共查询到20条相似文献,搜索用时 15 毫秒
1.
A microorganism capable of degrading diethylphthalate as a sole carbon source was isolated from garden soil and tentatively identified asMicrococcus sp. Monoethylphthalate and phthalic acid were shown to be the intermediates by thin-layer chromatography and spectrophotometric and mass spectral analysis. The strain degraded diethylphthalate mainly through monoethylphthalate and phthalic acid as was evidenced by oxygen uptake and enzymatic studies. Ethanol also supported the growth of this organism. It appeared that the entire molecule was metabolized byMicrococcus sp. 相似文献
2.
3.
A microorganism capable of degrading homophthalic acid as a sole source of carbon was isolated from soil. The strain was tentatively identified as Pseudomonas sp. Oxygen uptake studies were carried out with possible intermediates. Assays for several different enzymes were performed. Homophthalic acid may be metabolized by this bacterium via p-hydroxyphenyl acetic acid and homogentisic acid intermediates. 相似文献
4.
5.
Fensulfothion (O,O-diethyl O-[4-(methylsulfinyl)phenyl]phosphorothioate), an organophosphorus pesticide used to control the golden nematode Heterodera rostochiensis, is used as a source of carbon by microorganisms isolated from soils treated with the pesticide. Two of the microbial isolates, Pseudomonas alcaligenes C1 and Alcaligenes sp. strain NC3, used more than 80% of the pesticide in 120 h in culture when supplemented as a source of carbon. P. alcaligenes C1, which showed maximal growth on fensulfothion, degraded the compound to p-methylsulfinyl phenol and diethyl phosphorothioic acid. The phenolic metabolite could be identified by conventional spectral analysis, whereas the spectral patterns of the phosphorus-containing metabolite suggested that the compound was complexed with some cellular molecules. However, utilization of the phosphoric acid ester and ethanol by P. alcaligenes C1 suggested that the microbe attacks fensulfothion by an initial hydrolysis of the compound and subsequent utilization of the phosphoric acid ester. The pathway of degradation of fensulfothion by P. alcaligenes is of great value in the detoxification of the pesticide residues and also in the environmentally stable phosphoric acid esters. 相似文献
6.
Fensulfothion (O,O-diethyl O-[4-(methylsulfinyl)phenyl]phosphorothioate), an organophosphorus pesticide used to control the golden nematode Heterodera rostochiensis, is used as a source of carbon by microorganisms isolated from soils treated with the pesticide. Two of the microbial isolates, Pseudomonas alcaligenes C1 and Alcaligenes sp. strain NC3, used more than 80% of the pesticide in 120 h in culture when supplemented as a source of carbon. P. alcaligenes C1, which showed maximal growth on fensulfothion, degraded the compound to p-methylsulfinyl phenol and diethyl phosphorothioic acid. The phenolic metabolite could be identified by conventional spectral analysis, whereas the spectral patterns of the phosphorus-containing metabolite suggested that the compound was complexed with some cellular molecules. However, utilization of the phosphoric acid ester and ethanol by P. alcaligenes C1 suggested that the microbe attacks fensulfothion by an initial hydrolysis of the compound and subsequent utilization of the phosphoric acid ester. The pathway of degradation of fensulfothion by P. alcaligenes is of great value in the detoxification of the pesticide residues and also in the environmentally stable phosphoric acid esters. 相似文献
7.
8.
9.
