首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of trichloroethylene (TCE) oxidation on toluene 2-monooxygenase activity, general respiratory activity, and cell culturability were examined in the toluene-oxidizing bacterium Burkholderia cepacia G4. Nonspecific damage outpaced inactivation of toluene 2-monooxygenase in B. cepacia G4 cells. Cells that had degraded approximately 0.5 μmol of TCE (mg of cells−1) lost 95% of their acetate-dependent O2 uptake activity (a measure of general respiratory activity), yet toluene-dependent O2 uptake activity decreased only 35%. Cell culturability also decreased upon TCE oxidation; however, the extent of loss varied greatly (up to 3 orders of magnitude) with the method of assessment. Addition of catalase or sodium pyruvate to the surfaces of agar plates increased enumeration of TCE-injured cells by as much as 100-fold, indicating that the TCE-injured cells were ultrasensitive to oxidative stress. Cell suspensions that had oxidized TCE recovered the ability to grow in liquid minimal medium containing lactate or phenol, but recovery was delayed substantially when TCE degradation approached 0.5 μmol (mg of cells−1) or 66% of the cells' transformation capacity for TCE at the cell density utilized. Furthermore, among B. cepacia G4 cells isolated on Luria-Bertani agar plates from cultures that had degraded approximately 0.5 μmol of TCE (mg of cells−1), up to 90% were Tol variants, no longer capable of TCE degradation. These results indicate that a toxicity threshold for TCE oxidation exists in B. cepacia G4 and that once a cell suspension has exceeded this toxicity threshold, the likelihood of reestablishing an active, TCE-degrading biomass from the cells will decrease significantly.  相似文献   

2.
A Tn5-based mutagenesis strategy was used to generate a collection of trichloroethylene (TCE)-sensitive (TCS) mutants in order to identify repair systems or protective mechanisms that shield Burkholderia cepacia G4 from the toxic effects associated with TCE oxidation. Single Tn5 insertion sites were mapped within open reading frames putatively encoding enzymes involved in DNA repair (UvrB, RuvB, RecA, and RecG) in 7 of the 11 TCS strains obtained (4 of the TCS strains had a single Tn5 insertion within a uvrB homolog). The data revealed that the uvrB-disrupted strains were exceptionally susceptible to killing by TCE oxidation, followed by the recA strain, while the ruvB and recG strains were just slightly more sensitive to TCE than the wild type. The uvrB and recA strains were also extremely sensitive to UV light and, to a lesser extent, to exposure to mitomycin C and H(2)O(2). The data from this study establishes that there is a link between DNA repair and the ability of B. cepacia G4 cells to survive following TCE transformation. A possible role for nucleotide excision repair and recombination repair activities in TCE-damaged cells is discussed.  相似文献   

3.
To analyze the extent of mineralization of trichloroethylene (TCE) without disturbing an actively growing biofilm, a minimal growth medium was formulated that reduces the concentration of chloride ions to the extent that the chloride ions generated from TCE mineralization may be detected with a chloride-ion-specific electrode. By substituting chloride salts with phosphates and nitrates, a chloride-free minimal medium was produced that yields a specific growth rate for Pseudomonas cepacia G4 PR1 which was 93% of that in chloride-ion-containing minimal medium. Furthermore, TCE degradation by resting cell suspensions was similar in both media (85% of 75 M TCE degraded in 6 h), and complete mineralization of TCE was slightly superior in the chloride-free minimal medium (77% compared to 60% of 75 M TCE mineralized in 6 h). In addition, indole-containing, minimal-medium agar plates were developed to indicate the presence of the TCE-degrading enzyme toluene ortho-monooxygenase (fire-engine-red colonies) as well as to distinguish this enzyme from other TCE-degrading enzymes (toluene dioxygenase and toluene para-monooxygenase).  相似文献   

4.
Foam embedded Burkholderia cepacia G4 removed up to 80 % and 60 % of a 3 mg/l solution of trichloroethylene (TCE) and a 2 mg/l solution of benzene, respectively. Removal of TCE and benzene decreased more than 50% when readily metabolizable carbon sources were present. TCE degradative activity was observed with G4 cells induced with phenol or benzene prior or after immobilization of cells. © Rapid Science Ltd. 1998  相似文献   

