首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sui Z  Niu L  Yue G  Yang A  Zhang J 《Gene》2008,426(1-2):47-56
Previous studies have indicated the phosphoinositide and phospholipid signaling pathways play a key role in plant growth, development and responses to environmental stresses. However, little is known about the phosphoinositide and phospholipid signaling pathways in maize (Zea mays L.). To better understand the function of genes involved in the phosphoinositide and phospholipid signaling pathways in maize, the cDNA sequences of ZmPIS2, ZmPLC2, ZmDGK1, ZmDGK2 and ZmDGK3 were obtained by RACE (rapid amplification of cDNA ends) or in silico cloning combined with PCR. RT-PCR analysis of cDNA from five tissues (roots, stems, leaves, tassels, and ears) indicated that the expression patterns of the five cDNAs we isolated as well as ZmPIS, ZmPLC, ZmPLD varied in different tissues. To determine the effects of different environmental conditions such as cold, drought and various phytohormones (abscisic acid, indole-3-acetic acid and gibberellic acid) on gene expression, we analyzed expression by Real-Time (RT-PCR), and found that the different isoforms of these gene families involved in the phosphoinositide and phospholipid signaling pathways have specific expression patterns. Our results suggested that these genes may be involved in the responses to environmental stresses, but have different functions. The isolation and analysis of expression patterns of genes involved in the phosphoinositide and phospholipid signaling pathways provides a good basis for further research of the phosphoinositide and phospholipid signaling pathways in maize and is a novel supplement to our comprehension of these pathways in plants.  相似文献   

2.
To understand molecular adaptation for locomotion at different environmental temperatures, we have studied the myosin heavy chain genes as these encode the molecular motors involved. For this purpose, cDNA libraries from white (fast) and red (slow) myotomal muscle of an Antarctic and a tropical fish were constructed and from these different myosin heavy chain cDNAs were isolated. Northern and in situ hybridisation confirmed in which type of muscle these isoform genes are expressed. The cDNAs were sequenced and the structure of the ATPase sites compared. There was a marked similarity between the tropical fast myosin and the Antarctic slow myosin in the loop 1 region, which has similar amino acid side chains, charge distribution and conformation. These findings help to explain why the myofibrils isolated from white muscle of tropical fish show a lower specific ATPase activity than the white muscle of Antarctic fish but a similar activity to the Antarctic red (slow) muscle. It also provides insight into the way molecular motors in Antarctic fish have evolved to produce more power and thus ensure effective swimming at near zero temperatures by the substitution or addition of a few residues in strategic regions, which include the ATPase site.  相似文献   

3.
王家啟  张曦  李莉 《植物研究》2018,38(6):931-938
HD-Zip转录因子蛋白家族是植物特有的一类转录因子蛋白,在植物生长发育和抵抗逆境胁迫等过程中发挥着重要作用。利用白桦全基因组数据库,获得白桦35条HD-Zip蛋白序列,参考拟南芥中该家族的分类方法,将这些成员分成HD-ZipⅠ-Ⅳ四个亚家族,并对这些成员的蛋白保守结构域、氨基酸组成、染色体分布、和理化性质等进行了预测和分析。从高盐处理的白桦幼苗根组织的转录组数据,鉴定了7个差异表达的基因。本研究为进一步研究白桦HD-Zip家族基因调控白桦耐盐性的功能提供了理论支持。  相似文献   

4.
5.
6.
Acclimation to varying CO2 concentrations and light intensities is associated with the monitoring of environmental changes by controlling genetic and physiological responses through CO2 and light signal transduction. While CO2 and light signals are indispensable for photosynthesis, and these environmental factors have been proposed as strongly associated with each other, studies linking these components are largely limited to work on higher plants. In this study, we examined the physiological characteristics of a green alga, Chlamydomonas reinhardtii, exposed to various light intensities or CO2 concentrations. Acclimation to CO2-limiting conditions by Chlamydomonas requires the induction of a carbon-concentrating mechanism (CCM) to allow the uptake of inorganic carbon (Ci) and increase the affinity for Ci. We revealed that the induction of the CCM is not solely dependent on absolute environmental Ci concentrations but is also affected by light intensity. Using a cDNA array containing 10,368 expressed sequence tags, we also obtained global expression profiles related to the physiological responses. The induction of several CCM-associated genes was strongly affected by high light as well as CO2 concentrations. We identified novel candidates for Ci transporters and CO2-responsive regulatory factors whose expression levels were significantly increased during the induction of the CCM.  相似文献   

