首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alteromonas sp. strain O-7 secretes several proteins in addition to chitinolytic enzymes in response to chitin induction. In this paper, we report that one of these proteins, designated MprIII, is a metalloprotease involved in the chitin degradation system of the strain. The gene encoding MprIII was cloned in Escherichia coli. The open reading frame of mprIII encoded a protein of 1,225 amino acids with a calculated molecular mass of 137,016 Da. Analysis of the deduced amino acid sequence of MprIII revealed that the enzyme consisted of four domains: the signal sequence, the N-terminal proregion, the protease region, and the C-terminal extension. The C-terminal extension (PkdDf) was characterized by four polycystic kidney disease domains and two domains of unknown function. Western and real-time quantitative PCR analyses demonstrated that mprIII was induced in the presence of insoluble polysaccharides, such as chitin and cellulose. Native MprIII was purified to homogeneity from the culture supernatant of Alteromonas sp. strain O-7 and characterized. The molecular mass of mature MprIII was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 115 kDa. The optimum pH and temperature of MprIII were 7.5 and 50 degrees C, respectively, when gelatin was used as a substrate. Pretreatment of native chitin with MprIII significantly promoted chitinase activity. Furthermore, the combination of MprIII and a novel chitin-binding protease (AprIV) remarkably promoted the chitin hydrolysis efficiency of chitinase.  相似文献   

2.
One of the chitinase genes of Alteromonas sp. strain O-7, the chitinase C-encoding gene (chiC), was cloned, and the nucleotide sequence was determined. An open reading frame coded for a protein of 430 amino acids with a predicted molecular mass of 46,680 Da. Alignment of the deduced amino acid sequence demonstrated that ChiC contained three functional domains, the N-terminal domain, a fibronectin type III-like domain, and a catalytic domain. The N-terminal domain (59 amino acids) was similar to that found in the C-terminal extension of ChiA (50 amino acids) of this strain and furthermore showed significant sequence homology to the regions found in several chitinases and cellulases. Thus, to evaluate the role of the domain, we constructed the hybrid gene that directs the synthesis of the fusion protein with glutathione S-transferase activity. Both the fusion protein and the N-terminal domain itself bound to chitin, indicating that the N-terminal domain of ChiC constitutes an independent chitin-binding domain.  相似文献   

3.
The gene (aprI) encoding alkaline serine protease (AprI; subtilase) from Alteromonas sp. strain O-7 was cloned and sequenced. The nucleotide sequence of aprI has been identified. The deduced amino acid sequence indicated that aprI codes for a precursor of 715 amino acids and the precursor is composed of four regions including a signal peptide, an N-terminal pro-region, a mature protease region and a C-terminal extension region of 215 amino acids as previously described for aprII [H. Tsujibo et al., Gene, 136, 247–251 (1993)]. The amino acid sequence of the mature AprI (AprI-M) showed high sequence homology with those of other class I subtilases. The C-terminal region was characterized by a repeat of 94 amino acids residues, which showed about 50% similarity with those of the C-terminal pro-region of several known proteases from Gram-negative bacteria.  相似文献   

4.
Alteromonas sp. strain O-7 secretes several proteins in response to chitin induction. We have found that one of these proteins, designated AprIV, is a novel chitin-binding protease involved in chitinolytic activity. The gene encoding AprIV (aprIV) was cloned in Escherichia coli. DNA sequencing analysis revealed that the open reading frame of aprIV encoded a protein of 547 amino acids with a calculated molecular mass of 57,104 Da. AprIV is a modular enzyme consisting of five domains: the signal sequence, the N-terminal proregion, the family A subtilase region, the polycystic kidney disease domain (PkdD), and the chitin-binding domain type 3 (ChtBD3). Expression plasmids coding for PkdD or both PkdD and ChtBD (PkdD-ChtBD) were constructed. The PkdD-ChtBD but not PkdD exhibited strong binding to alpha-chitin and beta-chitin. Western and Northern analyses demonstrated that aprIV was induced in the presence of N-acetylglucosamine, N-acetylchitobiose, or chitin. Native AprIV was purified to homogeneity from Alteromonas sp. strain O-7 and characterized. The molecular mass of mature AprIV was estimated to be 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The optimum pH and temperature of AprIV were pH 11.5 and 35 degrees C, respectively, and even at 10 degrees C the enzyme showed 25% of the maximum activity. Pretreatment of native chitin with AprIV significantly promoted chitinase activity.  相似文献   

