首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. The study was conducted in deciduous forests of two Swedish regions, Öland and Uppland. It had two objectives: to (1) test the species pool hypothesis by examining if differences in small‐scale species richness are related to differences in large‐scale species richness and the size of the regional species pool, and (2) to examine the relationship between species richness and productivity and its scale‐dependence. The first data set comprised 36 sites of moderate to high productivity. In each site, we recorded the presence of vascular plant species in nested plots ranging from 0.001 to 1000 m2 and measured several environmental variables. Soil pH and Ellenberg site indicator scores for nitrogen were used as estimators of productivity. The second data set included 24 transects (each with 20 1‐m2 plots) on Öland in sites with low to high productivity. Species number, soil pH and relative light intensity were determined in each plot. The forest sites on Öland were more species‐rich than the Uppland sites on all spatial scales, although environmental conditions were similar. Small‐scale and large‐scale species richness were positively correlated. The results present evidence in favour of the species pool hypothesis. In the nested‐plots data set, species number was negatively correlated with pH and nitrogen indicator scores, whereas a unimodal relationship between species number and pH was found for the transect data set. These results, as well as previously published data, support the hump‐shaped relationship between species richness and productivity in Swedish deciduous forests. Two explanations for the higher species richness of the sites with moderate productivity are given: first, these sites have a higher environmental heterogeneity and second, they have a larger ‘habitat‐specific’ species pool.  相似文献   

2.
ABSTRACT

Background: Discrepancies in the shape of the productivity–diversity relationship may arise from differences in spatial scale. We hypothesised that there is a grain size effect on the productivity–diversity relationship.

Aims: To determine the effect of three sampling grain sizes on the productivity–diversity relationship.

Methods: We applied generalised linear mixed effect models on community data from 735 vegetation plots in the Taleghan rangelands, Iran, sampled at three grain sizes (0.25, 1 and 2 m2) to ascertain plant productivity-diversity patterns, while accounting for the effects of site, plant community type, disturbance, and life form.

Results: Overall, relationships between biomass and plant species richness were unimodal at grain sizes of 0.25 and 1 m2, and asymptotical at 2 m2. The spurious occurrence of a single large shrub may overwhelm a small-sized sampling unit, resulting in a high estimate of the sample’s biomass relative to species richness. However, the relationship between biomass and species richness at larger grain sizes is more likely to reach an asymptote.

Conclusions: Shrubs are partly responsible for driving the relationship between plant biomass and species richness. Given that the frequency of shrubs is highly variable between small plots but not so in large plots, their presence may result in unimodal productivity–diversity relationships at small but not at large grain sizes.  相似文献   

