首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M E Harris  S L Hajduk 《Cell》1992,68(6):1091-1099
RNA editing in the kinetoplastid Trypanosoma brucei results in the addition and deletion of uridine residues within several mitochondrial mRNAs. The site and number of uridines added appears to be directed by small (approximately 70 nt) guide RNAs (gRNAs), which can base pair to the edited sequences. We examined reactions involving synthetic cytochrome b (CYb) gRNA and pre-edited mRNA in vitro. A major product of the in vitro reaction is a chimeric RNA molecule containing both gRNA and mRNA sequences. Formation of the CYb gRNA-mRNA chimera was specific, since such molecules did not accumulate when either the gRNA or mRNA was substituted with control RNAs. The reaction required a free 3' hydroxyl on the gRNA and was unaffected by capping of the gRNA's 5' end. Direct RNA sequencing indicated that the CYb gRNA is covalently linked via its 3' poly(U) tail to one of the editing sites on the CYb mRNA. These results suggest that the U's added during editing are donated by the poly(U) tail of a gRNA via a chimeric gRNA-mRNA intermediate.  相似文献   

2.
Editing in trypanosomes involves the addition or deletion of uridines at specific sites to produce translatable mitochondrial mRNAs. RBP16 is an accessory factor from Trypanosoma brucei that affects mitochondrial RNA editing in vivo and also stimulates editing in vitro. We report here experiments aimed at elucidating the biochemical activities of RBP16 involved in modulating RNA editing. In vitro RNA annealing assays demonstrate that RBP16 significantly stimulates the annealing of gRNAs to cognate pre-mRNAs. In addition, RBP16 also facilitates hybridization of partially complementary RNAs unrelated to the editing process. The RNA annealing activity of RBP16 is independent of its high-affinity binding to gRNA oligo(U) tails, consistent with the previously reported in vitro editing stimulatory properties of the protein. In vivo studies expressing recombinant RBP16 in mutant Escherichia coli strains demonstrate that RBP16 is an RNA chaperone and that in addition to RNA annealing activity, it contains RNA unwinding activity. Our data suggest that the mechanism by which RBP16 facilitates RNA editing involves its capacity to modulate RNA secondary structure and promote gRNA/pre-mRNA annealing.  相似文献   

3.
4.
Mitochondrial gene expression in trypanosomes is controlled primarily at the levels of RNA processing and RNA stability. This regulation undoubtedly involves numerous ribonucleases. Here we characterize the Trypanosoma brucei homolog of the yeast DSS-1 mitochondrial exoribonuclease, which we term TbDSS-1. Biochemical fractionation indicates that TbDSS-1 is mitochondrially localized, as predicted by its N-terminal sequence. In contrast to its yeast homolog, TbDSS-1 does not appear to be associated with mitochondrial ribosomes. Targeted downregulation of TbDSS-1 by RNA interference in procyclic-form T. brucei results in a severe growth defect. In addition, TbDSS-1 depletion leads to a decrease in the levels of never edited cytochrome oxidase subunit I (COI) mRNA and both unedited and edited COIII mRNAs, indicating this enzyme functions in the control of mitochondrial RNA abundance. We also observe a considerable reduction in the level of edited apocytochrome b (CYb) mRNA and a corresponding increase in unedited CYb mRNA, suggesting that TbDSS-1 functions, either directly or indirectly, in the control of RNA editing. The abundance of both gCYb[560] and gA6[149] guide RNAs is reduced upon TbDSS-1 depletion, although the reduction in gCYb[560] is much more dramatic. The significant reduction in gCYb levels could potentially account for the observed decrease in CYb RNA editing. Western blot analyses of mitochondrial RNA editing and stability factors indicate that the perturbations of RNA levels observed in TbDSS-1 knock-downs do not result from secondary effects on other mitochondrial proteins. In all, these data demonstrate that TbDSS-1 is an essential protein that plays a role in mitochondrial RNA stability and RNA editing.  相似文献   

