首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A group of fourteen men (73 ± 5 yr of age), and eighteen women (77 ± 7 yr of age) institutionalized at the Berceni Clinical Hospital, Bucharest, Romania, were studied over a 24-hr span once during each season (winter, spring, summer and fall). All subjects followed a diurnal activity pattern with rest at night and ate three meals per day with breakfast at about 0830, lunch at about 1300 and dinner at about 1830. The meals were similar, although not identical for all subjects during all seasons. On each day of sampling blood was collected at 4-hr intervals over a 24-hr span. Seventeen hormonal variables were determined by radioimmunoassay. Statistically significant circadian rhythms were detected and quantitated by population mean cosinor analysis in pooled data from all four seasons in both sexes for ACTH, aldosterone, Cortisol, C-peptide, dehydroepiandrosterone-sulfate (DHEA-S), immunoreactive insulin, prolactin, 17-OH progesterone, testosterone, total T4 and TSH. In women, estradiol and progesterone also were determined and showed a circadian rhythm during all seasons. Total T, and FSH showed circadian rhythm detection by cosinor analysis in the men only; LH showed no consistent circadian rhythm as group phenomenon in men or women.

A circannual rhythm was detected using the circadian means of each subject at each season as input for the population mean cosinor in the women for ACTH, C-peptide, DHEA-S, FSH, LH, progesterone, 17-OH progesterone and TSH. In the men, a circannual rhythm was detected for ACTH, FSH, insulin, LH, testosterone and T3. There were phase differences between men and women in ACTH, FSH and LH. In those functions in which both the circadian and circannual rhythms were statistically significant, a comparison of the amplitudes showed in the women a higher circannual rather than circadian amplitude for DHEA-S. In 17-OH progesterone, TSH and C-peptide, the circadian amplitude in women was larger. In men, the circannual amplitude of T3 was larger than the circadian amplitude and in insulin the circadian amplitude was larger than the circannual amplitude. There was no statistically significant difference between the circadian and circannual amplitudes in the women in ACTH and progesterone and in the men in ACTH and testosterone.  相似文献   

2.
The effect of Freund's adjuvant administration on 24-hour changes of plasma prolactin, growth hormone (GH), thyrotropin (TSH), insulin, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and testosterone were studied in young (2 months) and aged (18 months) male Wistar rats. Rats were injected s.c. with Freund's adjuvant or adjuvant's vehicle and, 18 days later, they were killed at 6 different time intervals throughout a 24-hour cycle to measure circulating hormone levels by specific RIAs. Young rats receiving adjuvant's vehicle exhibited significant time-of-day-dependent variations in plasma TSH, LH and testosterone, with maximal levels at 1300 h, 0100 h and 1700 h, respectively. Prolactin and insulin levels, analyzed globally in a factorial ANOVA, showed significant time-of-day changes with maximal levels at 1300 - 1700 h and 2100 h, respectively. The daily rhythms in plasma LH and testosterone found in young rats were not longer observed in Freund's adjuvant-injected rats, while as far as TSH, a second peak was observed at 0100 h after Freund's adjuvant administration. Twenty-four hour rhythms in circulating TSH, LH and testosterone were blunted in old rats receiving either Freund's adjuvant or its vehicle. Aged rats exhibited significantly higher circulating levels of prolactin, and lower levels of GH, TSH, FSH and testosterone. The results indicate that secretion of prolactin, GH, TSH, FSH and testosterone are age-dependent, as are the responses of TSH, LH and testosterone to Freund's adjuvant administration.  相似文献   

3.
A group of fourteen men (73 ± 5 yr of age), and eighteen women (77 ± 7 yr of age) institutionalized at the Berceni Clinical Hospital, Bucharest, Romania, were studied over a 24-hr span once during each season (winter, spring, summer and fall). All subjects followed a diurnal activity pattern with rest at night and ate three meals per day with breakfast at about 0830, lunch at about 1300 and dinner at about 1830. The meals were similar, although not identical for all subjects during all seasons. On each day of sampling blood was collected at 4-hr intervals over a 24-hr span. Seventeen hormonal variables were determined by radioimmunoassay. Statistically significant circadian rhythms were detected and quantitated by population mean cosinor analysis in pooled data from all four seasons in both sexes for ACTH, aldosterone, Cortisol, C-peptide, dehydroepiandrosterone-sulfate (DHEA-S), immunoreactive insulin, prolactin, 17-OH progesterone, testosterone, total T4 and TSH. In women, estradiol and progesterone also were determined and showed a circadian rhythm during all seasons. Total T, and FSH showed circadian rhythm detection by cosinor analysis in the men only; LH showed no consistent circadian rhythm as group phenomenon in men or women.