3.
The relationships among productivity, species richness and consumer biomass are of fundamental importance for understanding determinants of biodiversity. These relationships may depend on grain size. We examined the relationships between productivity (above-ground phytomass) and plant species richness and between productivity and species richness and biomass of gastropods and grasshoppers using sampling units of different sizes (0.5, 2.75 and 23 m2) in nutrient-poor, calcareous grasslands in north-western Switzerland in two successive years. Species richness of forbs had a unimodal relationship with productivity in sampling units of 0.5 m2 and was negatively correlated with productivity at the other two plot sizes in one year. In the other year, forb species richness tended to decrease with productivity in sampling units of 23 m2. No similar relationship was found for grasses. Gastropod biomass had a unimodal relationship with productivity at 0.5 m2 in the first year. Grasshopper species richness was correlated with forb species richness at plot sizes of 2.75 and 23 m2. This study demonstrates that patterns detected between productivity and diversity and between productivity and biomass of consumers depend on the grain size used in the investigation and vary among years.Die Zusammenhänge zwischen Produktivität, Artenreichtum und Biomasse von Konsumenten sind wichtig, um zu verstehen, was Biodiversität beeinflußt. Diese Zusammenhänge können von der Größe der Untersuchungsfläche abhängig sein. Wir untersuchten während zwei aufeinanderfolgenden Jahren die Zusammenhänge zwischen Produktivität (oberirdische Pflanzenbiomasse) und Artenreichtum von Gefäßpflanzen, sowie zwischen Produktivität und Artenreichtum und Biomasse von Schnecken und Heuschrecken bezüglich dreier räumlicher Skalen (0,5, 2,75 und 23 m2) in Kalkmagerrasen in der Nordwestschweiz. Der Zusammenhang zwischen dem Artenreichtum von Kräutern und der Produktivität war unimodal in Flächeneinheiten von 0,5 m2 und negativ in Flächeneinheiten von 2,75 und 23 m2 im ersten Jahr und war tendenziell negativ in Flächeneinheiten von 23 m2 im zweiten Jahr, während kein solcher Zusammenhang bei Gräsern gefunden wurde. Der Zusammenhang zwischen Produktivität und Biomasse von Schnecken war unimodal in Flächeneinheiten von 0,5 m2 im ersten Jahr. Außerdem bestand ein Zusammenhang zwischen dem Artenreichtum von Kräutern und Heuschrecken in Flächeneinheiten von 2,75 und 23 m2. Diese Arbeit zeigt, daß Zusammenhänge zwischen Produktivität und Diversität sowie zwischen Produktivität und Biomasse von Konsumenten von der Größe der Untersuchungsfläche abhängen und zwischen Jahren variieren.  相似文献   

4.
Questions: What is the observed relationship between plant species diversity and spatial environmental heterogeneity? Does the relationship scale predictably with sample plot size? What are the relative contributions to diversity patterns of variables linked to productivity or available energy compared to those corresponding to spatial heterogeneity? Methods: Observational and experimental studies that quantified relationships between plant species richness and within‐sample spatial environmental heterogeneity were reviewed. Effect size in experimental studies was quantified as the standardized mean difference between control (homogeneous) and heterogeneous treatments. For observational studies, effect sizes in individual studies were examined graphically across a gradient of plot size (focal scale). Relative contributions of variables representing spatial heterogeneity were compared to those representing available energy using a response ratio. Results: Forty‐one observational and 11 experimental studies quantified plant species diversity and spatial environmental heterogeneity. Observational studies reported positive species diversity‐spatial heterogeneity correlations at all points across a plot size gradient from ~1.0 × 10?1 to ~1.0 × 1011 m2, although many studies reported spatial heterogeneity variables with no significant relationships to species diversity. The cross‐study effect size in experimental studies was not significantly different from zero. Available energy variables explained consistently more of the variance in species richness than spatial heterogeneity variables, especially at the smallest and largest plot sizes. Main conclusions: Species diversity was not related to spatial heterogeneity in a way predictable by plot size. Positive heterogeneity‐diversity relationships were common, confirming the importance of niche differentiation in species diversity patterns, but future studies examining a range of spatial scales in the same system are required to determine the role of dispersal and available energy in these patterns.  相似文献   

5.
Jaan Liira  Kristjan Zobel 《Oikos》2000,91(1):109-114
So far, in all studies on the much-discussed hump-backed relationship between plant community productivity and species richness, productivity has been assessed through plant shoot biomass, i.e. it has been ignored that frequently most of the biomass is produced below ground. We revisited the 27 grassland and forest field-layer communities, studied earlier by Zobel and Liira, to sample root biomass, plant total biomass and root/shoot allocation, and learn how the incorporation of below-ground biomass data would affect the shape of the hump-backed relationship. In order to avoid scaling artefacts we estimated richness as the average count of species per 500 plant ramets (absolute richness). We also included relative richness measures. Relative richness was defined as richness per 500 ramets/size of the actual species pool (the set of species present in the community), relative pool size was defined as size of the actual species pool/size of the regional species pool (the set of species available in the region and capable of growing in the given community).
The biomass-absolute richness relationship was humped, irrespective of the biomass measure used, the hump being most obvious when plant total biomass was used as the independent variable. Evidently, the unimodal richness–productivity curve is not a sampling artefact, as suspected by Oksanen. However, relative richness was not related to community biomass (above-ground, below-ground or total). The hump-backed curve is shaped by the sizes of actual species pools in communities, implying that processes which are responsible for small-scale diversity pattern mainly operate on the community level.
Neither absolute nor relative richness were significantly related to root/shoot allocation. The presumably stronger (asymmetric) shoot competition at greater allocation to shoots appears not to suppress small-scale richness. However, there is a significant relationship between relative pool size and root/shoot allocation. Relatively more species from regional species pools are able to enter and persist in communities with more biomass allocated into roots.  相似文献   

