首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to compare the structural properties of a new vs. established design of composite replicate femurs and tibias. The new design has a cortical bone analog consisting of short-glass-fiber-reinforced (SGFR) epoxy, rather than the fiberglass-fabric-reinforced (FFR) epoxy in the currently available design. The hypothesis was that this new cortical bone analog would improve the uniformity of structural properties between specimens, while having mean stiffness values in the range of natural human bones. The composite replicate bones were tested under bending, axial, and torsional loads. In general, the new SGFR bones were significantly less stiff than the FFR bones, although both bone designs reasonably approximated the structural stiffnesses of natural human bones. With the exceptions of the FFR bone axial tests, the highest variability between specimens was 6.1%. The new SGFR bones had similar variability in structural properties when compared to the FFR bones under bending and torsional loading, but had significantly less variability under axial loading. Differences in epiphyseal geometry between the FFR and SGFR bones, and subsequent seating in the testing fixtures, may account for some of the differences in structural properties; axial stiffness was especially dependent on bone alignment. Stiffness variabilities for the composite replicate bones were much smaller than those seen with natural human bones. Axial strain distribution along the proximal-medial SGFR femur had a similar shape to what was observed on natural human femurs by other investigators, but was considerably less stiff in the more proximal locations.  相似文献   

2.
Third-generation mechanical analogue bone models and synthetic analogue cortical bone materials manufactured by Pacific Research Laboratories, Inc. (PRL) are popular tools for use in mechanical testing of various orthopedic implants and biomaterials. A major issue with these models is that the current third-generation epoxy-short fiberglass based composite used as the cortical bone substitute is prone to crack formation and failure in fatigue or repeated quasistatic loading of the model. The purpose of the present study was to compare the tensile and fracture mechanics properties of the current baseline (established PRL "third-generation" E-glass-fiber-epoxy) composite analogue for cortical bone to a new composite material formulation proposed for use as an enhanced fourth-generation cortical bone analogue material. Standard tensile, plane strain fracture toughness, and fatigue crack propagation rate tests were performed on both the third- and fourth-generation composite material formulations using standard ASTM test techniques. Injection molding techniques were used to create random fiber orientation in all test specimens. Standard dog-bone style tensile specimens were tested to obtain ultimate tensile strength and stiffness. Compact tension fracture toughness specimens were utilized to determine plane strain fracture toughness values. Reduced thickness compact tension specimens were also used to determine fatigue crack propagation rate behavior for the two material groups. Literature values for the same parameters for human cortical bone were compared to results from the third- and fourth-generation cortical analogue bone materials. Tensile properties of the fourth-generation material were closer to that of average human cortical bone than the third-generation material. Fracture toughness was significantly increased by 48% in the fourth-generation composite as compared to the third-generation analogue bone. The threshold stress intensity to propagate the crack was much higher for the fourth-generation material than for the third-generation composite. Even at the higher stress intensity threshold, the fatigue crack propagation rate was significantly decreased in the fourth-generation composite compared to the third-generation composite. These results indicate that the bone analogue models made from the fourth-generation analogue cortical bone material may exhibit better performance in fracture and longer fatigue lives than similar models made of third-generation analogue cortical bone material. Further fatigue testing of the new composite material in clinically relevant use of bone models is still required for verification of these results. Biomechanical test models using the superior fourth-generation cortical analogue material are currently in development.  相似文献   