5.
Chitinase (Chi85) from Alteromonas sp. strain 0–7 contains the two conserved regions common to microbial and plant chitinases. We did site-directed mutagenesis of Chi85 to investigate the effects of the conserved amino acid residues on chitinase activity. We suggest that Asp-290 and Glu-292 of Chi85 may be the essential amino acid residues for the cleavage of β-glycosidic linkage of chitin.  相似文献   

6.
The pchA gene encoding chitinase A (PchA) from a Pythium porphyrae cell-wall-degrading marine bacterium, Pseudomonas sp. PE2, was cloned and characterized. The deduced PchA was a modular enzyme composed of an N-terminal signal peptide, a glycoside hydrolase family 18 catalytic domain that was responsible for the chitinase activity, the chitin-binding domains (ChBDs), and the carbohydrate-binding modules (CBM). The amino acid sequence of ChBD(PchA) was highly conserved in the CBM family 12 that also accommodates ChBDs without an AKWWTQG motif, a domain commonly found in bacterial chitinase and Streptomyces griseus protease C. Interestingly, CBM(PchA) showed significant sequence homology to the C-terminal region of endoglucanase B from Cellvibrio mixtus, which is a member of CBM family 6. This is the first report of a chitinase possessing a domain with high similarity to CBM family 6. Deletion analysis indicated clearly that ChBD(PchA) might play an important role in the binding of native chitin and chitosan, but not processed chitin. CBM(PchA) also appeared to play such a role in the binding of xylan and Avicel. These results suggest that the C-terminal region of PchA might be a key component in the binding of chitin in the cell walls of P. porphyrae or other structural components of marine organisms.  相似文献   

7.
Pseudomonas sp. strain TXG6-1, a chitinolytic gram-negative bacterium, was isolated from a vegetable field in Taixing city, Jiangsu Province, China. In this study, a Pseudomonas chitinase C gene (PsChiC) was isolated from the chromosomal DNA of this bacterium using a pair of specific primers. The PsChiC gene consisted of an open reading frame of 1443 nucleotides and encoded 480 amino acid residues with a calculated molecular mass of 51.66 kDa. The deduced PsChiC amino acid sequence lacked a signal sequence and consisted of a glycoside hydrolase family 18 catalytic domain responsible for chitinase activity, a fibronectin type III-like domain (FLD) and a C-terminal chitin-binding domain (ChBD). The amino acid sequence of PsChiCshowed high sequence homology (> 95%) with chitinase C from Serratia marcescens. SDS-PAGE showed that the molecular mass of chitinase PsChiC was 52 kDa. Chitinase assays revealed that the chitobiosidase and endochitinase activities of PsChiCwere 51.6- and 84.1-fold higher than those of pET30a, respectively. Although PsChiC showed little insecticidal activity towards Spodoptera litura larvae, an insecticidal assay indicated that PsChiC increased the insecticidal toxicity of SpltNPV by 1.78-fold at 192 h and hastened death. These results suggest that PsChiC from Pseudomonas sp. could be useful in improving the pathogenicity of baculoviruses.  相似文献   

8.
The gene encoding chitinase from Streptomyces sp. (strain J-13-3) was cloned and its nucleotide structure was analyzed. The chitinase consisted of 298 amino acids containing a signal peptides (29 amino acids) and a mature protein (269 amino acids), and had calculated molecular mass of 31,081 Da. The calculated molecular mass (28,229 Da) of the mature protein was almost same as that of the native chitinase determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometer. Comparison of the encoded amino acid sequences with those of other chitinases showed that J-13-3 chitinase was a member of the glycosyl-hydrolase family 19 chitinases and the mature protein had a chitin binding domain (65 amino acids) containing AKWWTQ motif and a catalytic domain (204 amino acids). The J-13-3 strain had a single chitinase gene. The chitinase (298 amino acids) with C-terminal His tag was overexpressed in Escherichia coli BL21(DE3) cells. The recombinant chitinase purified from the cell extract had identical N-terminal amino acid sequence of the mature protein in spite of confirmation of the nucleotide sequence, suggesting that the signal peptide sequence is successfully cut off at the predicted site by signal peptidase from E. coli and will be a useful genetic tool in protein engineering for production of soluble recombinant protein. The optimum temperature and pH ranges of the purified chitinase were at 35-40 degrees C and 5.5-6.0, respectively. The purified chitinase hydrolyzed colloidal chitin and trimer to hexamer of N-acetylglucosamine and also inhibited the hyphal extension of Tricoderma reesei.  相似文献   