5.
High concentrations of acetylene (10 to 50% [vol/vol] gas phase) were required to inhibit the growth of Burkholderia cepacia G4 on toluene, while 1% (vol/vol) (gas phase) propyne or 1-butyne completely inhibited growth. Low concentrations of longer-chain alkynes (C5 to C10) were also effective inhibitors of toluene-dependent growth, and 2- and 3-alkynes were more potent inhibitors than their 1-alkyne counterparts. Exposure of toluene-grown B. cepacia G4 to alkynes resulted in the irreversible loss of toluene- and o-cresol-dependent O2 uptake activities, while acetate- and 3-methylcatechol-dependent O2 uptake activities were unaffected. Toluene-dependent O2 uptake decreased upon the addition of 1-butyne in a concentration- and time-dependent manner. The loss of activity followed first-order kinetics, with apparent rate constants ranging from 0.25 min−1 to 2.45 min−1. Increasing concentrations of toluene afforded protection from the inhibitory effects of 1-butyne. Furthermore, oxygen, supplied as H2O2, was required for inhibition by 1-butyne. These results suggest that alkynes are specific, mechanism-based inactivators of toluene 2-monooxygenase in B. cepacia G4, although the simplest alkyne, acetylene, was relatively ineffective compared to longer alkynes. Alkene analogs of acetylene and propyne—ethylene and propylene—were not inactivators of toluene 2-monooxygenase activity in B. cepacia G4 but were oxidized to their respective epoxides, with apparent Ks and Vmax values of 39.7 μM and 112.3 nmol min−1 mg of protein−1 for ethylene and 32.3 μM and 89.2 nmol min−1 mg of protein−1 for propylene.  相似文献   

6.
Embedding of Burkholderia cepacia G4 cells in a polyurethane-based foam decreased their culturability by more than four orders of magnitude. However, respiration rates of immobilized cells were at least 33-41% of unimmobilized cells. Embedded cells also degraded trichloroethylene. Therefore, respirometry is a more reliable indicator of viability of polyurethane immobilized bacteria than culturing methods.  相似文献   

7.
Pseudomonas cepacia G4 possesses a novel pathway of toluene catabolism that is shown to be responsible for the degradation of trichloroethylene (TCE). This pathway involves conversion of toluene via o-cresol to 3-methylcatechol. In order to determine the enzyme of toluene degradation that is responsible for TCE degradation, chemically induced mutants, blocked in the toluene ortho-monooxygenase (TOM) pathway of G4, were examined. Mutants of the phenotypic class designated TOM A- were all defective in their ability to oxidize toluene, o-cresol, m-cresol, and phenol, suggesting that a single enzyme is responsible for conversion of these compounds to their hydroxylated products (3-methylcatechol from toluene, o-cresol, and m-cresol and catechol from phenol) in the wild type. Mutants of this class did not degrade TCE. Two other mutant classes which were blocked in toluene catabolism, TOM B-, which lacked catechol-2,3-dioxygenase, and TOM C-, which lacked 2-hydroxy-6-oxoheptadienoic acid hydrolase activity, were fully capable of TCE degradation. Therefore, TCE degradation is directly associated with the monooxygenation capability responsible for toluene, cresol, and phenol hydroxylation.  相似文献   

8.
Burkholderia (Pseudomonas) cepacia G4 was cultivated in a fed-batch bioreactor on either toluene or toluene plus trichloroethylene (TCE). The culture was allowed to reach a constant cell density under conditions in which the amount of toluene supplied equals the maintenance energy demand of the culture. Compared with toluene only, the presence of TCE at a toluene/TCE ratio of 2.3 caused a fourfold increase in the specific maintenance requirement for toluene from 22 to 94 nmol mg of cells (dry weight)(sup-1) h(sup-1). During a period of 3 weeks, approximately 65% of the incoming TCE was stably converted to unidentified products from which all three chlorine atoms were liberated. When toluene was subsequently omitted from the culture feed while TCE addition continued, mutants which were no longer able to grow on toluene or to degrade TCE appeared. These mutants were also unable to grow on phenol or m- or o-cresol but were still able to grow on catechol and benzoate. Plasmid analysis showed that the mutants had lost the plasmid involved in toluene monooxygenase formation (pTOM). Thus, although strain G4 is much less sensitive to TCE toxicity than methanotrophs, deleterious effects may still occur, namely, an increased maintenance energy demand in the presence of toluene and plasmid loss when no toluene is added.  相似文献   