7.
The phytohormone abscisic acid (ABA) has been proposed as a common mediator controlling adaptive plant responses to a variety of environmental stresses, including water deficit, salinity, wounding, and low temperature. We have recently isolated three cDNAs, pUM90-1, pUM90-2, and pUM91-4, from a cDNA library of ABA-induced mRNAs of alfalfa. These cDNA clones exhibit a very high degree of sequence homology with one another and sequence similarities with certain regions of several stress- and ABA-inducible genes. The polypeptides encoded by these cDNAs are very rich in glycine (35-40%), histidine (7-15%), asparagine (8-14%), and tyrosine (5-10%) and have no tryptophan and proline. All of the encoded polypeptides contain characteristic tandem repeats comprising glycine residues intercepted with histidine and/or tyrosine. The RNAs corresponding to a representative cDNA, pUM90-1, were induced after treatment of seedlings with low temperature, drought, salt, and wounding stress, but not by heat; the induction was maximal under low temperature treatment. ABA and ABA analog rapidly induced the expression of these genes, whereas gibberellic acid treatment exhibited no induction whatsoever. These genes appear to be specifically induced in the shoot tissues. Analysis of ABA induction of genes corresponding to pUM90-1 in alfalfa seedlings of different age groups demonstrated that these genes were inducible in seedlings/plants of all age groups examined. Taken together these results suggest that these cDNA clones encode a group of proteins that are inducible by ABA and multiple environmental stresses and correspond to a new family of genes of plants, designated as ABA- and environmental stress-inducible genes.  相似文献   

8.
Although GenBank has now covered over 1,400,000 expressed sequence tags (ESTs) from soybean, most ESTs available to the public have been derived from tissues or environmental conditions rather than developing seeds. It is absolutely necessary for annotating the molecular mechanisms of soybean seed development to analyze completely the gene expression profiles of its immature seed at various stages. Here we have constructed a full-length-enriched cDNA library comprised of a total of 45,408 cDNA clones which cover various stages of soybean seed development. Furthermore, we have sequenced from 5′ ends of these clones, 36,656 ESTs were obtained in the present study. These EST sequences could be categorized into 27,982 unigenes, including 22,867 contigs and 5,115 singletons, among which 27,931 could be mapped onto soybean 20 chromosome sequences. Comparative genomic analysis with other plants has revealed that these unigenes include lots of candidate genes specific to dicot, legume and soybean. Approximately 1,789 of these unigenes currently show no homology to known soybean sequences, suggesting that many represent mRNAs specifically expressed in seeds. Novel abundant genes involved in the oil synthesis have been found in this study, may serve as a valuable resource for soybean seed improvement.  相似文献   

9.
Lin WH  Ye R  Ma H  Xu ZH  Xue HW 《Cell research》2004,14(1):34-45
The phosphatidylinositol (PI) metabolic pathway is considered critical in plant responses to many environmental factors, and previous studies have indicated the involvement of multiple PI-related gene families during cellular responses.Through a detailed analysis of the Arabidopsis thaliana genome, 82 polypeptides were identified as being involved in PI signaling. These could be grouped into different families including PI synthases (PIS), PI-phosphate kinases (PIPK),phospholipases (PL), inositol polyphosphate phosphatases (IPPase), inositol polyphosphate kinases (IPK), PI transfer proteins and putative inositol polyphosphate receptors. The presence of more than 10 isoforms of PIPK, PLC, PLD and IPPase suggested that these genes might be differentially expressed during plant cellular responses or growth and development. Accordingly, DNA chip technology was employed to study the expression patterns of various isoforms.In total, 79 mRNA clones were amplified and used for DNA chip generation. Expression profile analysis was performed using samples that represented multiple tissues or cellular responses. Tested samples included normal leaf, stem and flower tissues, and leaves from plants treated with various hormones (auxin, cytokinin, gibberellin, abscisic acid and brassinosteroid) or environmental factors (temperature, calcium, sodium, drought, salicylic acid and jasmonic acid).Results showed that many PI pathway-related genes were differentially expressed under these experimental conditions.In particular, the different isoforms of each family were specifically expressed in many cases, suggesting their involvement in tissue specificity and cellular responses to environmental conditions. This work provides a starting point for functional studies of the relevant PI-related proteins and may help shed light onto the role of PI pathways in development and cellular responses.  相似文献   