A circannual rhythm was detected using the circadian means of each subject at each season as input for the population mean cosinor in the women for ACTH, C-peptide, DHEA-S, FSH, LH, progesterone, 17-OH progesterone and TSH. In the men, a circannual rhythm was detected for ACTH, FSH, insulin, LH, testosterone and T3. There were phase differences between men and women in ACTH, FSH and LH. In those functions in which both the circadian and circannual rhythms were statistically significant, a comparison of the amplitudes showed in the women a higher circannual rather than circadian amplitude for DHEA-S. In 17-OH progesterone, TSH and C-peptide, the circadian amplitude in women was larger. In men, the circannual amplitude of T3 was larger than the circadian amplitude and in insulin the circadian amplitude was larger than the circannual amplitude. There was no statistically significant difference between the circadian and circannual amplitudes in the women in ACTH and progesterone and in the men in ACTH and testosterone.  相似文献   

4.
While aging is known to decrease episodic thyrotropin (TSH) secretion in men, no detailed information is available as to age-related alterations in the TSH and prolactin (PRL) release patterns in postmenopausal women (PMW). Accordingly, we compared the TSH and prolactin (PRL) secretory profiles of 6 euthyroid younger PMW (mean age: 53.0 years) with those of 7 euthyroid older PMW (mean age: 80.4 years). In all PMW, blood samples were obtained at 10 minute intervals for 10 hours for serial determinations of TSH and PRL by RIA. While thyroxine (T4) serum concentrations were not different in younger from older PMW, triiodothyronine (T3) levels markedly (p less than 0.05) decreased in older PMW. In both younger and older PMW, TSH and PRL were secreted episodically (by Cluster pulse algorithm), with considerable inter-individual variabilities in either study group. TSH and PRL pulse attributes (interpulse intervals, frequencies, amplitudes) were comparable in younger and older PMW, although a tendency of mean TSH to increase (p = 0.18) was noted for older PMW. Mean TSH and PRL serum concentrations were positively (r = 0.94, p less than 0.01) correlated in older, whereas not in younger PMW. These observations demonstrate that the pulse characteristics of episodic TSH and PRL secretion are preserved in PMW even of old age. However, in view of markedly decreased circulating T3 concentrations and of no substantial change in the TSH pulsatile secretion in older PMW, the negative feedback on the hypothalamic-pituitary unit may be impaired in elderly women.  相似文献   

5.
Daily rhythms of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are measurable in the serum of prepubertal female golden hamsters by 17 days after birth. These rhythms, which are characterized by peak levels at 1700 h, persist until they are replaced by a 4-day rhythm as ovulatory cycles begin, approximately 3 wk later. We have tested the proposition that the ovaries are required for the onset and maintenance of clock-timed gonadotropin release by removing the ovaries and measuring the levels of LH and FSH in prepubertal hamsters. Ovariectomy was performed both before and after the onset of the rhythm and the effect of removal was determined by subsequent collection of blood samples during the mid- to late-prepubertal period. Ovariectomy on 7, 10 or 13 days after birth results in tonic levels of LH and FSH in blood samples collected at 1400, 1700 and 2000 h on Days 17 through 29. Sham-operated or intact controls had significantly elevated levels of these hormones at 1700 h. Ovariectomy on Day 21 and killing on Day 25 at the same times of day abolished the rhythm of serum LH measured in sham-ovariectomized controls. Ovariectomy on Day 21 and killing on Days 26, 28 or 30 at hourly intervals resulted in variable but nonrhythmic patterns of circulating LH. Thus, ovariectomy before the initiation of clock-timed gonadotropin release prevented its initiation; ovariectomy after its initiation abolished the rhythm. These results show that the ovary provides an essential "message" to the brain-pituitary axis for the initiation and maintenance of clock-timed gonadotropin release in prepubertal females.  相似文献   