9.
The introduction of bacteria into the environment for bioremediation purposes (bioaugmentation) requires analysis and monitoring of microbial population dynamics to define persistence and activity from both efficacy and risk assessment perspectives. Burkholderia cepacia G4 5223-PR1 is a Tn5 insertion mutant which constitutively expresses a toluene ortho-monooxygenase that degrades trichloroethylene (TCE). This ability of G4 5223-PR1 to degrade TCE without aromatic induction may be useful for bioremediation of TCE-containing aquifers and groundwater. Thus, a simulated aquifer sediment system and groundwater microcosms were used to monitor the survival of G4 5223-PR1. The fate of G4 5223-PR1 in sediment was monitored by indirect immunofluorescence microscopy, a colony blot assay, and growth on selective medium. G4 5223-PR1 was detected immunologically by using a highly specific monoclonal antibody which reacted against the O-specific polysaccharide chain of the lipopolysaccharides of this organism. G4 5223-PR1 survived well in sterilized groundwater, although in nonsterile groundwater microcosms rapid decreases in the G4 5223-PR1 cell population were observed. Ten days after inoculation no G4 5223-PR1 cells could be detected by selective plating or immunofluorescence. G4 5223-PR1 survival was greater in a nonsterile aquifer sediment microcosm, although after 22 days of elution the number of G4 5223-PR1 cells was low. Our results demonstrate the utility of monoclonal antibody tracking methods and the importance of biotic interactions in determining the persistence of introduced microorganisms.  相似文献   

10.
Abstract Bacterivorous protists have been recovered from pristine and contaminated aquifer environments, but the ecological role of these organisms in bioremediation strategies has not been well defined. Burkholderia cepacia G4 PR1 constitutively expresses a toluene ortho-monooxygenase (tom) due to a secondary transposition of a Tn5 transposable element in a trichloroethylene (TCE) degradative plasmid (TOM). Groundwater and sediment from a potential site for a TCE bioremediation field demonstration were used in laboratory microcosms to test the survival of this organism. In nonsterile aquifer sediment slurries, the bacterium was eliminated in a logrithmic decay concomitant with an increase in bacterivorous protists. A half-life for the organism calculated from extinction coefficients increased logarithmically with increasing inoculation density above 1 × 106 PR1 ml−1. For inoculation densities below this level, the half-life of PR1 increased exponentially with decreasing inoculation density. The lowest half-lives corresponded to densities of bacteria that stimulate response of bacterivores. In a column system designed to incorporate aquifer flow, repeated addition of PR1 resulted in a buildup of bacterivore populations and reduced half-life of the bacterium. Addition of TCE and growth substrate in the eluent resulted in prolonged survival of PR1 and apparent mineralization of TCE. The results indicate significant but predictable losses due to native bacterivores would occur within and beyond a treatment zone where PR1 would be added to the aquifer, and mineralization of TCE in contaminated groundwater might be possible with repeated inoculation and addition of nutrients. Received: November 1999; Accepted: February 2000; Online Publication: 28 August 2000  相似文献   

11.
The chemotactic responses of Pseudomonas putida F1, Burkholderia cepacia G4, and Pseudomonas stutzeri OX1 were investigated toward toluene, trichloroethylene (TCE), tetrachloroethylene (PCE), cis-1,2-dichloroethylene (cis-DCE), trans-1,2-dichloroethylene (trans-DCE), 1,1-dichloroethylene (1,1-DCE), and vinyl chloride (VC). P. stutzeri OX1 and P. putida F1 were chemotactic toward toluene, PCE, TCE, all DCEs, and VC. B. cepacia G4 was chemotactic toward toluene, PCE, TCE, cis-DCE, 1,1-DCE, and VC. Chemotaxis of P. stutzeri OX1 grown on o-xylene vapors was much stronger than when grown on o-cresol vapors toward some chlorinated ethenes. Expression of toluene-o-xylene monooxygenase (ToMO) from touABCDEF appears to be required for positive chemotaxis attraction, and the attraction is stronger with the touR (ToMO regulatory) gene.  相似文献   

