首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this research was to develop and optimize a controlled-release multiunit floating system of a highly water soluble drug, ranitidine HCl, using Compritol, Gelucire 50/13, and Gelucire 43/01 as lipid carriers. Ranitidine HCl-lipid granules were prepared by the melt granulation technique and evaluated for in vitro floating and drug release. ethyl cellulose, methylcellulose, and hydroxypropyl methylcellulose were evaluated as release rate modifiers. A 32 full factorial design was used for optimization by taking the amounts of Gelucire 43/01 (X 1) and ethyl cellulose (X 2) as independent variables, and the percentage drug released in 1(Q1), 5(Q5), and 10 (Q10) hours as dependent variables. The results revealed that the moderate amount of Gelucire 43/01 and ethyl cellulose provides desired release of ranitidine hydrochloride from a floating system. Batch F4 was considered optimum since it contained less Gelucire and was more similar to the theoretically predicted dissolution profile (f2=62.43). The temperature sensitivity studies for the prepared formulations at 40°C/75% relative humidity for 3 months showed no significant change in in vitro drug release pattern. These studies indicate that the hydrophobic lipid Gelucire 43/01 can be considered an effective carrier for design of a multiunit floating drug delivery system for highly water soluble drugs such as ranitidine HCl. Published: April 13, 2007  相似文献   

2.
The purpose of this research was to prepare a floating drug delivery system of diltiazem hydrochloride (DTZ). Floating matrix tablets of DTZ were developed to prolong gastric residence time and increase its bioavailability. Rapid gastrointestinal transit could result in incomplete drug release from the drug delivery system above the absorption zone leading to diminished efficacy of the administered dose. The tablets were prepared by direct compression technique, using polymers such as hydroxypropylmethylcellulose (HPMC, Methocel K100M CR), Compritol 888 ATO, alone or in combination and other standard excipients. Sodium bicarbonate was incorporated as a gas-generating agent. The effects of sodium bicarbonate and succinic acid on drug release profile and floating properties were investigated. A 32 factorial design was applied to systematically optimize the drug release profile. The amounts of Methocel K100M CR (X1) and Compritol 888 ATO (X2) were selected as independent variables. The time required for 50% (t50) and 85% (t85) drug dissolution were selected as dependent variables. The results of factorial design indicated that a high level of both Methocel K100M CR (X1) and Compritol 888 ATO (X2) favors the preparation of floating controlled release of DTZ tablets. Comparable release profiles between the commercial product and the designed system were obtained. The linear regression analysis and model fitting showed that all these formulations followed Korsmeyer and Peppas model, which had a higher value of correlation coefficient (r). While tablet hardness had little or no effect on the release kinetics and was found to be a determining factor with regards to the buoyancy of the tablets. Published: September 7, 2007  相似文献   

3.
The present investigation was undertaken to fabricate modified release tablet of metoprolol succinate using hydroxypropyl methylcellulose (HPMC) and xanthan gum as a matrixing agent. A 32 full factorial design was employed for the optimization of formulation. The percentage drug released at a given time (Y 60, Y 240 and Y 720) and the time required for a given percentage of drug to be released (t 50%) were selected as dependent variables. The in vitro drug dissolution study was carried out in pH 6.8 phosphate buffer employing paddle rotated at 50 rpm. The similarity factor (f 2) was calculated for selection of best batch considering mean in vitro dissolution data of Seloken® XL as a reference profile. It is concluded that the desired drug release pattern can be obtained by using a proper combination of HPMC (high gelling ability) and xanthan gum (quick gelling tendency). The economy of xanthan gum and faster hydration rate favors its use in modified release tablets. The matrix integrity during dissolution testing was maintained by using hydroxypropyl methylcellulose.  相似文献   

4.
The purpose of our investigation was to develop and optimize the drug entrapment efficiency and bioadhesion properties of mucoadhesive chitosan microspheres containing ranitidine HCl prepared by an ionotropic gelation method as a gastroretentive delivery system; thus, we improved their protective and therapeutic gastric effects in an ulcer model. A 3?×?22 full factorial design was adopted to study the effect of three different factors, i.e., the type of polymer at three levels (chitosan, chitosan/hydroxypropylmethylcellulose, and chitosan/methylcellulose), the type of solvent at two levels (acetic acid and lactic acid), and the type of chitosan at two levels (low molecular weight (LMW) and high molecular weight (HMW)). The studied responses were particle size, swelling index, drug entrapment efficiency, bioadhesion (as determined by wash-off and rinsing tests), and T 80% of drug release. Studies of the in vivo mucoadhesion and in vivo protective and healing effects of the optimized formula against gastric ulcers were carried out using albino rats (with induced gastric ulceration) and were compared to the effects of free ranitidine powder. A pharmacokinetic study in rabbits showed a significant, 2.1-fold increase in theAUC0–24of the ranitidine microspheres compared to free ranitidine after oral administration. The optimized formula showed higher drug entrapment efficiency and mucoadhesion properties and had more protective and healing effects on induced gastric ulcers in rats than ranitidine powder. In conclusion, the prolonged gastrointestinal residence time and the stability of the mucoadhesive microspheres of ranitidine as well as the synergistic healing effect of chitosan could contribute to increasing the potential of its anti-gastric ulcer activity.  相似文献   