9.
Chitin, a major component of fungal cell walls and invertebrate cuticles, is an exceedingly abundant polysaccharide, ranking next to cellulose. Industrial demand for chitin and its degradation products as raw materials for fine chemical products is increasing. A bacterium with high chitin-decomposing activity, Paenibacillus sp. strain FPU-7, was isolated from soil by using a screening medium containing α-chitin powder. Although FPU-7 secreted several extracellular chitinases and thoroughly digested the powder, the extracellular fluid alone broke them down incompletely. Based on expression cloning and phylogenetic analysis, at least seven family 18 chitinase genes were found in the FPU-7 genome. Interestingly, the product of only one gene (chiW) was identified as possessing three S-layer homology (SLH) domains and two glycosyl hydrolase family 18 catalytic domains. Since SLH domains are known to function as anchors to the Gram-positive bacterial cell surface, ChiW was suggested to be a novel multimodular surface-expressed enzyme and to play an important role in the complete degradation of chitin. Indeed, the ChiW protein was localized on the cell surface. Each of the seven chitinase genes (chiA to chiF and chiW) was cloned and expressed in Escherichia coli cells for biochemical characterization of their products. In particular, ChiE and ChiW showed high activity for insoluble chitin. The high chitinolytic activity of strain FPU-7 and the chitinases may be useful for environmentally friendly processing of chitin in the manufacture of food and/or medicine.  相似文献   

10.
A gene encoding chitinases from Aeromonas sp. No. 10S-24 was cloned into Escherichia coli DH5α using pUC19, and its nucleotides were sequenced. The chitinase gene was clustered in ORFs (open reading frame) 1 to 4, in a 8-kb fragment of DNA. ORF-1 consisted of 1608 bp encoding 535 amino acid residues, and ORF-2 consisted of 1425 bp encoding 474 amino acid residues. ORF-3 was 1617 bp long and encodes a protein consisting of 538 amino acids. ORF-4 encodes 287 amino acids of the N-terminal region. The amino acid sequences of ORF-1 and ORF-3 share sequence homology with chitinase D from Bacillus circulans, and chitinase A and B from Streptomyces lividans. The amino acid sequence of ORF-2 shared sequence homology with chitinase II from Aeromonas sp. No. 10S-24, and chitinase from Saccharopolyspora erythraea. A region of the sequence starting from Ala-28 of the amino acid sequence of ORF-3 coincided with the N-terminal amino acid sequence of chitinase III from Aeromonas sp. No. 10S-24.  相似文献   

11.
A chitinase gene was cloned on a 2.8-kb DNA fragment from Stenotrophomonas maltophilia strain 34S1 by heterologous expression in Burkholderia cepacia. Sequence analysis of this fragment identified an open reading frame encoding a deduced protein of 700 amino acids. Removal of the signal peptide sequence resulted in a predicted protein that was 68 kDa in size. Analysis of the sequence indicated that the chitinase contained a catalytic domain belonging to family 18 of glycosyl hydrolases. Three putative binding domains, a chitin binding domain, a novel polycystic kidney disease (PKD) domain, and a fibronectin type III domain, were also identified within the sequence. Pairwise comparisons of each domain to the most closely related sequences found in database searches clearly demonstrated variation in gene sources and the species from which related sequences originated. A 51-kDa protein with chitinolytic activity was purified from culture filtrates of S. maltophilia strain 34S1 by hydrophobic interaction chromatography. Although the protein was significantly smaller than the size predicted from the sequence, the N-terminal sequence verified that the first 15 amino acids were identical to the deduced sequence of the mature protein encoded by chiA. Marker exchange mutagenesis of chiA resulted in mutant strain C5, which was devoid of chitinolytic activity and lacked the 51-kDa protein in culture filtrates. Strain C5 was also reduced in the ability to suppress summer patch disease on Kentucky bluegrass, supporting a role for the enzyme in the biocontrol activity of S. maltophilia.  相似文献   