5.
6.
7.
RBP16 is an abundant RNA binding protein from Trypanosoma brucei mitochondria that affects both RNA editing and stability. We report here experiments aimed at elucidating the mechanism of RBP16 function in RNA editing. In in vitro RNA editing assays, recombinant RBP16 is able to significantly stimulate insertion editing of both CYb and A6 pre-mRNAs. Enhancement of in vitro editing activity occurs at, or prior to, the step of pre-mRNA cleavage, as evidenced by increased accumulation of pre-mRNA 3' cleavage products in the presence of RBP16. Mutated RBP16 that is severely compromised in cold shock domain (CSD)-mediated RNA binding was able to enhance editing to levels comparable to the wild-type protein in some assays at the highest RBP16 levels tested. However, at low RBP16 concentrations or in assays with native, oligo(U)-tail-bearing gRNAs, editing stimulation by mutant RBP16 was somewhat compromised. Together, these results indicate that both the N-terminal CSD and C-terminal RGG RNA binding domains of RBP16 are required for maximal editing stimulation. Finally, the relaxed specificity of RBP16 for stimulation of both CYb and A6 editing in vitro implicates additional specificity factors that account for the strict CYb specificity of RBP16 action in editing in vivo. Our results constitute the first report of any putative RNA editing accessory factor eliciting an effect on editing in vitro. Overall, these results support a novel accessory role for RBP16 in U insertion editing.  相似文献   

8.
T. brucei survival relies on the expression of mitochondrial genes, most of which require RNA editing to become translatable. In trypanosomes, RNA editing involves the insertion and deletion of uridylates, a developmentally regulated process directed by guide RNAs (gRNAs) and catalyzed by the editosome, a complex of proteins. The pathway for mRNA/gRNA complex formation and assembly with the editosome is still unknown. Work from our laboratory has suggested that distinct mRNA/gRNA complexes anneal to form a conserved core structure that may be important for editosome assembly. The secondary structure for the apocytochrome b (CYb) pair has been previously determined and is consistant with our model of a three-helical structure. Here, we used cross-linking and solution structure probing experiments to determine the structure of the ATPase subunit 6 (A6) mRNA hybridized to its cognate gA6-14 gRNA in different stages of editing. Our results indicate that both unedited and partially edited A6/gA6-14 pairs fold into a three-helical structure similar to the previously characterized CYb/gCYb-558 pair. These results lead us to conclude that at least two mRNA/gRNA pairs with distinct editing sites and distinct primary sequences fold to a three-helical secondary configuration that persists through the first few editing events.  相似文献   

9.
10.
Most mitochondrial mRNAs in trypanosomes undergo uridine insertion/deletion editing that is catalyzed by ∼20S editosomes. The editosome component KREPA3 is essential for editosome structural integrity and its two zinc finger (ZF) motifs are essential for editing in vivo but not in vitro. KREPA3 function was further explored by examining the consequence of mutation of its N- and C- terminal ZFs (ZF1 and ZF2, respectively). Exclusively expressed myc-tagged KREPA3 with ZF2 mutation resulted in lower KREPA3 abundance and a relative increase in KREPA2 and KREL1 proteins. Detailed analysis of edited RNA products revealed the accumulation of partially edited mRNAs with less insertion editing compared to the partially edited mRNAs found in the cells with wild type KREPA3 expression. Mutation of ZF1 in TAP-tagged KREPA3 also resulted in accumulation of partially edited mRNAs that were shorter and only edited in the 3′-terminal editing region. Mutation of both ZFs essentially eliminated partially edited mRNA. The mutations did not affect gRNA abundance. These data indicate that both ZFs are essential for the progression of editing and perhaps its accuracy, which suggests that KREPA3 plays roles in the editing process via its ZFs interaction with editosome proteins and/or RNA substrates.  相似文献   

11.
RNA editing in kinetoplastids, the specific insertion and deletion of U residues, requires endonuclease cleavage of the pre-mRNA at each cycle of insertion/deletion. We have resolved three endoribonuclease activities from Trypanosoma brucei mitochondrial extracts that cleave CYb pre-mRNA specifically. One of these, which sediments at approximately 20S and is not affected substantially by DTT, has all the features of the editing endonuclease. It cleaves CYb pre-edited or partially edited mRNA only when annealed to the anchor region of a cognate guide RNA (gRNA), and it cleaves accurately just 5' of the duplex region. Its specificity is for the 5' end of extended duplex RNA regions, and this prevents cleavage of the gRNA or other positions in the mRNA. This gRNA-directed nuclease is evidently the same activity that functions in A6 pre-mRNA editing. However, it is distinct and separable from a previously observed DTT-requiring endonuclease that sediments similarly under certain conditions, but does not cleave precisely at the first editing site in either the presence or absence of a gRNA. The editing nuclease is also distinct from a DTT-inhibited endonuclease that cleaves numerous free pre-mRNAs at a common structure in the region of the first editing site.  相似文献   