5.
The objective of the present studies was systematic development of floating-bioadhesive gastroretentive tablets of cefuroxime axetil employing rational blend of hydrophilic polymers for attaining controlled release drug delivery. As per the QbD-based approach, the patient-centric target product profile and quality attributes of tablet were earmarked, and preliminary studies were conducted for screening the suitability of type of polymers, polymer ratio, granulation technique, and granulation time for formulation of tablets. A face-centered cubic design (FCCD) was employed for optimization of the critical material attributes, i.e., concentration of release controlling polymers, PEO 303 and HPMC K100 LV CR, and evaluating in vitro buoyancy, drug release, and ex vivo mucoadhesion strength. The optimized formulation was embarked upon through numerical optimization, which yield excellent floatation characteristic with drug release control (i.e., T 60%?>?6 h) and bioadhesion strength. Drug-excipient compatibility studies through FTIR and P-XRD revealed the absence of any interaction between the drug and polymers. In vivo evaluation of the gastroretentive characteristics through X-ray imaging and in vivo pharmacokinetic studies in rabbits revealed significant extension in the rate of drug absorption (i.e., T max, K a, and MRT) from the optimized tablet formulation as compared to the marketed formulation. Successful establishment of various levels of in vitro/in vivo correlations (IVIVC) substantiated high degree of prognostic ability of in vitro dissolution conditions in predicting the in vivo performance. In a nutshell, the studies demonstrate successful development of the once-a-day gastroretentive formulations of cefuroxime axetil with controlled drug release profile and improved compliance.  相似文献   

6.
Patel VF  Patel NM 《AAPS PharmSciTech》2006,7(1):E118-E124
This investigation describes the development of an intragastric drug-delivery system for cefuroxime axetil. The 32 full factorial design was employed to evaluate contribution of hydroxypropyl methyl cellulose (HPMC) K4M/HPMC K100 LV ratio (polymer blend) and sodium lauryl sulfate (SLS) on drug release from HPMC matrices. Tablets were prepared using direct compression technique. Formulations were evaluated for in vitro buoyancy and drug release study using United States Pharmacopeia (USP) 24 paddletype dissolution apparatus using 0.1N HCl as a dissolution medium. Multiple regression analysis was performed for factorial design batches to evaluate the response. All formulations had floating lag times below 2 minutes and constantly floated on dissolution medium for more than 8 hours. It was found that polymer blend and SLS significantly affect the time required for 50% of drug release, percentage drug release at 12 hours, release rate constant, and diffusion exponent (P<.05). Also linear relationships were obtained between the amount of HPMC K100 LV and diffusion exponent as well as release rate constant. Kinetic treatment to dissolution profiles revealed drug release ranges from anomalous transport to case 1 transport, which was mainly dependent on both the independent variables. Published: February 24, 2006  相似文献   

7.
The objective of this study was to prepare and evaluate terbutaline sulphate (TBS) bi-layer tablets for once-daily administration. The bi-layer tablets consisted of an immediate-release layer and a sustained-release layer containing 5 and 10 mg TBS, respectively. The sustained-release layer was developed by using Compritol®888 ATO, Precirol® ATO 5, stearic acid, and tristearin, separately, as slowly eroding lipid matrices. A full 4?×?22 factorial design was employed for optimization of the sustained-release layer and to explore the effect of lipid type (X 1), drug–lipid ratio (X 2), and filler type (X 3) on the percentage drug released at 8, 12, and 24 h (Y 1, Y 2, and Y 3) as dependent variables. Sixteen TBS sustained-release matrices (F1–F16) were prepared by melt solid dispersion method. None of the prepared matrices achieved the targeted release profile. However, F2 that showed a relatively promising drug release was subjected to trial and error optimization for the filler composition to develop two optimized matrices (F17 and F18). F18 which consisted of drug–Compritol®888 ATO at ratio (1:6 w/w) and Avicel PH 101/dibasic calcium phosphate mixture of 2:1 (w/w) was selected as sustained-release layer. TBS bi-layer tablets were evaluated for their physical properties, in vitro drug release, effect of storage on drug content, and in vivo performance in rabbits. The bi-layer tablets showed acceptable physical properties and release characteristics. In vivo absorption in rabbits revealed initial high TBS plasma levels followed by sustained levels over 24 h compared to immediate-release tablets.  相似文献   