10.
Regulation of the Arabidopsis transcriptome by oxidative stress   总被引:34,自引:0,他引:34  
  相似文献   

11.
Plant annexins are Ca2+- and phospholipid-binding proteins forming an evolutionary conserved multi-gene family. They are implicated in the regulation of plant growth, development, and stress responses. With the availability of the maize genome sequence information, we identified 12 members of the maize annexin genes. Analysis of protein sequence and gene structure of maize annexins led to their classification into five different orthologous groups. Expression analysis by RT-PCR revealed that these genes are responsive to heavy metals (Ni, Zn, and Cd). The maize annexin genes were also found to be regulated by Ustilago maydis and jasmonic acid. Additionally, the promoter of the maize annexin gene was analyzed for the presence of different stress-responsive cis-elements, such as ABRE, W-box, GCC-box, and G-box. RT-PCR and microarray data show that all 12 maize annexin genes present differential, organ-specific expression patterns in the maize developmental steps. These results indicate that maize annexin genes may play important roles in the adaptation of plants to various environmental stresses.  相似文献   

12.
13.
14.
15.
The ability to understand and predict the effects of environmental stress on biodiversity is becoming increasingly important in our changing environment. Antarctic marine species are some of the most stenothermal on the planet and many inhabit the waters off the Antarctic Peninsula which is one of the areas where there is rapid regional climate change. Therefore these animals are highly vulnerable to changing environmental temperatures and clearly we need to understand the complexities of their response, not just at the individual species level, but also the implications for the ecosystem as a whole. Heat shock proteins have a long history of use in studies of organism stress responses and have frequently been proposed as potential universal molecular biomarkers, especially for non-model species. In this mini-review, the heat shock response and heat shock proteins (specifically the HSP70 family) are examined in Antarctic marine species alongside their physiological capabilities and limits to answer a series of questions: do these animals have a heat shock response which includes the expression of HSP70 genes? What is the relationship between their heat shock response and physiological capabilities? Can HSP70 genes be used as molecular biomarkers for these species?  相似文献   

16.
17.
Thaumatin‐like proteins (TLPs) were shown to be induced in rice plants (cv. IR58) that were infected with the sheath blight fungus, Rhizoctonia solani . Western blot analysis revealed the presence of two TLPs with sizes of 25 and 24 kDa which are different from a previously reported TLP with a size of 15.6 kDa from rice plants infiltrated with the non‐pathogenic bacterium, Pseudomonas syringae pv. syringae . By probing a cDNA expression library prepared from RNA isolated from R. solani ‐infected rice plants with a TLP antibody, several putative TLP cDNA clones were isolated and sequenced. The cDNA clones appeared to be derived from two different genes which shared only 77% sequence identity with each other and a lower percentage of sequence identity with the previously reported TLP cDNA clone. Southern blot analysis with the two TLP cDNAs revealed different rice genomic DNA fragments. Northern blot analysis also confirmed that a 1.1‐kb RNA detectable by the TLP cDNA inserts was induced by fungal infection. Thus rice TLPs are encoded by a family of at least three genes which are differentially expressed in responses to bacterial or fungal pathogens.  相似文献   

18.
19.
20.
The responses to ionizing radiation and other genotoxic environmental stresses are complex and are regulated by a number of overlapping molecular pathways. One such stress signaling pathway involves p53, which regulates the expression of over 100 genes already identified. It is also becoming increasingly apparent that the pattern of stress gene expression has some cell type specificity. It may be possible to exploit these differences in stress gene responsiveness as molecular markers through the use of a combined informatics and functional genomics approach. The techniques of microarray analysis potentially offer the opportunity to monitor changes in gene expression across the entire set of expressed genes in a cell or organism. As an initial step in the development of a functional genomics approach to stress gene analysis, we have recently demonstrated the utility of cDNA microarray hybridization to measure radiation-stress gene responses and identified a number of previously unknown radiation-regulated genes. The responses of some of these genes to DNA-damaging agents vary widely in cell lines from different tissues of origin and different genetic backgrounds. While this again highlights the importance of a cellular context to genotoxic stress responses, it also raises the prospect of expression-profiling of cell lines, tissues, and tumors. Such profiles may have a predictive value if they can define regions of ‘expression space’ that correlate with important endpoints, such as response to cancer therapy regimens, or identification of exposures to environmental toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号