12.
Intact cells of Pseudomonas cepacia G4 completely degraded trichloroethylene (TCE) following growth with phenol. Degradation kinetics were determined for both phenol, used to induce requisite enzymes, and TCE, the target substrate. Apparent Ks and Vmax values for degradation of phenol by cells were 8.5 microM and 466 nmol/min per mg of protein, respectively. At phenol concentrations greater than 50 microM, phenol degradation was inhibited, yielding an apparent second-order inhibitory value, KSI, of 0.45 mM as modeled by the Haldane expression. A partition coefficient for TCE was determined to be 0.40 +/- 0.02, [TCEair]/[TCEwater], consistent with Henry's law. To eliminate experimental problems associated with TCE volatility and partitioning, a no-headspace bottle assay was developed, allowing for direct and accurate determinations of aqueous TCE concentration. By this assay procedure, apparent Ks and Vmax values determined for TCE degradation by intact cells were 3 microM and 8 nmol/min per mg of protein, respectively. Following a transient lag period, P. cepacia G4 degraded TCE at concentrations of at least 300 microM with no apparent retardation in rate. Consistent with Ks values determined for degradation, TCE significantly inhibited phenol degradation.  相似文献   

13.
Pseudomonas cepacia G4 degrades trichloroethylene (TCE) via a degradation pathway for aromatic compounds which is induced by substrates such as phenol and tryptophan. P. cepacia G4 5223 PR1 (PR1) is a Tn5 insertion mutant which constitutively expresses the toluene ortho-monooxygenase responsible for TCE degradation. In groundwater microcosms, phenol-induced strain G4 and noninduced strain PR1 degraded TCE (20 and 50 microM) to nondetectable levels (< 0.1 microM) within 24 h at densities of 10(8) cells per ml; at lower densities, degradation of TCE was not observed after 48 h. In aquifer sediment microcosms, TCE was reduced from 60 to < 0.1 microM within 24 h at 5 x 10(8) PR1 organisms per g (wet weight) of sediment and from 60 to 26 microM over a period of 10 weeks at 5 x 10(7) PR1 organisms per g. Viable G4 and PR1 cells decreased from approximately 10(7) to 10(4) per g over the 10-week period.  相似文献   

14.
Pseudomonas cepacia G4 is capable of cometabolic degradation of trichloroethylene (TCE) if the organism is grown on certain aromatic compounds. To obtain more insight into the kinetics of TCE degradation and the effect of TCE transformation products, we have investigated the simultaneous conversion of toluene and TCE in steady-state continuous culture. The organism was grown in a chemostat with toluene as the carbon and energy source at a range of volumetric TCE loading rates, up to 330 mumol/liter/h. The specific TCE degradation activity of the cells and the volumetric activity increased, but the efficiency of TCE conversion dropped when the TCE loading was elevated from 7 to 330 mumol/liter/h. At TCE loading rates of up to 145 mumol/liter/h, the specific toluene conversion rate and the molar growth yield of the cells were not affected by the presence of TCE. The response of the system to varying TCE loading rates was accurately described by a mathematical model based on Michaelis-Menten kinetics and competitive inhibition. A high load of 3,400 mumol of TCE per liter per h for 12 h caused inhibition of toluene and TCE conversion, but reduction of the TCE load to the original nontoxic level resulted in complete recovery of the system within 2 days. These results show that P. cepacia can stably and continuously degrade toluene and TCE simultaneously in a single-reactor system without biomass retention and that the organism is more resistant to high concentrations and shock loadings of TCE than Methylosinus trichosporium OB3b.  相似文献   

15.
16.
Pseudomonas cepacia G4 grown in chemostats with phenol demonstrated constant specific degradation rates for both phenol and trichloroethylene (TCE) over a range of dilution rates. Washout of cells from chemostats was evident at a dilution rate of 0.2 h-1 at 28 degrees C. Increased phenol concentrations in the nutrient feed led to increased biomass production with constant specific degradation rates for both phenol and TCE. The addition of lactate to the phenol feed led to increased biomass production but lowered specific phenol and TCE degradation rates. The maximum potential for TCE degradation was about 1.1 g per day per g of cell protein. Cell growth and degradation kinetic parameters were used in the design of a recirculating bioreactor for TCE degradation. In this reactor, the total amount of TCE degraded increased as either reaction time or biomass was increased. TCE degradation was observed up to 300 microM TCE with no significant decreases in rates. On the average, this reactor was able to degrade 0.7 g of TCE per day per g of cell protein. These results demonstrate the feasibility of TCE bioremediation through the use of bioreactors.  相似文献   