12.
Genomic DNA encoding a class IV chitinase was cloned from yam (Dioscorea opposita Thunb) leaves in previous research (Biosci. Biotechnol. Biochem., 68, 1508–1517 (2004)). But this chitinase had an additional sequence composed of eight amino acids (a C-terminal extension) at the C-terminal, compared with class IV chitianses from other plants. In order to clarify the role of this C-terminal extension in cellular localization, plants and suspension-cultured cells of Nicotiana tabacum were transformed with either the cloned yam class IV chitinase gene carrying the C-terminal extension or its truncated gene by the Agrobacterium-mediated method, and then their localization was investigated. The results suggest that the C-terminal extension of yam class IV chitinase plays a role as a targeting signal for plant vacuoles. This is the first report presenting the existence of vacuolar type class IV chitinase.  相似文献   

13.
Paenibacillus sp. strain FPU-7 produces several different chitinases and effectively hydrolyzes robust chitin. Among the P. FPU-7 chitinases, ChiW, a novel monomeric chitinase with a molecular mass of 150?kDa, is expressed as a cell surface molecule. Here, we report that active ChiW lacking the anchoring domains in the N-terminus was successfully overproduced in Escherichia coli and purified to homogeneity. The two catalytic domains at the C-terminal region were classified as typical glycoside hydrolase family 18 chitinases, whereas the N-terminal region showed no sequence similarity to other known proteins. The vacuum-ultraviolet circular dichroism spectrum of the enzyme strongly suggested the presence of a β-stranded-rich structure in the N-terminus. Its biochemical properties were also characterized. Various insoluble chitins were hydrolyzed to N,N’-diacetyl-D-chitobiose as the final product. Based on amino acid sequence similarities and site-directed mutagenesis, Glu691 and Glu1177 in the two GH-18 domains were identified as catalytic residues.  相似文献   

14.
Aeromonas caviae CB101 secretes four chitinases (around 92, 82, 70, and 55 kDa) into the culture supernatant. A chitinase gene chi1 (92 kDa) was previously studied. To identify the genes encoding the remaining three chitinases, a cosmid library of CB101 was constructed to screen for putative chitinase genes. Nine cosmid clones were shown to contain a chitinase gene on chitin plates. Surprisingly, all the positive clones contained chi1. In parallel, we purified the 55-kDa chitinase (Chi55) from the CB101 culture supernatant by continuous DEAE-Sepharose and Mono-Q anion exchange chromatography. The N-terminal amino acid sequence of the purified chitinase exactly matched the N-terminal sequence of mature Chi1, indicating that the purified chitinase (Chi55) is a truncated form of Chi1. The N- and C-terminal domains of chi1 were cloned, expressed, and purified, separately. Western blots using anti-sera to the N- and C-terminal domains of chi1 on the chitinases of CB101 showed that the four chitinases in the culture supernatant are either chi1 or C-terminal truncations of Chi1. In addition, the CB101 chi1 null mutant showed no chitinolytic activity, while CB101 chi1 null mutant complemented by pUC19chi1 containing chi1 showed all four chitinases in gel activity assay. These data indicated that all four chitinases secreted by CB101 in the culture supernatant are the product of one chitinase gene chi1.  相似文献   

15.
A metalloprotease induced by chitin in a new chitinolytic bacterium Serratia sp. Strain KCK was purified and characterized. Compared with other Serratia enzymes, it exhibited a rather broad pH activity range (pH 5.0–8.0), and thermostability. The cognate ORF, mpr, was cloned and expressed. Its deduced amino acid sequence showed high similarity to those of bacterial zinc-binding metalloproteases and a well-conserved serralysin family motif. Pretreatment of chitin with the Mpr protein promoted chitin degradation by chitinase A, which suggests that Mpr participates in, and facilitates, chitin degradation by this microorganism.  相似文献   