6.
Recent studies emphasise the potential importance of scale and species pool on the humped-back or unimodal relationship between species richness and productivity. We use a classic phytosociological data-set from Rondane, central south Norway, to evaluate the relative importance of these factors in an alpine area. The effect of species pool is assessed using plot scores from a Correspondence Analysis (CA) of the data. Generalised Additive Models (GAM) are used to relate vascular plant species richness to cover of vascular plants, CA plot scores, and plot area in different combinations. Species richness of vascular plants is unimodally related to total vascular plant cover. Plot scores of the first three CA axes (representing the effect of species pool) have a complex relationship with species richness, but explain a large fraction of the total deviance in richness. A humped relationship between richness and cover remains after accounting for CA plot scores in the model, i.e. the relationship is independent of species pool. The results suggest that the relationship between richness and cover changes from one vegetation type to another, as evaluated statistically through the importance of the interaction between cover and CA scores in explaining variation in richness. Plot area also influences the relationship. A unimodal relationship is only evident when small plot sizes are used, whereas a monotonically increasing relationship is found at large plot sizes. Plot area has the strongest effect on the unimodal relationship between richness and cover, whereas vegetation type has only a minor effect on this relationship. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Abstract. Relationships between species richness and biomass are common, but the causes remain controversial. It has been suggested that a hump‐shaped relationship may be an artifact of few individuals in both low and high biomass samples. We used rarefaction to standardize species richness to a constant number of individuals in 99 quadrat samples from relict calcareous prairies. Animal ecologists have long used rarefaction to standardize species richness to a constant number of individuals. The expected species richness of each quadrat was determined for 10, 25, 50, 100 and 150 individual plant ramets using the EcoSim program which resampled the data in each quadrat 1000 times. Because we had few samples with biomass over 300 g/m2, our data showed a positive relationship between species richness and biomass. The relationship was largely unaffected by rarefaction. Even at the most extreme case of rarefying to 10 individual ramets, the relationship was clear. Monte Carlo covariance tests did not change the shape of the richness‐biomass relationship and significant correlations between observed species richness and rarified species richness suggest that the number of individuals had negligible effects on richness patterns. Because the data had no strong declining phase, these results may not apply to the declining phase of a humped relationship. The results are discussed with reference to other methods of standardizing species richness. Most importantly, we suggest that expressing species richness per number of individuals is inappropriate and may lead to incorrect conclusions.  相似文献   