Monofluoro- and monochlorobenzoates did not support the growth of Pseudomonas PN-1, either aerobically or anaerobically (nitrate respiration), when supplied as sole sources of carbon and energy. Anaerobic growth yields on nonfluorinated substrates were increased by p-fluorobenzoate (pFBz) with a utilization of pFBz and release of F-. Cell suspensions grown on p-hydroxybenzoate (pOHBz), either aerobically or anaerobically, only degraded o-fluorobenzoate (oFBz) and pFBz of the monohalogenated benzoates tested. Both compounds were catabolized anaerobically, but not aerobically, with a release of F-. oFBz was immediately attacked, by cells grown anaerobically on pOHBz, whereas pFBz was only degraded after a lag phase; chloramphenicol inhibited the breakdown of pFBz, but not oFBz, thereby indicating the need for additional enzyme(s) to attack pFBz. o-Chlorobenzoate (oClBz) inhibited the anaerobic, but not aerobic, oxidation of pOHBz and stopped anaerobic growth on pOHBz. A mutant was isolated which metabolized pOHBz in the presence of oClBz but it was defective in its anaerobic metabolism of benzoate (Bz). Comparative studies, of the mutant and Pseudomonas PN-1, indicated that the mutation involved a metabolic site common to Bz, oClBz and the monofluorobenzoates. The dependence of the oxidation rate of Bz and oFBz on their concentrations at a millimolar level, in the mutant but not Pseudomonas PN-1, suggested a defect at the permease level: the uptake of 14C-labelled Bz by the mutant was also concentration-dependent. The response of the organism to the inhibitory effect of oClBz on pOHBz catabolism is discussed with respect to its significance in the perturbation of natural degradative processes by unnatural chemicals in the environment.Non-common abbreviations Bz
benzoate
- pOHBz
p-hydroxybenzoate
- oFBz
o-fluorobenzoate
- mFBz
m-fluorobenzoate
- pFBz
p-fluorobenzoate
- oClBz
o-chlorobenzoate 相似文献
10.
11.
Degradation of benzene hexachloride by a soil bacterium 总被引:6,自引:0,他引:6
12.
Abstract The metabolism of the methylated osmolytes glycine betaine (GB) and dimethylsulfoniopropionate (DMSP) was studied in a bacterium (strain MD 14–50) isolated from a colony of the cyanobacterium Trichodesmium . MD 14–50 when grown on DMSP cleaved dimethylsulfide (DMS) from DMSP and oxidized acrylate. In contrast to DMSP, GB was metabolized by sequential N-demethylations. Low concentrations (100 μM) of DMSP or GB allowed the growth of MD 14–50 on glucose at higher salinities than in their absence. At elevated salinities, DMSP was accumulated intracellularly with less catabolism and DMS production. Thus, DMSP and GB were catabolized by different mechanisms but functioned interchangeably as osmolytes. 相似文献
13.
Andrew C. Tolonen Tristan Cerisy Hafez El‐Sayyed Magali Boutard Marcel Salanoubat George M. Church 《Environmental microbiology》2015,17(8):2618-2627
Recycling of plant biomass by a community of bacteria and fungi is fundamental to carbon flow in terrestrial ecosystems. Here we report how the plant fermenting, soil bacterium Clostridium phytofermentans enhances growth on cellulose by simultaneously lysing and consuming model fungi from soil. We investigate the mechanism of fungal lysis to show that among the dozens of different glycoside hydrolases C. phytofermentans secretes on cellulose, the most highly expressed enzymes degrade fungi rather than plant substrates. These enzymes, the GH18 Cphy1799 and Cphy1800, synergize to hydrolyse chitin, a main component of the fungal cell wall. Purified enzymes inhibit fungal growth and mutants lacking either GH18 grow normally on cellulose and other plant substrates, but have a reduced ability to hydrolyse chitinous substrates and fungal hyphae. Thus, C. phytofermentans boosts growth on cellulose by lysing fungi with its most highly expressed hydrolases, highlighting the importance of fungal interactions to the ecology of cellulolytic bacteria. 相似文献
14.
A selenium-dependent Bacillus sp. is able to grow well up to 3% sodium selenite-containing media. The bacterium completely failed to grow on media devoid of selenium. The presence of selenium in the growth media increased the bacterial contents of proteins, carbohydrates, and lipids. The highest quantities of amino acids were detected at 2% sodium selenite-containing media. The bacterium metabolized selenite into several protein selenoamino acids such as selenomethionine and selenocysteine/selenocystine, as well as nonprotein selenoamino acids, such as selenocystathionine. Several phosphoamino acids were detected in the presence of elevated levels of selenium. The synthesized protein seems not to be affected by the presence of selenium. 相似文献
15.