17.
Aerobic bacterial growth on aromatic hydrocarbons typically requires oxygenase enzymes, which are known to fortuitously oxidize nongrowth substrates. In this study, we found that oxidation of diethyl ether by toluene 2-monooxygenase supported more rapid growth of Burkholderia cepacia G4/PR1 than did the aromatic substrates n-propylbenzene and o-xylene. The wild-type Burkholderia cepacia G4 failed to grow on diethyl ether. Purified toluene 2-monooxygenase protein components oxidized diethyl ether stoichiometrically to ethanol and acetaldehyde. Butyl methyl ether, diethyl sulfide, and 2-chloroethyl ethyl ether were oxidized by B. cepacia G4/PR1.  相似文献   

18.
Intact cells of Pseudomonas cepacia G4 completely degraded trichloroethylene (TCE) following growth with phenol. Degradation kinetics were determined for both phenol, used to induce requisite enzymes, and TCE, the target substrate. Apparent Ks and Vmax values for degradation of phenol by cells were 8.5 microM and 466 nmol/min per mg of protein, respectively. At phenol concentrations greater than 50 microM, phenol degradation was inhibited, yielding an apparent second-order inhibitory value, KSI, of 0.45 mM as modeled by the Haldane expression. A partition coefficient for TCE was determined to be 0.40 +/- 0.02, [TCEair]/[TCEwater], consistent with Henry's law. To eliminate experimental problems associated with TCE volatility and partitioning, a no-headspace bottle assay was developed, allowing for direct and accurate determinations of aqueous TCE concentration. By this assay procedure, apparent Ks and Vmax values determined for TCE degradation by intact cells were 3 microM and 8 nmol/min per mg of protein, respectively. Following a transient lag period, P. cepacia G4 degraded TCE at concentrations of at least 300 microM with no apparent retardation in rate. Consistent with Ks values determined for degradation, TCE significantly inhibited phenol degradation.  相似文献   

19.
Pleurotus ostreatus is a widely cultivated white-rot fungus. Owing to its considerable enzymatic versatility P. ostreatus has become the focus of increasing attention for its possible utility in biobleaching and bioremediation applications. Interactions between microorganisms can be an important factor in those processes. In this study, we describe the presence of a bacterial species associated with P. ostreatus strain G2. This bacterial species grew slowly (approximately 30 days) in the liquid and semi-solid media tested. When P. ostreatus was inoculated in solid media containing Tween 80 or Tween 20, bacterial microcolonies were detected proximal to the fungal colonies, and the relevant bacterium was identified via the analysis of a partial 16S rDNA sequence; it was determined to belong to the Burkholderia cepacia complex, but was not closely related to other fungus-isolated Burkholderiaceae. New specific primers were designed, and confirmed the presence of in vitro P. ostreatus cultures. This is the first time that a bacterial species belonging to the B. cepacia complex has been found associated with P. ostreatus.  相似文献   

20.
A Tn5-based mutagenesis strategy was used to generate a collection of trichloroethylene (TCE)-sensitive (TCS) mutants in order to identify repair systems or protective mechanisms that shield Burkholderia cepacia G4 from the toxic effects associated with TCE oxidation. Single Tn5 insertion sites were mapped within open reading frames putatively encoding enzymes involved in DNA repair (UvrB, RuvB, RecA, and RecG) in 7 of the 11 TCS strains obtained (4 of the TCS strains had a single Tn5 insertion within a uvrB homolog). The data revealed that the uvrB-disrupted strains were exceptionally susceptible to killing by TCE oxidation, followed by the recA strain, while the ruvB and recG strains were just slightly more sensitive to TCE than the wild type. The uvrB and recA strains were also extremely sensitive to UV light and, to a lesser extent, to exposure to mitomycin C and H2O2. The data from this study establishes that there is a link between DNA repair and the ability of B. cepacia G4 cells to survive following TCE transformation. A possible role for nucleotide excision repair and recombination repair activities in TCE-damaged cells is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号