8.
Diversity‐manipulation experiments suggest a positive effect of biodiversity on ecosystem properties (EPs), but variable relationships between species richness and EPs have been reported in natural communities. An explanation for this discrepancy is that observed richness–EPs relationships in natural communities change with environment and species functional identities. But how the relationships change along broad‐scale climatic gradients has rarely been examined. In this paper, we sampled 848 plots of 20 × 30 m2 from boreal to tropical forests across China. We examined plot biomass with respect to environmental factors, tree species richness and functional group identity (FGI, i.e. evergreen vs deciduous, and coniferous vs broadleaf). Variation partitioning was used to evaluate the relative effects of the three classes of factors. We found that, most of the ‘effects’ (percentage of variation explained) of richness and FGI on forest biomass were shared with environmental factors, but species richness and FGI still revealed significant effects in addition to environment for plots across China. Richness and FGI explained biomass mainly through their shared effects instead of independent effects, suggesting that the positive biodiversity effect is closely associated with a sampling effect. The relative effects of richness, FGI and environment varied latitudinally: the independent effects of environment and richness decreased from boreal to subtropical forests, whereas the total effect of FGI increased. We also found that the slope of richness–biomass relationship decreased monotonically from boreal to subtropical forests, possibly because of decreasing complementarity and increasing competition with increasing productivity. Our results suggest that while species richness does have significant effects on forest biomass it is less important than environmental gradients and other biotic factors in shaping large‐scale biomass patterns. We suggest that understanding how and why the diversity–EPs relationships change along climatic gradient would be helpful for a better understanding of real biodiversity effects in natural communities.  相似文献   

9.
Aim We analyse regional patterns of woody plant species richness collected from field data in relation to modelled gross photosynthesis, Pg, compare the performance of Pg in relation to other productivity surrogates, and examine the effect of increasing scale on the productivity–richness relationship. Location The forested areas in the north‐western states of Oregon, Washington, Idaho, and Montana, USA. Methods Data on shrub and tree species richness were assembled from federal vegetation surveys and compared with modelled growing season gross photosynthesis, Pg (the sum of above‐ and below‐ground production plus autotrophic respiration) and two measures of spatial heterogeneity. We analysed the productivity–richness relationship at different scales by changing the focus size through spatial aggregation of field plots using 100 and 1000 km2 windows covering the study area. Regression residuals were plotted spatially. Using the best available tree data set (Continuous Vegetation Survey: CVS), we compared different productivity indices, such as actual evapotranspiration and average temperature, in their ability to predict patterns of tree species richness. Results The highest species richness (species/unit area) occurred at intermediate levels of productivity. After accounting for variable sampling intensity, the richness–productivity relationship improved as more field plots were aggregated. At coarser levels of aggregation, modelled productivity accounted for 57–71% of the variation in richness patterns for shrubs and trees (CVS data set). Measures of spatial heterogeneity accounted for more variation in richness patterns aggregated by 100 km2 windows than aggregation by 1000 km2 windows. Pg was a better predictor of tree richness in Oregon and Washington (CVS data set) than any surrogate productivity index. Main conclusions Pg was observed to be a strong unimodal predictor of both tree (CVS) and shrub (FIA) richness when field data were aggregated. For the tree data set examined, seasonally integrated estimates of photosynthesis (Pg) predicted tree richness patterns better than climatic indices did.  相似文献   

10.
Question: What relationship exists between productivity, plant species richness and livestock diet? Are the results dependent on scale? Location: A sheep‐grazed Koelerio‐Corynephoretea sandy habitat of the northern upper Rhine (Germany) as a low productivity model system. Methods: The investigation was carried out for three years at a fine scale (2 m2) and for two years at a broad scale (79 m2). Productivity was measured by means of weighed above‐ground phytomass for fine scale and colour‐infrared (CIR) aerial photographs of the same system for fine and broad scales. For both scales, total numbers of vascular plant species and numbers of endangered vascular plant species were extracted from current vegetation relevés. Additionally, we obtained data on livestock diet (grazed phytomass, crude protein content). Results: Statistical analyses show an influence of the year on all variables; relationships between variables are not significant in every year. Species richness and number of endangered species are negatively related to productivity at fine scale while crude protein content and grazed phytomass are positively related to productivity. At the broad scale the diversity‐productivity relationship shows a ‘hump’ with highest species numbers in middle pioneer stages; numbers of endangered species are highest in all pioneer stages. Conclusions: We found a strong impact of scale and year on the diversity‐productivity relationship. It is inappropriate to analyse only small plots (2 m2), and it is necessary to study different years. This vegetation complex is dependent on grazing impact; thus there is an inversely proportional relationship between nature conservation value (high diversity) and livestock nutrition.  相似文献   