Metabolism of o-phthalic acid by different gram-negative and gram-positive soil bacteria 总被引:6,自引:0,他引:6
Gabriele Engelhardt P. R. Wallnöfer H. G. Rast F. Fiedler 《Archives of microbiology》1976,109(1-2):109-114
Different bacteria, isolated from soil by the enrichment method, were able to grow on phthalic acid as carbon source. Protocatechuate was identified as intermediate in phthalate metabolism. All phthalategrown bacteria oxidized phthalate and protocatechuate rapidly without having a lag-period. Benzoic acid, terephthalic acid, protocatechuic acid, salicylic acid, di- and mono-butyl phthalate were also metabolized by some of the organisms, benzoic acid being degraded via catechol and terephthalic acid via protocatechuate as intermediate. All organisms tested cleaved protocatechuate or catechol, respectively, by the ortho fission, when grown on phthalate, terephthalate, or benzoate as carbon source. A characterization and tentative identification of the organisms is given. 相似文献
16.
Intracellular glycosidases were measured in cell-free extracts obtained by ultrasonic disruption of a gram-negative soil coccobacillus (Chase, 1938). From these extracts, alpha-l-fucosidase was purified about 120-fold by salting out with (NH(4))(2)SO(4), ion exchange chromatography, and gel filtration. The approximate molecular weight of the enzyme was 50,000; its pH optimum was 5. The enzyme was inhibited by l-fucose and split this sugar from a purified acid mucopolysaccharide from chicken chorioallantoic fluid. The acid mucopolysaccharide is identical with a component (host antigen) of the hemagglutinin of influenza virus. Its antigenic reactivity is altered by cell-free extracts of the bacterium, in which the responsible enzyme is thought to be an alpha-l-fucosidase. 相似文献
17.
S D Sutton S L Pfaller J R Shann D Warshawsky B K Kinkle J R Vestal 《Applied microbiology》1996,62(8):2910-2914
Methylquinolines and related N-heterocyclic aromatic compounds are common contaminants associated with the use of hydrocarbons in both coal gasification and wood treatment processes. These compounds have been found in groundwater, and many are known mutagens. A stable, five-member bacterial consortium able to degrade 4-methylquinoline was established by selective enrichment using soil collected from an abandoned coal gasification site. The consortium was maintained for 5 years by serial transfer in a medium containing 4-methylquinoline. A gram-negative soil bacterium, strain Lep1, was isolated from the consortium and shown to utilize 4-methylquinoline as a source of carbon and energy during growth in liquid medium. A time course experiment demonstrated that both the isolate Lep1 and the consortium containing Lep1 were able to degrade 4-methylquinoline under aerobic conditions. Complete degradation of 4-methylquinoline by either strain Lep1 alone or the consortium was characterized by the production and eventual disappearance of 2-hydroxy-4-methylquinoline, followed by the appearance and persistence of a second metabolite tentatively identified as a hydroxy-4-methylcoumarin. Currently, there is no indication that 4-methylquinoline degradation proceeds differently in the consortium culture compared with Lep1 alone. This is the first report of 4-methylquinoline biodegradation under aerobic conditions. 相似文献
18.
A new bacterial strain producing succinic acid was enriched from bovine rumen content. It is facultatively anaerobic, belongs
to the family Pasteurellaceae and has similarity to the genus Mannheimia. In batch cultivations with D-glucose or sucrose the strain produced up to 5.8 g succinic acid l−1 with a productivity and a yield of up to 1.5 g l−1 h−1 and 0.6 g g−1, respectively. With crude glycerol up to 8.4 g l−1, 0.9 g l−1 h−1 and 1.2 g g−1 were obtained.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
19.