首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemically defined minimal media for the cultivation of high temperature tolerant and pathogenic Naegleria spp. have been developed. A defined minimal medium, identical for N. fowleri and N. lovaniensis, consists of eleven amino acids (arginine, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, threonine, tryptophan, and valine), six vitamins (biotin, folic acid, hemin, pyridoxal, riboflavin, and thiamine), guanosine, glucose, salts, and metals. Three of the four strains of Naegleria fowleri tested (ATCC 30100, ATCC 30863, and ATCC 30896) and two strains of N. lovaniensis (ATCC 30467 and ATCC 30569) could be cultured beyond ten subcultures on this medium. For N. fowleri ATCC 30894 diaminopimelic acid, or lysine, or glutamic acid was also required. Mean generation time was reduced and population density increased for all strains with the introduction of glutamic acid. Glucose could be eliminated from the minimal medium only if glutamic acid was present. Without glucose, mean generation time increased and population density decreased. Diaminopimelic acid could substitute for lysin for ATCC 30894, indicating that Naegleria species may synthesize their lysine via the DAP pathway. Naegleria fowleri ATCC 30100 could be adapted to grow without serine or glycine in the minimal medium with glutamic acid added, but with mean generation time increased and population density decreased. The strain could be grown in the minimal medium in the absence of metals. For growth of N. australiensis ATCC 30958, modification of the medium by increasing metals ten-fold, substituting guanine for guanosine and adding lysine, glutamic acid, and six vitamins (p-aminobenzoic acid, choline chloride, inositol, vitamin B12, nicotinamide, and Ca pantothenate) was required.  相似文献   

2.
ABSTRACT. Naegleria fowleri amebae, but not those of N. australiensis, N. gruberi, or N. lovaniensis, demonstrated enhanced motility when placed in proximity to mammalian cells. Amebae of nonpathogenic species of Naegleria, however, were more motile in cell culture medium than the amebae of N. fowleri. The locomotory response of highly pathogenic mouse-passaged N. fowleri amebae to nerve cells was greater than axenically cultured amebae. The enhanced mobility elicited by whole nerve cells or disrupted nerve cells was not directed migration but chemokinetic. Naegleria fowleri responded to disrupted neuroblastoma cells more vigorously than to disrupted African green monkey kidney (Vero) cells.  相似文献   

3.
ABSTRACT Using restriction enzyme analysis, mitochondrial DNA fragment patterns from seven strains of pathogenic and nonpathogenic Naegleria and one strain of Vahlkampfia were compared to estimate nucleotide sequence divergence. Significantly high levels of estimated genetic variation between strains of N. gruberi, N. fowleri, and N. jadini support the current taxonomic level of the individual Naegleria species and suggest a distinct phylogeny for each group. Naegleria lovaniensis, strain TS, was shown to have significant nucleotide sequence homology with N. gruberi, strain EGs, suggesting that the two groups share a close taxonomic relationship. The pathogenic strain MB-41 of N. fowleri exhibited distinct genetic divergence from the highly homologous, pathogenic strain Nf66 and the drug-cured strain 6088. Morphologically distinct strains EGs and 1518/la of N. gruberi exhibited significantly large sequence divergence consistent with a more distant taxonomic relationship. Amoebae from the genus Vahlkampfia expressed genetic similarity with strains of N. gruberi.  相似文献   

4.
Using isoelectric focusing, the zymograms of 23 pathogenic and nonpathogenic Naegleria strains were studied for the activity of 16 enzymes. Certain enzymes (lactate dehydrogenase, L-threonine dehydrogenase, superoxide dismutase, acid phosphatase, malic enzyme, and leucine aminopeptidase) proved particularly useful from a practical point of view as they allow easy and reliable identification of pathogenic N. fowleri and N. australiensis as well as nonpathogenic N. lovaniensis strains. Genetic interpretation of these zymograms gave estimates of genetic distances that largely confirmed the taxonomic position of the Naegleria species. In addition, the genetic data suggest that there are two main phylogenetic groups in the genus Naegleria.  相似文献   