6.
Circadian and circannual rhythm of plasma LH, FSH, testosterone (T), prolactin, cortisol, triiodothyronine (T3) and thyroxine (T4) were investigated in two mature male white-tailed deer. No circadian rhythms were detected. Seasonal levels of LH and FSH were reached in September and October; troughs occur in May and June. Maximal T values were detected in November and December (the time of the rut); minimal levels occur between February and July. Prolactin peaked in May and June; minimal levels were detected between October and February. T3 exhibited two maxima; the first in the May-June period, the second in the September-October period. T4 showed no recognizable circannual rhythm. Cortisol levels were found to be much higher during cold months (December-April) than during the rest of the year. The least variable circadian levels were that of FSH and prolactin, with LH, T4, T3, cortisol and testosterone following in descending order. Cannulation stress might have some effect on the levels of testosterone, LH and cortisol. Correlation between LH and testosterone levels were detected mainly during sexually active periods.  相似文献   

7.
The circadian rhythms of serum luteinizing hormone, follicle-stimulating hormone, testosterone (T), free testosterone (fT), sex hormone-binding globulin (SHBG), oestradiol, cortisol and dehydroepiandrosterone sulphate (DHA-s) have been investigated in 5 normal male adults and 6 elderly men. Circadian rhythms were detected statistically significant (p less than 0.05) by population mean cosinor analysis, for T, fT, cortisol and DHA-s in the young group. In the elderly population, serum cortisol showed a clear circadian rhythm, although with some phase modification, whereas DHA-s secretion lost its circadian rhythmicity. This demonstrates that ageing differently affects the two major adrenal functions, glucocorticoid and androgenic; further, the data suggest that an independent adrenal androgen-regulating system could be selectively impaired in the older subjects. In the elderly group the loss of T circadian rhythm was confirmed, but a statistically significant circadian rhythm of fT was recorded. It was characterized by a marked phase advance and not related with the SHBG modifications found in elderly men. This finding leads us to reconsider the role of fT, which appears more sensitive than total T, in studying circadian rhythm of gonadal androgen secretion.  相似文献   

8.
Monosodium glutamate (MSG) was used to evaluate the importance of the arcuate nucleus of the hypothalamus in the expression of daily gonadotropin rhythms in female golden hamsters. These daily rhythms of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which also occur in prepubertal females, are characterized by afternoon surges. Neonatal administration of MSG induces degeneration of perikarya in the arcuate nucleus and renders females permanently anovulatory. MSG was injected at 8 days of age; at 21 days, the animals were weaned and sorted by sex into groups of 5-7. Blood samples were obtained at 1300 and 1700 h at 25, 30, 35, 40, 50, 62, and 192 days of age from MSG-sterilized animals. Saline-injected controls were bled at 25 days and after estrous cycles had been initiated (29-37 days of age). In both control and MSG-injected groups, there was an afternoon surge of LH and FSH at 25 days of age. These daily surges persisted in MSG-injected animals. The ovaries of these animals were characterized by an abundant interstitium and arrested follicular development. Progesterone levels of MSG-anovulatory animals also reflected the rhythmicity of LH and FSH, with a significant increase occurring between 1300 and 1700 h. Thus, MSG did not affect the daily circadian-based rhythmicity in gonadotropin secretion even though adult-age animals were infertile. These results suggest that perikarya of the arcuate nucleus affected by MSG are not required for generation of daily LH and FSH rhythms.  相似文献   