8.
The aim of this research was to design and evaluate a hydrophilic matrix system for sustained release of glipizide, a weakly acidic poor soluble drug. A combination of inclusion complexation and microenvironmental pH modification techniques was utilized to improve the dissolution and pH-independent release of glipizide. Hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as the complexation agent while sodium citrate and magnesium oxide (MgO) were used as model pH modifiers. The hydrophilic matrix tablets were prepared by powder direct compression and evaluated by in vitro dissolution study respectively in pH 6.8 and pH 1.2 dissolution media. The formulations containing MgO exhibited increased cumulative drug release from less than 40% in the reference formulation to 90% within 24 h in acidic media (pH 1.2). The release profile in acidic media was similar to the alkaline media (pH 6.8) with a similarity factor (f2) of 55.0, suggesting the weakening of the effect of pH on the dissolution efficiency of glipizide. The release profile fitted well into the Higuchi model and the dominant mechanism of drug release was Fickian diffusion while case II transport/polymer relaxation occurred. In conclusion, combining inclusion complexation agents and pH modifiers had improved the dissolution of glipizide as well as achieved the pH-independent release profile.  相似文献   

9.
The purpose of the present study was to control in vitro burst effect of the highly water-soluble drug, ropinirole hydrochloride to reduce in vivo dose dumping and to establish in vitroin vivo correlation. The pharmacokinetics of two entirely different tablet formulation technologies is also explored in this study. For pharmacokinetics study, FDA recommends at least 10% difference in drug release for formulations to be studied but here a different approach was adopted. The formulations F8A and F9A having similar dissolution profiles among themselves and with Requip® XL™ (f2 value 72, 77, 71 respectively) were evaluated. The Cmax of formulation F8A comprising hypromellose 100,000 cP was 1005.16 pg/ml as compared to 973.70 pg/ml of formulation F9A comprising hypromellose 4000 cP irrespective of Tmax of 5 and 5.75 h, respectively. The difference in release and extent of absorption in vivo was due to synergistic effect of complex RH release mechanism; however, AUC0–t and AUC0–∞ values were comparable. The level A correlation using the Wagner–Nelson method supported the findings where R2 was 0.7597 and 0.9675 respectively for formulation F8A and F9A. Thus, in vivo studies are required for proving the therapeutic equivalency of different formulation technologies even though f2 ≥ 50. The technology was demonstrated effectively at industrial manufacturing scale of 200,000 tablets.KEY WORDS: controlled release polymer, in vitroin vivo correlation (IVIVC), multiple barrier layer tablets, pharmacokinetics, ropinirole hydrochloride (RH)  相似文献   

10.
The purpose of this research was to prepare and evaluate sustained release mucoadhesive tablets of Itraconazole. It is practically insoluble in aqueous fluids hence its solid dispersion with Eudragit E100 was prepared by spray drying. This was formulated in matrix of hydrophilic mucoadhesive polymers Carbopol 934P (CP) and Methocel K4M (HPMC). The formulation was optimized using a 32 factorial design. Amounts of CP and HPMC were taken as formulation variables for optimizing response variables i.e. mucoadhesion and dissolution parameters. The optimized mucoadhesive formulation was orally administered to albino rabbits, and blood samples collected were used to determine pharmacokinetic parameters. The solid dispersion markedly enhanced the dissolution rate of itraconazole. The bioadhesive strength of formulation was found to vary linearly with increasing amount of both polymers. Formulations exhibited drug release fitting Peppas model with value of n ranging from 0.61 to 1.18. Optimum combination of polymers was arrived at which provided adequate bioadhesive strength and fairly regulated release profile. The experimental and predicted results for optimum formulations were found to be in close agreement. The formulation showed C max 1898 ± 75.23 ng/ml, t max of the formulation was 2 h and AUC was observed to be 28604.9 ng h/ml  相似文献   