5.
The human pathogenic amoeboflagellate Naegleria fowleri and the nonpathogenic species N. gruberi can be cultivated axenically but usually in different media. Naegleria fowleri 6088 has been adapted to grow in Balamuth H-4 medium, usually used to propagate N. gruberi nB81. and nB81 has been adapted to grow in supplemented Nelson's medium, usually used to propagate N. fowleri. N. gruberi nB81. grown in either medium, enflagellated 135 to 150 min after subculture to non-nutrient amoeba saline, whereas 6088 required 225 min. Naegleria gruberi nB81 grown in either medium was agglutinated by 100 ug concanavalin A/ml, whereas N. fowleri 6088 was not. Naegleria fowleri and N. gruberi grown in Nelson's medium became rounded to a greater extent upon chilling at 5° C and remained rounded longer than Naegleria grown in Balamuth medium. The specificity of the surface antigens was an inherent characteristic of each species and not dependent upon the propagating medium. but Naegleria grown in Nelson's medium was agglutinated more reproducibly and more effectively by antiserum. N. gruberi was somewhat more resistant to acriflavine, actinomycin D, cycloheximide, or tetracycline than N. fowleri, regardless of the culture medium. Naegleria fowleri 6088 grown in Nelson's medium, however, was more resistant to actinomycin D, daunomycin. mithramycin. sulfamethoxazole, or tyrocidine than 6088 grown in Balamuth medium. There are limitations on the validity of comparisons of N. fowleri and N. gruberi based upon cultures grown in different media.  相似文献   

6.
The cytopathogenicity of Naegleria fowleri strain LEE (ATCC-30894) for cultured rat neuroblastoma cells (B-103) has been investigated. Both live N. fowleri amoebae and Naegleria lysates added to 51Cr-labeled B-103 cells caused release of radiolabel, which was dependent upon the ratio of amoebae to target cells or to the lysate concentration. Lysates of N. fowleri strains LEE, NF-66, NF-69, and HB-4 were equally injurious to B-103 target cells whereas lysates of strains 6088 and KUL were less cytotoxic. Highly pathogenic mouse-passaged strain LEE were less cytotoxic than axenically grown amoebae. Maximum cytotoxicity was observed in lysates from amoebae in late exponential or early stationary phase of growth. Cytopathogenicity of lysates was reduced after heating at 44°C for 60 min or at 60°C for 30 min. Cytotoxicity was stable during storage at 4°C or at ?20°C for 26 h. Neither live amoebae nor lysates injured B-103 target cells at 4°C. Live amoebae and lysates injured B-103 by a time, temperature, and concentration dependent process.  相似文献   

7.
SYNOPSIS. Isoenzyme electrophoresis of 7 different enzyme systems was used to compare 24 strains of Naegleria fowleri and 6 strains of N. gruberi. The 30 strains could be grouped into 4 distinct categories based upon zymogram patterns. No interstrain band variation in all enzyme systems was demonstrated in pathogenic strains of N. fowleri. Three nonpathogenic high temperature-tolerant strains of Naegleria had similar zymograms. Four of the 5 remaining nonpathogenic Naegleria strains had no interstrain band variation. Based upon zymograms, the 22 pathogenic strains constitute a homogenous species. Similarly the high temperature-tolerant nonpathogenic strains formed a cohesive group. The remaining nonpathogenic strains could be separated into 2 groups.  相似文献   

8.
ABSTRACT. The purpose of this research was to determine whether mice could be protected from lethal challenge with Naegleria fowleri by prior intranasal exposure to pathogenic and nonpathogenic Naegleria. Mortality ranged from 0 to 100% for mice inoculated intranasally (i.n.) with 5 × 103 amebae of 13 human isolates of N. fowleri. Mice were immunized and challenged i.n. using live amebae of strains of low, medium, and high virulence. The greatest protection against lethal challenge was afforded by three immunizing doses of 103 amebae per dose of the strain of medium virulence. Nonpathogenic N. gruberi also was used to immunize mice i.n. against lethal challenge with N. fowleri. Protection was greater following immunization with N. gruberi than it was after immunization with N. fowleri, suggesting that nonpathogenic N. gruberi may be a better immunogen in protecting mice against lethal naeglerial challenge.  相似文献   

9.
A study of amebas of the genera Naegleria, Acanthamoeba, Polysphondylium, and Didymium shows that a cytopathogenic agent that is filterable and passageable is present only in the strains of the Naegleria whether they are obtained free-living from soil samples (N. gruberi) or as pathogens from humans (N. fowleri). The agents obtained from the different Naegleria strains are similar in amount and in their cytopathogenic interaction with chick cultures. The agent has characteristics that distinguish it from the known viruses.  相似文献   

10.
An avidin-biotin horseradish peroxidase method was used to detect antibodies to Naegleria fowleri and N. lovaniensis in human serum samples. Antibodies were detected in 101 specimens from 115 hospital patients ranging in age from 15 to 98 years. Class-specific anti-immunoglobulins identified antibodies as IgG and IgM. IgG antibody titers to both species ranged from 1:20 to 1:640. Seven of 15 serum samples collected from newborn infants also demonstrated IgG antibodies to these organisms with a titer range of 1:20 to 1:80. The immunoperoxidase test and Western blot analysis of selected serum samples demonstrated a close similarity in serological results between N. fowleri and N. lovaniensis.  相似文献   