9.
This review discusses the ways in which the circadian rhythms of older people are different from those of younger adults. After a brief discussion of clinical issues, the review describes the conventional wisdom regarding age-related changes in circadian rhythms. These can be summarized as four assertions regarding what happens to people as they get older: 1) the amplitude of their circadian rhythms reduces, 2) the phase of their circadian rhythms becomes earlier, 3) their natural free-running period (tau) shortens, and 4) their ability to tolerate abrupt phase shifts (e.g., from jet travel or night work) worsens. The review then discusses the empirical evidence for and against these assertions and discusses some alternative explanations. The conclusions are that although older people undoubtedly have earlier circadian phases than younger adults, and have more trouble coping with shift work and jet lag, evidence for the assertions about rhythm amplitude and tau are, at best, mixed.  相似文献   

10.
In female hamsters, the daily rhythm of LH appeared on the 15th or 16th day after birth with a peak occurring at about 16:00 h (14L:10D, lights on 06:00 h). Progesterone concentrations increased and became rhythmic a few days later. In serum samples collected at 14, 16, 18, 20, 25, 30, 40 and 60-62 days of age between 13:00 and 23:00 h, significant rhythms of serum cortisol and corticosterone concentrations were not detected before 25 days of age; furthermore, the phase of the rhythms did not stabilize to the adult pattern until about 40 days of age. As in the adult, significant rhythms were present in both sexes and the levels of cortisol were greater than those of corticosterone. Injection of pig ACTH (50 i.u./kg body wt, i.p.) significantly increased serum cortisol by 10 days of age, but corticosterone did not respond until 25 days of age. Thus, for cortisol at least, the appearance of 24-h rhythms in the serum is probably not dependent on the ability of the adrenal to respond to ACTH. Ovariectomy had no effect on the late afternoon surge of serum cortisol; similarly, adrenalectomy of immature females did not abolish the surge of LH. Ovariectomy did not alter the daily rhythm of pineal melatonin content and pinealectomy had no effect on the daily afternoon surge of LH. These results demonstrate functional independence of circadian rhythms in the pituitary-gonadal axis and the pituitary-adrenal axis of the immature hamster and also independence of daily rhythms of pineal melatonin and pituitary release of LH.  相似文献   

11.
Serum growth hormone (GH), prolactin (PRL), cortisol, luteinizing hormone (LH), follicle-stimulating hormone (FSH) and thyroid-stimulating hormone (TSH) levels were evaluated before and after a bicycle ergometer exercise test in 8 male competitive volleyball players and in 8 sedentary healthy males of the same age. Increased serum GH and cortisol values after exercise in both groups were found, whereas an exercise-induced PRL release was observed in athletes only. Serum levels of LH, FSH and TSH were unaffected by the test in all subjects. A possible role of training in conditioning the hypothalamopituitary exercise-induced secretion is suggested.  相似文献   

12.
Recent studies have demonstrated an age-related decline in gonadotropins and a decrease in pituitary responsiveness to GnRH, indicating that aging influences the neuroendocrine components of the female reproductive axis independently of changes in ovarian function. To determine whether aging might also affect the luteinizing hormone (LH) negative and positive feedback responses to gonadal steroids, we administered a controlled, graded sex steroid infusion to 11 younger (45-56 yr) and nine older (70-80 yr) postmenopausal women (PMW) in whom endogenous ovarian steroids and peptides are uniformly low. The doses of estradiol (E(2)) and progesterone (P) were chosen to mimic levels across the normal follicular phase and have been shown previously to induce negative followed by positive feedback on LH. Similar E(2) and P levels were achieved in younger and older PMW (P = 0.4 and 0.3, respectively) and produced a biphasic LH response in all subjects. The early decline in LH to 53% of baseline was not different in older vs. younger PMW. However, the positive feedback effect was attenuated in older compared with younger PMW (peak LH 144.4 ± 19.5 vs. 226.8 ± 22.3 IU/l, respectively, P = 0.01). In conclusion, these studies in PMW demonstrate preservation of short-term steroid negative and positive feedback in response to exogenous E(2) and P with aging. Attenuation of positive feedback in older compared with younger PMW is consistent with previous reports of declining GnRH responsiveness with aging.  相似文献   