11.
Tamilvanan S  Sa B 《AAPS PharmSciTech》2006,7(3):E126-E134
The major aims of the present study were (1) to select a multiple-unit formulation that matched the in vitro dissolution profile of single-unit sustained-release commercial capsules, (2) to compare the sustaining/controlling efficacy of the selected multiple-unit formulation with that of the single-unit commercial conventional tablet and sustained-release capsules, and (3) to determine whether an in vitro-in vivo correlation exists for single- and multiple-unit formulations. Ibuprofen (20%–60% wt/wt)-loaded multiple-unit polystyrene microparticles were prepared by an emulsion-solvent evaporation method from an aqueous system. The in vitro release profiles obtained in phosphate buffer of pH 6.8 for drug-loaded polystyrene microparticles and for commercial sustained-release capsules (Fenlong-SR, 400 mg) were compared. Since the microparticles with 30% ibuprofen load showed a release profile comparable to that of the Fenlong-SR release profile, the microparticles with this drug load were considered to be the optimized/selected formulation and, therefore, were subjected to stability study and in vivo study in human volunteers. A single-dose oral bioavailability study revealed significant differences in Cmax, Tmax, t1/2a, t1/2e, Ka, Ke, and AUC between the conventional tablet and optimized or Fenlong-SR capsule dosage forms. However, all the parameters, with the exception of Ka along with relative bioavailability (F) and retard quotient (RΔ), obtained from the optimized ibuprofenloaded microparticles were lower than that obtained from the commercial Fenlong-SR formulation. Furthermore, linear relationship obtained between the percentages dissolved and absorbed suggests a means to predict in vivo absorption by measuring in vitro dissolution. Published: September 1, 2006  相似文献   

12.
The objective of the present investigation was to improve the dissolution rate of Rofecoxib (RXB), a poorly water-soluble drug by solid dispersion technique using a water-soluble carrier, Poloxamer 188 (PXM). The melting method was used to prepare solid dispersions. A 32 full factorial design approach was used for optimization wherein the temperature to which the melt-drug mixture cooled (X 1) and the drug-to-polymer ratio (X 2) were selected as independent variables and the time required for 90% drug dissolution (t90) was selected as the dependent variable. Multiple linear regression analysis revealed that for obtaining higher dissolution of RXB from PXM solid dispersions, a low level ofX 1 and a high level ofX 2 were suitable. The differential scanning calorimetry and x-ray diffraction studies demonstrated that enhanced dissolution of RXB from solid dispersion might be due to a decrease in the crystallinity of RXB and PXM and dissolution of RXB in molten PXM during solid dispersion preparation. In conclusion, dissolution enhancement of RXB was obtained by preparing its solid dispersions in PXM using melting technique. The use of a factorial design approach helped in identifying the critical factors in the preparation and formulation of solid dispersion. Published: April 13, 2007  相似文献   

13.
This study evaluated the effects of batch size on the in vitro dissolution and the in vivo bioavailability of immediate release formulations of propranolol hydrochloride and metoprolol tartrate. The formulations were manufactured as small and large batches (6 kg and 60 kg for propranolol; 14 kg and 66 kg for metoprolol), and dissolution was performed using USP Apparatus I at 100 rpm and pH 1.2. Two panels of 14 subjects each were randomly assigned to receive the small and large batches of either propranolol or metoprolol in an open randomized single-dose study. Blood samples were collected over a 24-hour (propranolol) or 18-hour (metoprolol) period and analyzed by validated methods. As determined by thef 2 metric (similarity factor), the dissolution of the small and large batches of propranolol and metoprolol was similar. The mean Cmax and AUCinf for the small batch of propranolol were 79.0 μ g/L and 536 μ g/L/hr and for the large batch they were 83.5 μ g/L and 575 μ g/L/hr. Cmax and AUCinf for the small batch of metoprolol were found to be 95.5 μ g/L and 507 μ g/L/hr and for the large batch, 95.1 μ g/L and 495 μ g/L/hr. The 90% confidence intervals for the small and large batches were within the 80% to 120% range for InCmax, and InAUCinf for both the propranolol and metoprolol formulations. These results suggest that the scale-up process does not significantly affect the bioavailability of highly soluble, highly permeable drugs and in vitro dissolution tests may be useful in predicting in vivo behavior.  相似文献   