11.
Fourteen strains of Naegleria australiensis, including the type strain, were compared for virulence for mice, maximum growth temperature, lectin agglutination, isoenzyme pattern, and total protein banding pattern. Their relation to other species of Naegleria also was compared by immunoelectrophoretic analysis. Strains with high virulence, comparable to that of N. fowleri, were found to be different in concanavalin A agglutination as well as with regard to zymograms and total protein patterns. Although serologically different from N. fowleri and reacting with N. australiensis antiserum in the fluorescent antibody test, these high-virulence strains differed in number of immunoelectrophoretic precipitin bands. Because of these results, the high-virulence strains are considered to be a subspecies of N. australiensis. The low-virulence strains showed minor differences from the type strain. Thus, N. australiensis does not appear to be as homogenous a species as N. fowleri. Pathogenic N. australiensis also seems to be more widespread than previously thought.  相似文献   

12.
A multiplex PCR was developed to simultaneously detect Naegleria fowleri and other Naegleria species in the environment. Multiplex PCR was also capable of identifying N. fowleri isolates with internal transcribed spacers of different sizes. In addition, restriction fragment length polymorphism analysis of the PCR product distinguished the main thermophilic Naegleria species from the sampling sites.  相似文献   

13.
The phagocytic activities of N. lovaniensis (Aq/9/1/45D) and N. gruberi (1518/1f and 1518/1e) were studied in the presence of erythrocytes of various species: chicken, rabbit, goat, and human (A+, B+, and AB+ were tested). The percentage of amoebae with ingested red cells, the phagocytic index (PhI), can be considered as an expression of phagocytic activity. Under given conditions (erythrocyte concentration, incubation time, age of amoebic cultures) each strain of Naegleria prefers one erythrocyte type. Thus, for 72-h cultures, N. lovaniensis ingested more A+ type erythrocytes than did N. gruberi strains but had very low affinity for rabbit red cells except when very high concentrations were tested. Naegleria gruberi 1f was the most active of the three strains towards rabbit and B+ and AB+ human erythrocytes, but very low PhIs were obtained with goat erythrocytes. Naegleria gruberi le exhibited high phagocytic activity for every erythrocyte type except for rabbit red cells.  相似文献   

14.
Emerging methods based on mass spectrometry (MS) can be used in the rapid identification of microorganisms. Thus far, these practical and rapidly evolving methods have mainly been applied to characterize prokaryotes. We applied matrix‐assisted laser‐desorption‐ionization‐time‐of‐flight mass spectrometry MALDI‐TOF MS in the analysis of whole cells of 18 N. fowleri isolates belonging to three genotypes. Fourteen originated from the cerebrospinal fluid or brain tissue of primary amoebic meningoencephalitis patients and four originated from water samples of hot springs, rivers, lakes or municipal water supplies. Whole Naegleria trophozoites grown in axenic cultures were washed and mixed with MALDI matrix. Mass spectra were acquired with a 4700 TOF‐TOF instrument. MALDI‐TOF MS yielded consistent patterns for all isolates examined. Using a combination of novel data processing methods for visual peak comparison, statistical analysis and proteomics database searching we were able to detect several biomarkers that can differentiate all species and isolates studied, along with common biomarkers for all N. fowleri isolates. Naegleria fowleri could be easily separated from other species within the genus Naegleria. A number of peaks detected were tentatively identified. MALDI‐TOF MS fingerprinting is a rapid, reproducible, high‐throughput alternative method for identifying Naegleria isolates. This method has potential for studying eukaryotic agents.  相似文献   

15.
The present study is an attempt to investigate the presence of Naegleria fowleri in Indian population. A total of 307 patients were enrolled and water samples were collected from both residential and surrounding areas of patients found positive for N. fowleri. The different species of Naegleria from both clinical and water samples were identified taxonomically. Recommended microbiological conventional techniques were used to identify different Naegleria stages and other free-living amoebae from the samples. PCR assays, using both genus and species specific primers were also optimized. None of the samples were positive by conventional microbiological examinations. However, PCR assays detected only three samples positive for N. fowleri. A total of 10 water bodies (ponds), that were used by Naegleria positive patients were examined. The pH and temperature of the water samples collected from water bodies ranged between 5.6–7.2 and 25–32 °C respectively. Among all the 10 water samples tested, four samples were positive for genus Naegleria by PCR assay, of which only two samples, showed positive amplification for N. fowleri. The sequence analysis of N. fowleri strain belonged to genotype II.  相似文献   