3.
To assess the performance of femoral orthopedic implants, they are often attached to cadaveric femurs, and biomechanical testing is performed. To identify areas of high stress, stress shielding, and to facilitate implant redesign, these tests are often accompanied by finite element (FE) models of the bone/implant system. However, cadaveric bone suffers from wide specimen to specimen variability both in terms of bone geometry and mechanical properties, making it virtually impossible for experimental results to be reproduced. An alternative approach is to utilize synthetic femurs of standardized geometry, having material behavior approximating that of human bone, but with very small specimen to specimen variability. This approach allows for repeatable experimental results and a standard geometry for use in accompanying FE models. While the synthetic bones appear to be of appropriate geometry to simulate bone mechanical behavior, it has not, however, been established what bone quality they most resemble, i.e., osteoporotic or osteopenic versus healthy bone. Furthermore, it is also of interest to determine whether FE models of synthetic bones, with appropriate adjustments in input material properties or geometric size, could be used to simulate the mechanical behavior of a wider range of bone quality and size. To shed light on these questions, the axial and torsional stiffness of cadaveric femurs were compared to those measured on synthetic femurs. A FE model, previously validated by the authors to represent the geometry of a synthetic femur, was then used with a range of input material properties and change in geometric size, to establish whether cadaveric results could be simulated. Axial and torsional stiffnesses and rigidities were measured for 25 human cadaveric femurs (simulating poor bone stock) and three synthetic "third generation composite" femurs (3GCF) (simulating normal healthy bone stock) in the midstance orientation. The measured results were compared, under identical loading conditions, to those predicted by a previously validated three-dimensional finite element model of the 3GCF at a variety of Young's modulus values. A smaller FE model of the 3GCF was also created to examine the effects of a simple change in bone size. The 3GCF was found to be significantly stiffer (2.3 times in torsional loading, 1.7 times in axial loading) than the presently utilized cadaveric samples. Nevertheless, the FE model was able to successfully simulate both the behavior of the 3GCF, and a wide range of cadaveric bone data scatter by an appropriate adjustment of Young's modulus or geometric size. The synthetic femur had a significantly higher stiffness than the cadaveric bone samples. The finite element model provided a good estimate of upper and lower bounds for the axial and torsional stiffness of human femurs because it was effective at reproducing the geometric properties of a femur. Cadaveric bone experiments can be used to calibrate FE models' input material properties so that bones of varying quality can be simulated.  相似文献   

4.
(1) The mean delta18O(BP) ( per thousandSMOW) for any given bone sampled from captive alligators maintained at high constant temperature was lower (indicative of higher temperatures of bone deposition) than that of the same bone from wild alligators caught in Northern Florida, but these differences were only greater than two standard deviations from the mean for the thoracic vertebrae and metatarsal bones. (2) Inter-bone variability of delta18O(BP) ( per thousandSMOW) was similar for captive alligators maintained at constant temperatures and the wild alligators, but intra-bone variability was much greater in wild alligators. (3) The order of mean delta18O(BP) ( per thousandSMOW) of bones (from highest to lowest) differed between treatment groups. However, intra-bone variability obscured the significance of those differences. Nevertheless, the thoracic vertebra had the highest mean delta18O(BP) ( per thousandSMOW), indicative of lower temperatures, and the lowest variability of bones in both groups of alligators. Conversely, the tibia was one of the warmest and more variable bones in both groups of alligators. (4) The pattern of delta18O(BP) ( per thousandSMOW) values across sites within long bones were identical between alligator treatment groups for the femur and humerus but differed between groups for the tibia and metatarsus, and differed between different long bones. The predicted intra-bone pattern for long bones of increasing delta18O(BP) ( per thousandSMOW) indicative of lower temperatures in more distal sampling sites was only obtained from the femurs. (5) Paired cortical and cancellous bone samples from the same site from all individuals in both treatment groups were available for proximal humeri and distal femurs. delta18O(BP) ( per thousandSMOW) values from cortical bone were more variable than those from cancellous bone for both bones. (6) Cortical bone had lower delta18O(BP) ( per thousandSMOW) values indicative of warmer temperatures than cancellous bone at sites sampled on the proximal humeri and distal femurs of all three animals from both treatment groups.  相似文献   

5.
Harris lines (HL) are considered a nutritional or pathological stress factor in the study of past populations. This study attempts to contribute to the knowledge of the causal agents for HL in terms of assessing the health state of the population of Tarragona in the Roman period. The presence of HL has been analyzed in 614 long bones (214 humeri, 150 femurs and 250 tibias) from 243 skeletons. No HL have been observed in humeri. The frequencies of HL in femurs are higher than 27% and in tibias more than 48%. Although no significant differences in the presence of HL is found among age categories, it seems that the causal agents of these marks acted on individuals from the age of 5, an age from which the long bones of the lower extremities are more prone to producing HL. The hardened living conditions in the Dark Age of the Roman period in Spain between the third to fifth centuries A.D. may be the cause of the high prevalence of HL in this population.  相似文献   