12.
In the mitochondria of trypanosomatids, the majority of mRNAs undergo massive uracil-insertion/deletion editing. Throughout the processes of pre-mRNA polyadenylation, guide RNA (gRNA) uridylylation and annealing to mRNA, and editing reactions, several multiprotein complexes must engage in transient interactions to produce a template for protein synthesis. Here, we report the identification of a protein complex essential for gRNA stability. The gRNA-binding complex (GRBC) interacts with gRNA processing, editing, and polyadenylation machineries and with the mitochondrial edited mRNA stability (MERS1) factor. RNAi knockdown of the core subunits, GRBC1 and GRBC2, led to the elimination of gRNAs, thus inhibiting mRNA editing. Inhibition of MERS1 expression selectively abrogated edited mRNAs. Homologous proteins unique to the order of Kinetoplastida, GRBC1 and GRBC2, form a stable 200 kDa particle that directly binds gRNAs. Systematic analysis of RNA-mediated and RNA-independent interactions involving the GRBC and MERS1 suggests a unified model for RNA processing in the kinetoplast mitochondria.  相似文献   

13.
14.
The RNA binding protein RBP16 regulates mitochondrial RNA editing and stability in Trypanosoma brucei. To aid in understanding the biochemical mechanisms of RBP16 function, we analyzed the RNA and protein binding capacity of RBP16 and its individual cold shock (CSD) and RGG domains. Both recombinantly expressed domains possess RNA binding activity. However, the specificity and affinity of RBP16 for gRNA is mediated predominantly through the interaction of the CSD with poly(U). The RGG domain contributes to the association between full length RBP16 and gRNA, as it was required for maximal binding. We further demonstrate that both domains contribute to maximal binding of RBP16 to the mitochondrial p22 protein. However, p22 can interact with the CSD alone and stimulate its gRNA binding activity. Thus, the CSD is primary in RBP16 interactions, while the RGG domain enhances the capacity of the CSD to bind both RNA and protein. These results suggest a model for RBP16 molecular interactions.  相似文献   

15.
Twelve mitochondrial mRNAs are edited in Trypanosoma brucei, nine extensively, by addition and removal of uridines. The accumulation of the edited RNAs is regulated during the life cycle. Hundreds of different gRNAs, encoded three or four per minicircle, specify the editing and minicircle content accounts for variation in editing among species and in mutants. The current understanding of the process of gRNA utilization, the editing mechanism and the editing machinery is discussed.  相似文献   

16.
17.
TbRGG2 is an essential kinetoplastid RNA editing accessory factor that acts specifically on pan-edited RNAs. To understand the mechanism of TbRGG2 action, we undertook an in-depth analysis of edited RNA populations in TbRGG2 knockdown cells and an in vitro examination of the biochemical activities of the protein. We demonstrate that TbRGG2 down-regulation more severely impacts editing at the 5′ ends of pan-edited RNAs than at their 3′ ends. The initiation of editing is reduced to some extent in TbRGG2 knockdown cells. In addition, TbRGG2 plays a post-initiation role as editing becomes stalled in TbRGG2-depleted cells, resulting in an overall decrease in the 3′ to 5′ progression of editing. Detailed analyses of edited RNAs from wild-type and TbRGG2-depleted cells reveal that TbRGG2 facilitates progression of editing past intrinsic pause sites that often correspond to the 3′ ends of cognate guide RNAs (gRNAs). In addition, noncanonically edited junction regions are either absent or significantly shortened in TbRGG2-depleted cells, consistent with impaired gRNA transitions. Sequence analysis further suggests that TbRGG2 facilitates complete utilization of certain gRNAs. In vitro RNA annealing and in vivo RNA unwinding assays demonstrate that TbRGG2 can modulate RNA–RNA interactions. Collectively, these data are consistent with a model in which TbRGG2 facilitates initiation and 3′ to 5′ progression of editing through its ability to affect gRNA utilization, both during the transition between specific gRNAs and during usage of certain gRNAs.  相似文献   

18.
B Blum  N Bakalara  L Simpson 《Cell》1990,60(2):189-198
A class of small RNA molecules possibly involved in RNA editing is present in the mitochondrion of Leishmania tarentolae. These "guide" RNA (gRNA) molecules are encoded in intergenic regions of the mitochondrial maxicircle DNA and contain sequences that represent precise complementary versions of the mature mRNAs within the edited regions. In addition, the 5' portions of several gRNAs can form hybrids with mRNAs just 3' of the preedited region. A model is presented in which a partial hybrid formed between the gRNA and preedited mRNA is substrate for multiple cycles of cleavage, addition or deletion of uridylates, and religation, eventually resulting in a complete hybrid between the gRNA and the mature edited mRNA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号