16.
Real-time polymerase chain reaction melting curve analysis (MCA) allows differentiation of several free-living amoebae species. Distinctive characteristics were found for Naegleria fowleri, N. lovaniensis, N. australiensis, N. gruberi, Hartmanella vermiformis, and Willaertia magna. Species specificity of the amplicons was confirmed using agarose gel electrophoresis and sequence-based approaches. Amplification efficiency ranged from 91% to 98%, indicating the quantitative potential of the assay. This MCA approach can be used for quantitative detection of free-living amoebae after cultivation but also as a culture-independent detection method.  相似文献   

17.
Naegleria fowleri the causative agent of Primary Amoebic Meningoencephalitis, is ubiquitously distributed worldwide in various warm aquatic environments and soil habitats. The present study reports on the presence of Naegleria spp. in various water bodies present in Rohtak and Jhajjar district, of state Haryana, India. A total of 107 water reservoirs were screened from summer till autumn (2012 and 2013). In order to isolate Naegleria spp. from the collected water samples, the water samples were filtered and the trapped debris after processing were transferred to non-nutrient agar plates already seeded with lawn culture of Escherichia coli. Out of total 107 water samples, 43 (40%) samples were positive by culture for free living amoeba after incubation for 14 days at 37°C. To identify the isolates, the ITS1, 5.8SrDNA and ITS2 regions were targeted for PCR assay. Out of total 43 positive samples, 37 isolates were positive for Naegleria spp. using genus specific primers and the most frequently isolated species was Naegleria australiensis. Out of 37 Naegleria spp. positive isolates, 1 isolate was positive for Naegleria fowleri. The sequence analysis revealed that the Naegleria fowleri strain belonged to Type 2.  相似文献   

18.
The free-living amoeboflagellate genus Naegleria includes one pathogenic and two potentially pathogenic species (Naegleria fowleri, Naegleria italica, and Naegleria australiensis) plus numerous benign organisms. Monitoring of bathing water, water supplies, and cooling systems for these pathogens requires a timely and reliable method for identification, but current DNA sequence-based methods identify only N. fowleri or require full sequencing to identify other species in the genus. A novel closed-tube method for distinguishing thermophilic Naegleria species is presented, using a single primer set and the DNA intercalating dye SYTO9 for real-time PCR and melting-curve analysis of the 5.8S ribosomal DNA gene and flanking noncoding spacers (ITS1, ITS2). Collection of DNA melting data at close temperature intervals produces highly informative melting curves with one or more recognizable melting peaks, readily distinguished for seven Naegleria species and the related Willaertia magna. Advantages over other methods used to identify these organisms include its comprehensiveness (encompassing all species tested to date), simplicity (no electrophoresis required to verify the product), and sensitivity (unambiguous identification from DNA equivalent to one cell). This approach should be applicable to a wide range of microorganisms of medical importance.  相似文献   

19.
The plasma membrane is essential in the pathogenicity of several microorganisms. However, to date, there are few studies related to the plasma membrane proteins in Naegleria fowleri; this amoeba produces a fatal disease called primary amoebic meningoencephalitis. In the present study, we analyzed the electrophoretic pattern of the membrane proteins of N. fowleri and compared it with the nonpathogenic N. lovaniensis and N. gruberi. We detected a 23-kDa protein (Nf23) present at a higher level in N. fowleri than in the nonpathogenic amoebae. The mass spectrometry analysis showed that the Nf23 protein has a sequence of 229 amino acids that corresponds to a membrane protein. The mRNA level of nf23 was overexpressed 4-fold and 40,000-fold in N. fowleri compared with N. lovaniensis and N. gruberi, respectively. Moreover, we found a 5-fold overexpression of nf23 in N. fowleri trophozoites recovered from mouse brains compared with trophozoites axenically cultivated. In addition, the cytopathic effect on Madin-Darby Canine Kidney cells coincubated with N. fowleri diminished in the presence of antibodies against Nf23; nevertheless, the nonpathogenic amoebae did not produce damage to the monolayer cells. These results suggest that the plasma membrane protein Nf23 is probably involved in the virulence of N. fowleri.  相似文献   

20.
ABSTRACT. Isoenyme electrophoresis of three different enzymes was used to compare 16 strains of vahlkampfiid amoebae and a strain identified as a slime mold. The strain designated as an Echinostelium sp. was found to be an isolate of Naegleria fowleri on the basis of zymogram type and other characters, confirming Cursons & Brown's similar conclusion drawn in 1975. The N. fowleri strains examined expressed the typical zymograms of the species. The N. gruberi strains in this study presented two distinctive groups of patterns that were different from the two previously reported types for N. gruberi. Each of the remaining species studied formed single distinctive groups by which they could be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号