6.
Mechanical validation of whole bone composite tibia models   总被引:5,自引:0,他引:5  
Composite synthetic models of the human tibia have recently become commercially available as substitutes for cadaveric specimens. Their use is justified by the advantages they offer as a substitute for real tibias. The present investigation concentrated on an extensive experimental validation of the mechanical behaviour of the whole bone composite model, compared to human specimens for different loading conditions. The stiffness of the tibias was measured with a torsional load applied along the long axis, and with a bending load applied both in the latero-medial and in the antero-posterior direction. The bending stiffness of the composite tibias matched well with that of the cadaveric specimens. This was not true for the torsional stiffness. In fact, the composite tibias were much stiffer than the cadaveric specimens, possibly due to the structure of the reinforcement material. The inter-specimen variability for the composite tibias was much lower than that for the cadaveric specimens. Thus, it seems that the composite tibias are suitable to replace cadaveric specimens for certain types of test, whereas they might be unsuitable for others, depending on the loading regimen.  相似文献   

7.
BACKGROUND: The use of artificial bone analogs in biomechanical testing of orthopaedic fracture fixation devices has increased, particularly due to the recent development of commercially available femurs such as the third generation composite femur that closely reproduce the bulk mechanical behavior of human cadaveric and/or fresh whole bone. The purpose of this investigation was to measure bone screw pullout forces in composite femurs and determine whether results are comparable to cadaver data from previous literature. METHOD OF APPROACH: The pullout strengths of 3.5 and 4.5 mm standard bicortical screws inserted into synthetic third generation composite femurs were measured and compared to existing adult human cadaveric and animal data from the literature. RESULTS: For 3.5 mm screws, the measured extraction shear stress in synthetic femurs (23.70-33.99 MPa) was in the range of adult human femurs and tibias (24.4-38.8 MPa). For 4.5 mm screws, the measured values in synthetic femurs (26.04-34.76 MPa) were also similar to adult human specimens (15.9-38.9 MPa). Synthetic femur results for extraction stress showed no statistically significant site-to-site effect for 3.5 and 4.5 mm screws, with one exception. Overall, the 4.5 mm screws showed statistically higher stress required for extraction than 3.5 mm screws. CONCLUSIONS: The third generation composite femurs provide a satisfactory biomechanical analog to human long-bones at the screw-bone interface. However, it is not known whether these femurs perform similarly to human bone during physiological screw "toggling."  相似文献   

8.
Although stiffness and strength of lower limb bones have been investigated in the past, information is not complete. While the femur has been extensively investigated, little information is available about the strain distribution in the tibia, and the fibula has not been tested in vitro. This study aimed at improving the understanding of the biomechanics of lower limb bones by: (i) measuring the stiffness and strain distributions of the different low limb bones; (ii) assessing the effect of viscoelasticity in whole bones within a physiological range of strain-rates; (iii) assessing the difference in the behaviour in relation to opposite directions of bending and torsion. The structural stiffness and strain distribution of paired femurs, tibias and fibulas from two donors were measured. Each region investigated of each bone was instrumented with 8–16 triaxial strain gauges (over 600 grids in total). Each bone was subjected to 6–12 different loading configurations. Tests were replicated at two different loading speeds covering the physiological range of strain-rates. Viscoelasticity did not have any pronounced effect on the structural stiffness and strain distribution, in the physiological range of loading rates explored in this study. The stiffness and strain distribution varied greatly between bone segments, but also between directions of loading. Different stiffness and strain distributions were observed when opposite directions of torque or opposite directions of bending (in the same plane) were applied. To our knowledge, this study represents the most extensive collection of whole-bone biomechanical properties of lower limb bones.  相似文献   