11.
Abstract Declines in plant species richness with increasing altitude are common, but the form of the relationship can vary, with both monotonic decreasing relationships and humped relationship recorded. However, these different richness to altitude relationships may be due to methods that used different plot sizes/areas and survey efforts. To explore native and exotic plant richness along an altitudinal gradient in the Snowy Mountains of Australia, we consistently surveyed plots that were 120 m2 in area at 39 sites ranging from 540 to 2020 m. To relate exotic plant richness to disturbance, we surveyed plots at 16 sites along main roads and 23 sites along minor roads and also compared these 39 roadside plots to 120‐m2 plots located in undisturbed vegetation adjacent to the roadside (native plant richness was only surveyed in 25 of these 39 adjacent plots). We found a negative linear relationship between total, exotic and native species richness and altitude for plots on the side of main roads (16 sites) and minor roads (23 sites). For adjacent plots negative linear relationships were significant for all measures of species richness except for native species adjacent to major roads. As the pattern occurred for exotics it is less likely to be due to historical constraints on the species pools. The pattern could be influenced by difference in levels of disturbance along the gradient, although any such gradient in disturbance would have to apply to roadside and adjacent plots on major and minor roads. Therefore, it may be due to other factors such as changes in climate along the altitudinal gradient, although additional sampling including direct measures of climatic conditions, soil and disturbance factors would be needed to determine if this was the case.  相似文献   

12.
We analysed the relationship between plant species richness and productivity on first-year-old fields at two similar sites in central Europe. At both sites, a wide range of productivity levels was available resulting from different long-term fertilisation. In order to identify underlying mechanisms of the species richness–productivity relationship we included the seasonal dynamics and the number of individuals of each species in our analysis. We sampled 10 and 21 plots, respectively, at the two sites in May, June and July by harvesting all aboveground parts of vascular plants in 0.25 m2 subplots. Species richness, number of individuals of each species and community biomass as a surrogate of productivity were recorded in each sample.At one site, the relationship between species richness and biomass was significantly positive in the May and June harvest. This relationship disappeared in the July harvest due to a reduction in species richness at high productivity levels. The relations between species richness and number of individuals and between number of individuals and biomass paralleled the species richness–productivity relation but the individual number–biomass relationship remained positive until the last harvest. Between-species differences in individual number–community biomass relationships and their seasonal dynamics revealed “interspecific competitive exclusion” even though the species richness–biomass relationships were not negative or hump-shaped. At the second site, species richness was not related to productivity or to number of individuals. Our study demonstrated the importance of temporal dynamics and regional processes in understanding species richness–productivity patterns.  相似文献   

13.
Question: Can species richness be a predictor for above‐ground biomass in natural grasslands at a regional scale? Location: A total of 647 sites across temperate natural grasslands of northern China. Methods: Structural equation modelling (SEM) was used to examine the effect of species richness on above‐ground biomass. Asymptotically distribution‐free estimation was selected for parameter estimation. The SEM process was performed at five sample sizes (n=50, 100, 200, 300 and 647). Spatial structure in the original data was examined by calculating Moran's I. Results: SEM run at n=647 revealed a positive effect of species richness on above‐ground biomass after controlling for the influences of bioclimatic factors and grazing. At the four reduced sample size levels, the positive effect held true for most cases in 400 observations (>92%). Conclusions: Contrary to observations in previous studies in natural grasslands, our data showed a positive effect of species richness on above‐ground biomass. This suggests that, as a short‐term effect of diversity on productivity, niche complementarity among coexisting species tends to be an important process in arid and semi‐arid natural grasslands. We hold that biodiversity conservation is among the fundamental approaches required to maintain productivity of grasslands in arid and semi‐arid areas.  相似文献   