13.
Neuro-endocrine hormone secretion is characterized by circadian rhythmicity. Melatonin, GRH and GH are secreted during the night, CRH and ACTH secretion peak in the morning, determining the circadian rhythm of cortisol secretion, TRH and TSH show circadian variations with higher levels at night. Thyroxine levels do not change with clear circadian rhythmicity. In this paper we have considered a possible influence of cortisol and melatonin on hypothalamic-pituitary-thyroid axis function in humans. Melatonin, cortisol, TRH, TSH and FT4 serum levels were determined in blood samples obtained every four hours for 24 hours from ten healthy males, aged 36-51 years. We correlated hormone serum levels at each sampling time and evaluated the presence of circadian rhythmicity of hormone secretion. In the activity phase (06:00 h-10:00 h-14:00 h) cortisol correlated negatively with FT4, TSH correlated positively with TRH, TRH correlated positively with FT4 and melatonin correlated positively with TSH. In the resting phase (18:00 h-22:00 h-02:00 h) TRH correlated positively with FT4, melatonin correlated negatively with FT4, TSH correlated negatively with FT4, cortisol correlated positively with FT4 and TSH correlated positively with TRH. A clear circadian rhythm was validated for the time-qualified changes of melatonin and TSH secretion (with acrophase during the night), for cortisol serum levels (with acrophase in the morning), but not for TRH and FT4 serum level changes. In conclusion, the hypothalamic-pituitary-thyroid axis function may be modulated by cortisol and melatonin serum levels and by their circadian rhythmicity of variation.  相似文献   

14.
We compared the circadian rhythms of anterior pituitary hormones in 15 patients with noncompensated insulin-dependent diabetes on first and second day treatment with Biostator. The rhythm was evaluated by means of a least squares analysis and presented as the circle of cosinors. In noncompensated diabetes the TSH and prolactin rhythm was maintained, whereas other hormones of the anterior pituitary showed no significant rhythm. In the course of one-day normalization of glycemia by means of Biostator the TSH and prolactin rhythm was maintained, whereas the circadian rhythm of growth hormone and ACTH levels appeared with acrophase at 18.47 and 19.59 hour, respectively. The LH rhythm did not exist, whereas the FSH rhythm was dubious. One may assume that noncompensated diabetes results in the impairment of certain pituitary hormonal rhythms and these disturbances are reversible after restoring of normoglycemia.  相似文献   

15.
Four orchidectomized rhesus monkeys (3-3.5 yr of age) were treated for 62 days with daily i.m. injections of hydrocortisone acetate (HCA) at a dose of 10-20 mg/(kg BW X day), and blood samples were obtained daily or every other day before, during, and after treatment. Hydrocortisone acetate injections resulted in a progressive rise in mean plasma cortisol from basal concentrations of 17-35 micrograms/100 ml prior to initiation of steroid treatment to approximately 150 micrograms/100 ml 5 wk later. When serum cortisol concentrations reached 100 micrograms/100 ml, 3-4 wk after the initiation of HCA treatment, circulating luteinizing hormone (LH) and follicle-stimulating hormone (FSH) began to decline, reaching nondetectable concentrations 35 days later. Withdrawal of HCA resulted in a return in plasma cortisol concentrations to pretreatment control levels, which was associated with a complete restoration of gonadotropin secretion. In 2 animals, administration of an intermittent i.v. infusion of gonadotropin-releasing hormone (GnRH) (0.1 micrograms/min for 3 min once every hour), which appears to stimulate the gonadotropes in a physiologic manner, reversed the cortisol-induced inhibition of gonadotropin secretion, restoring circulating LH and FSH concentrations to within 80-100% of control. These results suggest that, in the rhesus monkey, the major site of the inhibitory action of cortisol on gonadotropin release resides at a suprapituitary level and is mediated by interruption of hypothalamic GnRH release.  相似文献   