9.
《Journal of biomechanics》2014,47(16):3898-3902
Fourth generation composite femurs (4GCFs, models #3406 and #3403) simulate femurs of males <80 years with good bone quality. Since most hip fractures occur in old women with fragile bones, concern is raised regarding the use of standard 4GCFs in biomechanical experiments. In this study the stability of hip fracture fixations in 4GCFs was compared to human cadaver femurs (HCFs) selected to represent patients with hip fractures.Ten 4GCFs (Sawbones, Pacific Research Laboratories, Inc., Vashon, WA, USA) were compared to 24 HCFs from seven females and five males >60 years. Proximal femur anthropometric measurements were noted. Strain gauge rosettes were attached and femurs were mounted in a hip simulator applying a combined subject-specific axial load and torque. Baseline measurements of resistance to deformation were recorded. Standardized femoral neck fractures were surgically stabilized before the constructs were subjected to 20,000 load-cycles. An optical motion tracking system measured relative movements.Median (95% CI) head fragment migration was 0.8 mm (0.4 to 1.1) in the 4GCF group versus 2.2 mm (1.5 to 4.6) in the cadaver group (p=0.001). This difference in fracture stability could not be explained by observed differences in femoral anthropometry or potential overloading of 4GCFs. 4GCFs failed with fracture-patterns different from those observed in cadavers.To conclude, standard 4GCFs provide unrealistically stable bone-implant constructs and fail with fractures not observed in cadavers. Until a validated osteopenic or osteoporotic composite femur model is provided, standard 4GCFs should only be used when representing the biomechanical properties of young healthy femurs.  相似文献   

10.
The proximal portion of a subfossil monkey femur found in a Jamaican cave shares all the femoral characters of a mature male Cebus apella.The fragment alone, however, does not prove conspecificity. The Jamaican femur is also of a size that could belong to the extinct Xenothrix mcgregoriof the same island. In contrast, the distal portion of a monkey tibia recovered from a kitchen midden in the Dominican Republic cannot be identified with that of any known living platyrrhine or catarrhine monkey. Geological age, geographic locality, and size of fragment point to probable alignment of the tibia with the recently extinct cebid Saimiri bernensis.Although no conclusive identifications are made, the distinctive characters of the two limb bones are described on the basis of comparisons with femurs and tibias representing all genera of living platyrrhines, most genera of catarrhine monkeys, and some strepsirhines.  相似文献   

11.
OBJECTIVE: The objective of this study was to consider the effects of boron (B) and calcium (Ca) supplementation on mechanical properties of bone tissues and mineral content of the selected bones in rats. METHODS: Adult male Sprague Dawley rats underwent three different treatments with boron and calcium in their drinking water, while taking diet ad libitum for 4 weeks. Rats in the three treatment groups received 2 mg B/d, 300 mg Ca/d, and a combination of 2 mg B+ 300 mg Ca/d, respectively. After the experimental period body weights were recorded and bone mechanical properties were determined on the tibiae, femurs, and fifth lumbar vertebral bones and the mineral contents of these bones was calculated as the ash percentage. RESULTS: Better measurement of bone mechanical properties were observed for boron supplementation. The stiffness of the lumbar vertebral bones tended to increase in all groups and was significant for Ca supplementation. The significant maximal load obtained for boron in all bones indicates higher strength and less strength for apparently a high level of calcium, while this negative defect in the case of lumbar vertebral bones was corrected in the presence of boron. Highest mean energy to maximal load was shown with boron supplementation, demonstrating significant values with Ca group, and lower energy for the lumbar vertebral bones in Ca group in comparison with the controls. Less deformation at the yield points was shown in Ca group. There were no significant differences in ash weights among the four groups. CONCLUSIONS: Additional and longer studies are warranted to further determine the effects of supplemental boron with different calcium levels and possibly other minerals involved in bone mechanical properties in rats.  相似文献   

12.

Objective

This study compared the capabilities of dual-energy X-ray absorptiometry (DXA) and dental cone-beam computed tomography (CBCT) for predicting the cortical bone strength of rat femurs and tibias.

Materials and Methods

Specimens of femurs and tibias obtained from 14 rats were first scanned with DXA to obtain the areal bone mineral density (BMD) of the midshaft cortical portion of the bones. The bones were then scanned using dental CBCT to measure the volumetric cortical bone mineral density (vCtBMD) and the cross-sectional moment of inertia (CSMI) for calculating the bone strength index (BSI). A three-point bending test was conducted to measure the fracture load of each femur and tibia. Bivariate linear Pearson analysis was used to calculate the correlation coefficients (r values) among the CBCT measurements, DXA measurements, and three-point bending parameters.