16.
The fungicidal class I endochitinases (E.C.3.3.1.14, chitinase) are associated with the biochemical defense of plants against potential pathogens. We isolated and sequenced a genomic clone, DAH53, corresponding to a class I basic endochitinase gene in pea, Chil. The predicted amino acid sequence of this chitinase contains a hydrophobic C-terminal domain similar to the vacuole targeting sequences of class I chitinases isolated from other plants. The pea genome contains one gene corresponding to the chitinase DAH53 probe. Chitinase RNA accumulation was observed in pea pods within 2 to 4 h after inoculation with the incompatible fungal strain Fusarium solani f. sp. phaseoli, the compatible strain F. solani f.sp. pisi, or the elicitor chitosan. The RNA accumulation was high in the basal region (lower stem and root) of both fungus challenged and wounded pea seedlings. The sustained high levels of chitinase mRNA expression may contribute to later stages of pea's non-host resistance.  相似文献   

17.
18.
《FEMS microbiology letters》1998,160(1):151-158
A chitinase gene (pCHI52) encoding the 52-kDa chitinase was isolated from a Serratia marcescens KCTC2172 cosmid library. This chitinase gene consists of 2526 bp with an open reading frame that encodes 485 amino acids. Escherichia coli harboring the pCHI52 gene secreted not only a 52-kDa but also a 35-kDa chitinase into the culture supernatant. We purified both 52-kDa and 35-kDa chitinases using a chitin affinity column and Sephacryl-S-300 gel filtration chromatography. We determined that the 17 N-terminal amino acid sequences of the 52-kDa and the 35-kDa chitinase are identical. Furthermore, a protease obtained from S. marcescens KCTC2172 cleaved the 52-kDa chitinase into the 35-kDa protein with chitinase activity. These results suggest that the 35-kDa chitinase derives from the 52-kDa chitinase by post-translational proteolytic modification. The optimal reaction temperature of 45°C and the optimal pH of 5.5 were identical for both enzymes. The specific activities of the 52-kDa and 35-kDa chitinases on natural swollen chitin were 67 μmol min−1 mg−1 and 60 μmol min−1 mg−1, respectively.  相似文献   

19.
We purified from the culture supernatant of Alteromonas sp. strain O-7 and characterized a transglycosylating enzyme which synthesized beta-(1-->6)-(GlcNAc)2, 2-acetamido-6-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-2- deoxyglucopyranose from beta-(1-->4)-(GlcNAc)2. The gene encoding a novel transglycosylating enzyme was cloned into Escherichia coli, and its nucleotide sequence was determined. The molecular mass of the deduced amino acid sequence of the mature protein was determined to be 99,560 Da which corresponds very closely with the molecular mass of the cloned enzyme determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular mass of the cloned enzyme was much larger than that of enzyme (70 kDa) purified from the supernatant of this strain. These results suggest that the native enzyme was the result of partial proteolysis occurring in the N-terminal region. The enzyme showed significant sequence homology with several bacterial beta-N-acetylhexosaminidases which belong to family 20 glycosyl hydrolases. However, this novel enzyme differs from all reported beta-N-acetylhexosaminidases in its substrate specificity. To clarify the role of the enzyme in the chitinolytic system of the strain, the effect of beta-(1-->6)-(GlcNAc)2 on the induction of chitinase was investigated. beta-(1-->6)-(GlcNAc)2 induced a level of production of chitinase similar to that induced by the medium containing chitin. On the other hand, GlcNAc, (GlcNAc)2, and (GlcNAc)3 conversely repressed the production of chitinase to below the basal level of chitinase activity produced constitutively in medium without a carbon source.  相似文献   

20.
Twenty six Rhizobium strains isolated from root nodules of Sesbania sesban were studied for chitinase activity on chitin agar plates. Among them, only 12 strains showed chitinase activity. The strain showing the highest chitinase activity was selected based on maximum clear zone/colony size ratio on chitin agar plates and chitinase activity in culture filtrate. The strain was identified as Rhizobium sp. which showed a high degree of similarity with Rhizobium radiobacter (= Agrobacterium radiobacter). The cultural and nutritional conditions were optimized for maximum chitinase activity. The Rhizobium sp. exhibited maximum chitinase activity after 36 h of incubation, at neutral pH. Among the different nutritional sources, arabinose and yeast extract were found to be good inducers for chitinase activity. Rhizobium sp. could degrade and utilize dead mycelia of Aspergillus flavus, Aspergillus niger, Curvularia lunata, Fusarium oxysporum and Fusarium udum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号