14.
We investigated the relationship between species richness and numbers and types of individuals and species present in forests with different physiognomies in the southern Cape Province, South Africa. Data were collected from three different ‘plot’ types: 400 m2, canopy‐scaled (plot length is directly proportional to canopy height) and per 100 individuals closest to a point. Plots were designed to control for the effect of scale on local richness. Canopy species richness was inversely proportional to the abundance of resprouting species. The strength of the relationship between the abundance of resprouters and canopy species richness increased progressively from the 400 m2 plots to the canopy‐scaled plots and finally to the plots of 100 individuals. Resprouter abundance decreased, while canopy species richness increased, with increasing canopy height. Resprouters are able to retain their in situ position in the forests for longer periods of time than do reseeders. This reduces individual and species turnover, thus reducing species richness in resprouter‐dominated forests.  相似文献   

15.
Grasslands host a significant share of Europe's species diversity but are among the most threatened vegetation types of the continent. Resurvey studies can help to understand patterns and drivers of changes in grassland diversity and species composition. However, most resurveys are based on local or regional data, and hardly reach back more than eight decades. Here, we publish and describe the Historic Square Foot Dataset, comprising 580 0.09-m2 and 43 1-m2 vegetation plots carefully sampled between 1884 and 1931, covering a wide range of grassland types across Switzerland. We provide the plots as an open-access data set with coordinates, relocation accuracy and fractional aboveground biomass per vascular plant species. We assigned EUNIS habitat types to most plots. Mean vascular plant species richness in 0.09 m2 was 19.7, with a maximum of 47. This is considerably more than the present-day world record of 43 species for this plot size. Historically, species richness did not vary with elevation, differing from the unimodal relationship found today. The data set provides unique insight into how grasslands in Central Europe looked more than 100 years ago, thus offering manifold options for studies on the development of grassland biodiversity and productivity.  相似文献   

16.
Abstract. In order to investigate how scale (grain size) affects the relationships between species richness and environmental drivers (such as stress and disturbance), we collected 12 nested quadrats (from 0.25 m2 to 1023 m2) from seven remnant oak savannas located in the floodplain of the Chippewa River in western Wisconsin, USA. Large and small‐scale richness were not significantly correlated, suggesting that small‐scale richness is not strongly controlled by sampling effects of the local species pool. Linear and curvilinear regressions between species richness and disturbance, canopy cover, biomass, and soil organic matter were dependent on sampling scale (grain size). Disturbance by fire was strongly related to richness at small scales, while tree canopy cover was strongly related to richness at larger scales. While there was some evidence suggesting the transition from disturbance to canopy effects occurs between 10 and 100 m2, the transition was not particularly abrupt. The results cast doubt on the general importance of local species pools in affecting small‐scale richness as well as our ability to make generalizations that do not explicity include scale.  相似文献   

17.
Abstract. In European phytosociology, variable plot sizes are traditionally used for sampling different vegetation types. This practice may generate problems in current vegetation or habitat survey projects based on large data sets, which include relevés made by many authors at different times. In order to determine the extent of variation in plot sizes used in European phytosociology, we collected a data set of 41 174 relevés with an indication of plot size, published in six major European journals focusing on phytosociology from 1970 to 2000. As an additional data set, we took 27 365 relevés from the Czech National Phytosociological Database. From each data set, we calculated basic statistical figures for plot sizes used to sample vegetation of various phytosociological classes. The results show that in Europe the traditionally used size of vegetation plots is roughly proportional to vegetation height; however, there is a large variation in plot size, both within and among vegetation classes. The effect of variable plot sizes on vegetation analysis and classification is not sufficiently known, but use of standardized plot sizes would be desirable in future projects of vegetation or habitat survey. Based on our analysis, we suggest four plot sizes as possible standards. They are 4 m2 for sampling aquatic vegetation and low‐grown herbaceous vegetation, 16 m2 for most grassland, heathland and other herbaceous or low‐scrub vegetation types, 50 m2 for scrub, and 200 m2 for woodlands. It has been pointed out that in some situations, sampling in either small or large plots may result in assignment of relevés to different phytosociological classes or habitat types. Therefore defining vegetation and habitat types as scale‐dependent concepts is needed.  相似文献   