Results

The correlation coefficients for the associations of the fracture load with areal BMD (measured using DXA), vCtBMD (measured using CBCT), CSMI (measured using CBCT), and BSI were 0.585 (p = 0.028) and 0.532 (p = 0.050) (for the femur and tibia, respectively), 0.638 (p = 0.014) and 0.762 (p = 0.002), 0.778 (p = 0.001) and 0.792 (p<0.001), and 0.822 (p<0.001) and 0.842 (p<0.001), respectively.

Conclusions

CBCT was found to be superior to DXA for predicting cortical bone fracture loads in rat femurs and tibias. The BSI, which is a combined index of densitometric and geometric parameters, was especially useful. Further clinical studies are needed to validate the predictive value of BSI obtained from CBCT and should include testing on human cadaver specimens.  相似文献   

13.
Bone mechanical properties after exercise training in young and old rats   总被引:3,自引:0,他引:3  
The effects of a 10-wk training regimen on the mechanical properties of the femur and humerus were evaluated in 2.5- and 25-mo-old Fischer 344 female rats. The rats trained on a rodent treadmill 5 days/wk for 10 wk. Duration, grade, and speed increased until the rats maintained 1 h/day at 15% grade and either 15 m/min (old rats) or 36 m/min (young rats). Excised bones were mechanically tested with a 3-point flexure test for mechanical properties of force, stress, and strain. Fat-free dry weight (FFW) and moment of inertia were also obtained. With aging, similar increases were observed in both the femur and humerus for FFW, moment of inertia, and force. Ultimate stress was reduced in the senescent femur while strain was elevated; a similar but nonsignificant trend was observed in the humerus. Irrespective of age, training increased FFW in the femur and, to a lesser degree, in the humerus. Breaking force was elevated for both bones after training. In young and old bones, the training-induced differences in bone mass and force were similar, despite differences in training intensity. In the old trained rats, femur ultimate stress was greater than that in control rat femurs and similar to that in young rat femurs. The results of the present study indicate that training effects were not limited by age.  相似文献   

14.
Patient-specific analyses of the mechanical properties of bones become increasingly important for the management of patients with osteoporosis. The potential of composite finite elements (CFEs), a novel FE technique, to assess the apparent stiffness of vertebral trabecular bone is investigated in this study. Segmented volumes of cylindrical specimens of trabecular bone are compared to measured volumes. Elasticity under uniaxial loading conditions is simulated; apparent stiffnesses are compared to experimentally determined values. Computational efficiency is assessed and recommendations for simulation parameters are given. Validating apparent uniaxial stiffnesses results in concordance correlation coefficients 0.69 ≤ r𝒸 ≤ 0.92 for resolutions finer than 168 μm, and an average error of 5.8% between experimental and numerical results at 24 μm resolution. As an application, the code was used to compute local, macroscopic stiffness tensors for the trabecular structure of a lumbar vertebra. The presented technique allows for computing stiffness using smooth FE meshes at resolutions that are well achievable in peripheral high resolution quantitative CT. Therefore, CFEs could be a valuable tool for the patient-specific assessment of bone stiffness.  相似文献   

15.
Treatment options for extended-spectrum beta-lactamase-producers   总被引:2,自引:0,他引:2  
A review of antibiotic options for the treatment of infections caused by extended-spectrum beta-lactamase-producing isolates is presented. The use of the third-generation cephalosporin, cefotaxime, for infections caused by isolates producing ceftazidimase-type extended-spectrum beta-lactamases is controversial, despite in vitro susceptibility to the antibiotic in many instances. The fourth-generation cephalosporin, cefipime, although active against most extended-spectrum beta-lactamases, is reported to show a marked inoculum effect. The cephamycins, such as cefoxitin. are generally effective against Enterobacteriaceae producing TEM- and SHV-derived extended-spectrum beta-lactamases, but Klebsella pneumoniae strains are prone to cephamycin resistance as a result of porin loss. The use of beta-lactamase inhibitor combinations is variable. Sulbactam is less effective than clavulanate for the inhibition of SHV-derived extended-spectrum beta-lactamases and a marked inoculum effect has been noted, while the efficacy of tazobactam against SHV-derived extended-spectrum beta-lactamase producers is controversial. Furthermore, extended-spectrum beta-lactamases are often encoded by multi-resistant plasmids carrying genes conferring resistance to aminoglycosides, chloramphenicol, sulfonamides, trimethoprim and other antimicrobials, severely limiting even alternative therapies. Extensive susceptibility testing before the institution of antibiotic therapy is thus vital.  相似文献   