14.
A biphasic gastroretentive floating drug delivery system with multiple-unit mini-tablets based on gas formation technique was developed to maintain constant plasma level of a drug concentration within the therapeutic window. The system consists of loading dose as uncoated core units, and prolonged-release core units are prepared by direct compression process; the latter were coated with three successive layers, one of which is seal coat, an effervescent (sodium bicarbonate) layer, and an outer polymeric layer of polymethacrylates. The formulations were evaluated for quality control tests, and all the parameters evaluated were within the acceptable limits. The system using Eudragit RL30D and combination of them as polymeric layer could float within acceptable time. The drug release was linear with the square root of time. The rapid floating and the controlled release properties were achieved in this present study. When compared with the theoretical release profile, the similarity factor of formulation with coating of RS:RL (1:3)–7.5%, was observed to be 74, which is well fitted into zero-order kinetics confirming that the release from formulation is close to desired release profile. The stability samples showed no significant change in dissolution profiles (p > 0.05). In vivo gastric residence time was examined by radiograms, and it was observed that the units remained in the stomach for about 5 h.  相似文献   

15.
Despite extensive research in the field of gastroretentive dosage forms, this “holy grail” of oral drug delivery yet remained an unmet goal. Especially under fasting conditions, the reproducible retention of dosage forms in the stomach seems to be an impossible task. This is why such systems are often advised to be taken together with food. But also the postprandial motility can contribute significantly to the failure of gastroretentive dosage forms. To investigate the influence of postprandial pressure conditions on drug release from such systems, we used a novel in vitro dissolution tool, the dissolution stress test device. With the aid of this device, we simulated three different intragastric pressure profiles that may occur after postprandial intake. These transit scenarios were based on recently obtained, postprandial SmartPill® data. The tested systems, Glumetza® 1000 and Madopar® HBS 125, are marketed dosage forms that are based on different approaches to achieve proper gastric retention. All three transit scenarios revealed a highly pressure-sensitive drug release behavior, for both drugs. For Madopar® HBS 125, nearly complete drug release was observed even after early occurring pressures. Glumetza® 1000 seemed to be more resistant to these, most likely due to incomplete wetting of the system. On the contrary to these findings, data from standard dissolution tests using the paddle apparatus displayed controlled drug release for both systems for about 6 h. Based on these results, it can be doubted that established gastroretentive systems stay intact over a longer period of time, even under postprandial conditions.  相似文献   

16.
A dissolution test for tablets containing 40 mg of olmesartan medoxomil (OLM) was developed and validated using both LC-UV and UV methods. After evaluation of the sink condition, dissolution medium, and stability of the drug, the method was validated using USP apparatus 2, 50 rpm rotation speed, and 900 ml of deaerated H2O + 0.5% sodium lauryl sulfate (w/v) at pH 6.8 (adjusted with 18% phosphoric acid) as the dissolution medium. The model-independent method using difference factor (f 1) and similarity factor (f 2), model-dependent method, and dissolution efficiency were employed to compare dissolution profiles. The kinetic parameters of drug release were also investigated. The obtained results provided adequate dissolution profiles. The developed dissolution test was validated according to international guidelines. Since there is no monograph for this drug in tablets, the dissolution method presented here can be used as a quality control test for OLM in this dosage form, especially in a batch to batch evaluation.  相似文献   

17.
The aim of the present study was to enhance the dissolution rate of meloxicam (MLX), a practically water-insoluble drug by preparation of solid dispersion using a hydrophilic polymer, poloxamer 188 (PXM). The kneading technique was used to prepare solid dispersions. A 32 full factorial design approach was used for optimization wherein the drug, polymer ratio (X 1), and the kneading time (X 2) were selected as independent variables and the dissolution efficiency at 60 min (%DE60) and yield percent were selected as the dependent variable. Multiple linear regression analysis revealed that for obtaining higher dissolution of MLX from PXM solid dispersions, a high level of X 1 and a high level of X 2 were suitable. The use of a factorial design approach helped in optimization of the preparation and formulation of solid dispersion. The optimized formula was characterized by solubility studies, angle of repose, and contact angle; Fourier transform infrared spectroscopy, differential scanning calorimetry, x-ray diffraction studies, and scanning electron microscopy demonstrated that enhanced dissolution of MLX from solid dispersion might be due to a decrease in the crystallinity of MLX and PXM. Analysis of dissolution data of optimized formula indicated the best fitting with Korsemeyer–Peppas model and the drug release kinetics as Fickian diffusion. In conclusion, dissolution enhancement of MLX was obtained by preparing its solid dispersion with PXM using kneading technique.  相似文献   

