained rats. J. Appl. Physiol. 83(2):434-443, 1997.The purpose of this study was to determine whetherexercise training alters vasomotor reactivity of rat coronary arteries.In vitro isometric microvessel techniques were used to evaluatevasomotor properties of proximal left anterior artery rings (1 ring peranimal) from exercise-trained rats (ET;n = 10) subjected to a 12-wk treadmill training protocol (32 m/min, 15% incline, 1 h/day, 5 days/wk) andcontrol rats (C; n = 6) restricted tocage activity. No differences in passive length-tension characteristicsor internal diameter (158 ± 9 and 166 ± 9 µm) were observedbetween vessesls of C and ET rats. Concentration-response curves toK+ (5-100 mM), prostaglandinF2(108-104M), and norepinephrine(108-104)were unaltered (P > 0.05) incoronary rings from ET rats compared with C rats; however, lower valuesof the concentration producing 50% of the maximal contractile responsein rings from ET rats (P = 0.05)suggest that contractile sensitivity to norepinephrine wasenhanced. Vasorelaxation responses to sodium nitroprusside (109-104M) and adenosine(109-104M) were not different (P > 0.05)between vessels of C and ET rats. However, relaxation responses to theendothelium-dependent vasodilator acetylcholine (ACh;1010-104M) were significantly blunted (P < 0.001) in coronary rings from ET animals; maximal ACh relaxationaveraged 90 ± 5 and 46 ± 12%, respectively, in vessels of Cand ET groups. In additional experiments, two coronary rings (proximaland distal) were isolated from each C(n = 7) and ET(n = 7) animal. Proximal coronaryartery rings from ET animals demonstrated decreased relaxationresponses to ACh; however, ACh-mediated relaxation of distal coronaryrings was not different between C and ET groups.NG-monomethyl-L-arginine(inhibitor of nitric oxide synthase) blocked ACh relaxation of allrings. L-Arginine (substrate fornitric oxide synthase) did not improve the blunted ACh relaxation in proximal coronary artery rings from ET rats. These studies suggest thatexercise-training selectively decreases endothelium-dependent (ACh) butnot endothelium-independent (sodium nitroprusside) relaxation responsesof rat proximal coronary arteries; endothelium-dependent relaxation ofdistal coronary arteries is unaltered by training.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号