18.
Many studies at the regional scale have found either negative or hump‐shaped relationships between productivity and diversity, and some theories propose that these occur because soil resource heterogeneity is either lower or less important in more productive environments. However, there have been few explicit tests of these theories in natural ecosystems. We evaluated the relationship between soil resource heterogeneity and plant richness within a well characterized system of 30 islands in northern Sweden across which soil fertility and productivity declines, and species richness increases, as a consequence of ecosystem retrogression. On each island we created a spatially explicit grid consisting of 49 sampling points in a 9.5 m quadrat, which we used to quantify spatial heterogeneity of five soil variables (NH4+‐N, amino N, PO4?‐P, microbial biomass, and decomposition), and plant community composition. Using a hierarchical Bayesian approach, we estimated mean semivariograms of each variable for each island size class to compare three components of spatial heterogeneity: total variability, spatial grain, and patchiness. This analysis showed that variability within islands was usually lowest on small islands, where species richness was highest and productivity lowest; however, NH4+‐N and amino N had greater patchiness and spatial grain on small islands. We did not detect any significant across‐island correlations between whole‐plot plant species richness and either whole‐plot standard deviation or coefficient of variation of any soil variable. Using partial Mantel tests, we found that mean correlation coefficients between within‐plot plant community composition and the soil variables were never significant for any island size class, and did not differ between island size classes. Our findings do not provide any evidence that soil resource heterogeneity controls the productivity–diversity relationship in this system, and suggests other mechanisms are primarily responsible.  相似文献   

19.
The species-area relationship is an important factor in the study of species diversity, conservation biology, and landscape ecology. A deeper understanding of this relationship is necessary, in order to provide recommendations on how to improve the quality of data collection on macrofungal diversity in different land use systems in future studies, a systematic assessment of methodological parameters, in particular optimal plot sizes. The species-area relationship of macrofungi in tropical and temperate climatic zones and four different land use systems were investigated by determining the macrofungal species richness in plot sizes ranging from 100 m2 to 10 000 m2 over two sampling seasons. We found that the effect of plot size on recorded species richness significantly differed between land use systems with the exception of monoculture systems. For both climate zones, land use system needs to be considered when determining optimal plot size. Using an optimal plot size was more important than temporal replication (over two sampling seasons) in accurately recording species richness.  相似文献   

20.
No definitive explanation for the form of the relationship between species diversity and ecosystem productivity exists nor is there agreement on the mechanisms linking diversity and productivity across scales. Here, we examine changes in the form of the diversity–productivity relationship within and across the plant communities at three observational scales: plots, alliances, and physiognomic vegetation types (PVTs). Vascular plant richness data are from 4,760 20 m2 vegetation field plots. Productivity estimates in grams carbon per square meter are from annual net primary productivity (ANPP) models. Analyses with generalized linear models confirm scale dependence in the species diversity–productivity relationship. At the plot focus, the observed diversity–productivity relationship was weak. When plot data were aggregated to a focus of vegetation alliances, a hump-shaped relationship was observed. Species turnover among plots cannot explain the observed hump-shaped relationship at the alliance focus because we used mean plot richness across plots as our index of species richness for alliances and PVTs. The sorting of alliances along the productivity gradient appears to follow regional patterns of moisture availability, with alliances that occupy dry environments occurring within the increasing phase of the hump-shaped pattern, alliances that occupy mesic to hydric environments occurring near the top or in the decreasing phase of the curve, and alliances that occupy the wettest environments having the fewest species and the highest ANPP. This pattern is consistent with the intermediate productivity theory but appears to be inconsistent with the predictions of water–energy theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号