16.
《Plains anthropologist》2013,58(40):152-160
Abstract

One aspect of paleopathology, the examination of growth arrest lines, is suggested as a tool in archeological interpretation. Disruption of the normal growth pattern of long bones may result in the formation of transverse lines of extra-dense bone, visible in ordinary X-rays of the bone shaft. These radio opaque lines, presumed to result from temporary growth arrest caused by illness, are described for a sample of tibias and femurs from Casas Grandes, an archeological site in northern Chihuahua, Mexico. The sex and age of each individual at the time of growth arrest is noted, and the possibility of using this information to supplement or clarify archeological data is discussed.  相似文献   

17.
李俊  彭耀金  文雪平 《生物磁学》2010,(10):1951-1953
目的:探讨应用IV型镶嵌式外固定器治疗下肢长骨骨缺损的临床疗效。方法:1996年4月~2008年4月应用IV型镶嵌式外固定器治疗下肢长骨骨缺损48例患者,其中股骨8例,胫骨40例。骨缺损长度为5~15cm,平均8cm。随访时间9-27个月,平均18个月。结果:48例患者肢体长度均得到恢复;骨缺损达到骨性愈合,平均愈合时间8.2个月;6例骨折成角,均〈10°;12例共25处针孔感染;所有病例无神经血管损伤表现,髋、膝、踝关节活动均未受影响。结论:IV型镶嵌式外固定器是治疗长骨复杂骨缺损、成功重建肢体长度的有效方法。  相似文献   

18.
19.
To determine the effects of the relative inactivity and unloading on the strength of the tibias of monkeys, Macaca mulatta, we used a non-invasive test to measure bending stiffness, or EI (Nm2), a mechanical property. The technique was validated by comparisons of in vivo measurements with standard measures of EI in the same bones post-mortem (r2 = 0.95, P < 0.0001). Inter-test precision was 4.28+/-1.4%. Normative data in 24 monkeys, 3.0+/-0.7 years and 3.6+/-0.6 kg, revealed EI to be 16% higher in the right than left tibia (4.4+/-1.6 vs. 3.7+/-1.6 Nm2, P < 0.05). Five monkeys, restrained in chairs for 14 days, showed decreases in EI. There were no changes in EI in two chaired monkeys that lost weight during a 2-week space flight. The factors that account for both the decreases in bone mechanical properties after chair restraint at 1 g and lack of change after microgravity remain to be identified. Metabolic factors associated with body weight changes are suggested by our results.  相似文献   

20.
A simple modified polymethyl methacrylate method is described for large mineralized bone specimens with implants and bioactive materials which produces consistently good histological preservation of the interface between bone and implant. Human femoral heads, whole rabbit condyles and canine tibias and femurs containing implants consisting of hydroxyapatite, smooth polyethylene, porous polyethylene and carbon were dehydrated in ascending grades of ethanol and cleared with xylene on an automated tissue processor which alternated vacuum and pressure for 22 hr. Infiltration was done with washed polymethyl methacrylate at 4 C under vacuum for 13 days. Polymerization was carried out in wide-mouth glass jars at 38 C for 36 hr so that the total processing time was less than 20 days. The only important modification was in the polymethyl methacrylate, which had less plasticizer than usual in order to give a harder block. This enabled production of 4 micron sections with good preservation of mineralized and cellular areas for the study of metabolic bone diseases, morphometry, fluorochrome labelling and interface analysis with the implant in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号