18.
As part of the overall product development and manufacturing strategy, pharmaceutical companies routinely change formulation and manufacturing site. Depending on the type and level of change and the BCS class of the molecule, dissolution data and/or bioequivalence (BE) may be needed to support the change for immediate release dosage forms. In this report, we demonstrate that for certain weakly basic low-solubility molecules which rapidly dissolve in the stomach, absorption modeling could be used to justify a BE study waiver even when there is failure to show dissolution similarity under some conditions. The development of an absorption model for etoricoxib is described here, which was then used to a priori predict the BE outcome of tablet batches manufactured at two sites. Dissolution studies in 0.01 N HCl media (pH 2.0) had demonstrated similarity of etoricoxib tablets manufactured at two different sites. However, dissolution testing at pH 4.5 and pH 6.8 media failed to show comparability of the tablets manufactured at the two sites. Single simulations and virtual trials conducted using the 0.01 N HCl dissolution showed similarity in AUC and Cmax for all tablet strengths for batches manufactured at the two manufacturing sites. These predicted results were verified in a definitive bioequivalence study, which showed that both tablet batches were bioequivalent. Since the development of traditional in vitroin vivo correlations (IVIVC) for immediate release (IR) products is challenging, in cases such as etoricoxib, absorption modeling could be used as an alternative to support waiver of a BE study.KEY WORDS: bioequivalence, dissolution, modeling, pharmacokinetics, SUPAC  相似文献   

19.
Background & ObjectivesLow penetration efficiency and retention time are the main therapeutic concerns that make it difficult for most of the drugs to be delivered to the intraocular tissues. These challenging issues are often related to those drugs, which have low or poor solubility and low permeability. The goal of this study was designed to develop nanostructured lipid carriers (NLCs) loaded with itraconazole (ITZ) with the objective of enhancing topical ocular permeation and thereby improving clinical efficacy.Materials and MethodsITZ-loaded NLCs were fabricated by a high-speed homogenization technique using surfactant (Poloxamer 407), and lipids (stearic acid and oleic acid). Optimization of formulations was performed by 3 level factorial design and the selected formulation (F6) was evaluated by differential scanning calorimetry and transmission electron microscopy. Antifungal activity was assessed by measuring the zone of inhibition and irritation potential using the HET-CAM test.ResultsThe independent variables (lipid ratio-X1 and percentage of emulsifier-X2) have a positive impact on percentage entrapment efficiency (Y2) and percentage release (Y3) but have a negative impact on particle size (Y1). Based on the better entrapment efficiency (94.65%), optimum particle size (150.67 nm), and percentage cumulative drug release (68.67%), batch F6 was selected for further evaluation. Electron microscopic images revealed that the prepared particles are spherical and have nano size. Antifungal studies demonstrated enhancement in the zone of inhibition by formulation F6 as compared to a commercial eye drop. The non-irritancy of optimized formulation (F6) was confirmed with a zero score.Interpretation & ConclusionIn summary, the optimized NLCs seem to be a potent carrier for the effective delivery of itraconazole in ocular therapy.  相似文献   

20.
Etodolac is a non-steroidal anti-inflammatory drug having an elimination half-life of 7 h; oral doses are given every 6–8 h. The aim of current work was the development of controlled-release etodolac lipid matrix tablets. The variables influencing design of these tablets (L1–L28) by the hot fusion method were investigated including; (1) lipid type (stearic acid, cetyl alcohol, cetostearyl alcohol, Imwitor® 900K, Precirol® ATO 5 and Compritol® ATO 888), (2) drug/lipid ratio (1:0.25 and 1:0.50, respectively), (3) filler type (lactose, Avicel® PH101 and their physical mixtures; 2:1, 1:1, and 1:2, respectively), (4) surfactant’s HLB (5 and 11), and (5) drug/surfactant ratio (20:1 and 10:1, respectively). Statistical analysis and kinetic modeling of drug release data were evaluated. The inner matrix of the tablet was visualized via scanning electron microscopy (SEM). An inverse correlation was observed between the drug/lipid ratio and the drug release rate. Precirol®- and Compritol®-containing formulae showed more retarded drug release rates. Lactose/Avicel® physical mixture (1:1) was considered as a filler of choice where it minimized the burst effect observed with Avicel®-free formulae. The higher surfactant’s HLB, the higher drug release rate. The similarity factor (f 2) between the drug release profiles revealed similarity within the investigated drug/surfactant ratios. Sucrose stearate D1805®-based matrix (L21) succeeded in delivering more than 90% of etodolac over 12 h, following anomalous (non-Fickian) controlled-release kinetics. SEM micrographs confirmed pore formation, within the latter matrix, upon contact with dissolution medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号