16.
Luteinizing hormone (LH), follicle-stimulating hormone (FSH) and thyroid-stimulating hormone (TSH) from pituitary and chorionic gonadotropin (CG) from placenta are a family of closely related glycoproteins. Each hormone is a heterodimer, consisting of an alpha- and a beta-subunit. Within an animal species, the alpha-subunits of all four glyco-protein hormones have an identical amino acid sequence, whereas each beta-subunit is distinct and confers hormone-specific features to the heterodimer. LH and FSH are synthesized within the same cell, the gonadotroph of the anterior pituitary, but are predominantly stored in separate secretory granules. We have characterized the asparagine-linked oligosaccharides on bovine, ovine and human LH, FSH and TSH. The various pituitary hormones were found to contain unique sulfated oligosaccharides with the terminal sequence SO4-4GalNAc beta 1----4GlcNAc beta 1----2Man alpha, sialylated oligosaccharides with the terminal sequence SA alpha Gal beta GlcNAc beta Man alpha, or both sulfated and sialylated structures. Despite synthesis of LH and FSH in the same pituitary cell, sulfated oligosaccharides predominate on LH while sialylated oligosaccharides predominate on FSH for all three animal species. We have examined the reactions leading to synthesis of the sulfated oligosaccharides to determine which steps are hormone specific. The sulfotransferase is oligosaccharide specific, requiring only the sequence GalNAc beta 1----4GlcNAc beta 1----2Man alpha. In contrast, the GalNAc-transferase appears to be protein specific, accounting for the preferential addition of GalNAc to LH, TSH, and free (uncombined) alpha-subunits compared with FSH and other pituitary glycoproteins. The predominance of sulfated oligosaccharide structures on LH may account for sorting of LH and FSH into separate secretory granules. Differences in sulfation and sialylation of LH, FSH and TSH may also play a role in the regulation of hormone bioactivity.  相似文献   

17.
Because of confounding effects of subject-specific and hormone-specific metabolic clearance, the nature of anterior pituitary secretory events in vivo is difficult to ascertain. We review an approach to this problem, in which deconvolu-tion analysis is used to dissect the underlying secretory behavior of an endocrine gland quantitatively from available serial plasma hormone concentration measurements assuming one- or two-compartment elimination kinetics. This analytical tool allows one to ask the following physiological questions: (a) does the anterior pituitary gland secrete exclusively in randomly dispersed bursts, and/or does a tonic (constitutive) mode of interburst hormone secretion exist? and (b) what secretory mechanisms generate the circadian or nyctohemeral rhythms in blood concentrations of pituitary hormones? Waveform-independent deconvolution analysis of 24-h serum hormone concentration profiles of immunoreactive growth hormone (GH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin, thyroid-stimulating hormone (TSH), adrenocorticotropic hormone (ACTH), and β-endorphin in normal men sampled every 10 min showed that (a) anterior pituitary gland secretion in vivo occurs in an exclusively burstlike mode for all hormones except TSH and prolactin (for the latter two, a mixed burst and basal mode pertains); (b) significant nyctohemeral regulation of secretory burst frequency alone is not demonstrable for any hormone; (c) prominent 24-h variations in secretory-burst amplitude alone are delineated for ACTH and LH; (d) TSH, GH, and β-endorphin are both frequency and amplitude controlled; (e) prolactin manifests 24-h rhythms in both secretory-burst amplitude and nadir secretory rates; (f) no significant diurnal variations occur in FSH secretory parameters; and (g) a fixed hormone half-life yields good fits of the 24-h serum hormone concentration series, which indicates that there is no need to introduce diurnal variations in hormone half-lives. In summary, the normal human anterior pituitary gland appears to release its various (glyco)protein hormones via intermittent secretory episodes that are apparently unassociated with significant basal hormone secretion, except in the case of TSH and prolactin. Hormone-specific amplitude and/or frequency control of secretory burst activity over 24 h provides the mechanistic basis for the classically recognized nyctohemeral rhythms in plasma concentrations of adenohypophyseal hormones in the human.  相似文献   

18.
Because of confounding effects of subject-specific and hormone-specific metabolic clearance, the nature of anterior pituitary secretory events in vivo is difficult to ascertain. We review an approach to this problem, in which deconvolu-tion analysis is used to dissect the underlying secretory behavior of an endocrine gland quantitatively from available serial plasma hormone concentration measurements assuming one- or two-compartment elimination kinetics. This analytical tool allows one to ask the following physiological questions: (a) does the anterior pituitary gland secrete exclusively in randomly dispersed bursts, and/or does a tonic (constitutive) mode of interburst hormone secretion exist? and (b) what secretory mechanisms generate the circadian or nyctohemeral rhythms in blood concentrations of pituitary hormones? Waveform-independent deconvolution analysis of 24-h serum hormone concentration profiles of immunoreactive growth hormone (GH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin, thyroid-stimulating hormone (TSH), adrenocorticotropic hormone (ACTH), and β-endorphin in normal men sampled every 10 min showed that (a) anterior pituitary gland secretion in vivo occurs in an exclusively burstlike mode for all hormones except TSH and prolactin (for the latter two, a mixed burst and basal mode pertains); (b) significant nyctohemeral regulation of secretory burst frequency alone is not demonstrable for any hormone; (c) prominent 24-h variations in secretory-burst amplitude alone are delineated for ACTH and LH; (d) TSH, GH, and β-endorphin are both frequency and amplitude controlled; (e) prolactin manifests 24-h rhythms in both secretory-burst amplitude and nadir secretory rates; (f) no significant diurnal variations occur in FSH secretory parameters; and (g) a fixed hormone half-life yields good fits of the 24-h serum hormone concentration series, which indicates that there is no need to introduce diurnal variations in hormone half-lives. In summary, the normal human anterior pituitary gland appears to release its various (glyco)protein hormones via intermittent secretory episodes that are apparently unassociated with significant basal hormone secretion, except in the case of TSH and prolactin. Hormone-specific amplitude and/or frequency control of secretory burst activity over 24 h provides the mechanistic basis for the classically recognized nyctohemeral rhythms in plasma concentrations of adenohypophyseal hormones in the human.  相似文献   

19.
The circadian rhythms in plasma ACTH, TSH, LH and PRL were explored in sighted or blind, spayed and estrogen-implanted rats. A marked endogenous circadian rhythmicity was shown to persist in the blind animals for the 4 endocrine rhythms. The endogenous rhythms also kept very close reciprocal phase relationship as in the synchronized state, and they were peaking almost simultaneously, after 60 d. of free-running. Finally the endogenous hormonal rhythm maintained their usual phase relationships with the endogenous activity rhythm, so that the circadian phase of increased hormonal secretion coincided with the circadian resting phase of the sleep/wake rhythm. These results are discussed in the light of the alternate theory of one vs multiple but phase-locked circadian pacemakers driving endocrine and behavioral circadian rhythms.  相似文献   

20.
Circadian rhythms in the green sunfish retina   总被引:4,自引:0,他引:4       下载免费PDF全文
We investigated the occurrence of circadian rhythms in retinomotor movements and retinal sensitivity in the green sunfish, Lepomis cyanellus. When green sunfish were kept in constant darkness, cone photoreceptors exhibited circadian retinomotor movements; rod photoreceptors and retinal pigment epithelium (RPE) pigment granules did not. Cones elongated during subjective night and contracted during subjective day. These results corroborate those of Burnside and Ackland (1984. Investigative Ophthalmology and Visual Science. 25:539-545). Electroretinograms (ERGs) recorded in constant darkness in response to dim flashes (lambda = 640 nm) exhibited a greater amplitude during subjective night than during subjective day. The nighttime increase in the ERG amplitude corresponded to a 3-10-fold increase in retinal sensitivity. The rhythmic changes in the ERG amplitude continued in constant darkness with a period of approximately 24 h, which indicates that the rhythm is generated by a circadian oscillator. The spectral sensitivity of the ERG recorded in constant darkness suggests that cones contribute to retinal responses during both day and night. Thus, the elongation of cone myoids during the night does not abolish the response of the cones. To examine the role of retinal efferents in generating retinal circadian rhythms, we cut the optic nerve. This procedure did not abolish the rhythms of retinomotor movement or of the ERG amplitude, but it did reduce the magnitude of the nighttime phases of both rhythms. Our results suggest that more than one endogenous oscillator regulates the retinal circadian rhythms in green sunfish. Circadian signals controlling the rhythms may be either generated within the eye or transferred to the eye via a humoral pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号