首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed the changes occurring in the chloroplast DNA (cpDNA) of taxa belonging to thePhaseolus vulgaris complex to help clarify relationships among species of this complex. Two restriction maps for 11 restriction enzymes comprising the whole chloroplast genome from a wildP. vulgaris and a wildP. coccineus accession were constructed. These maps allowed us to compare a total of 330 restriction sites between the two genomes in order to identify polymorphisms, assess the type of mutations detected, and identify regions of high variability. A region, located in the large single-copy region near the borders with the inverted repeats, accounted for a large portion of the variation. Most of the mutations detected were due to restriction sites gains or losses. Variable and conserved regions were then evaluated in 30 accessions belonging to taxa of theP. vulgaris complex. Phylogenetic analyses were made using parsimony methods. Conclusions obtained from such analyses were the following: (1) there was high cpDNA variability withinP. coccineus but not inP. vulgaris. (2)P. coccineus subsp.glabellus showed a very distinct cpDNA type that strongly suggests that it actually belongs to a different but as yet undetermined section of the genus. Our cpDNA observations are supported by distinctive morphological traits and reproductive biology of this taxon. (3) InP. coccineus subsp.darwinianus (also classified asP. polyanthus), the cpDNA lineage was in disagreement with data obtained from nuclear markers and suggested a reticulated origin by hybridization betweenP. coccineus as the male parent and an ancestralP. polyanthus type, closely allied toP. vulgaris, as the seed parent. This initial cross was presumably followed by repeated backcrossing toP. coccineus. Our cpDNA studies illustrate the importance of molecular markers in elucidating phylogenetic relationships. They also indicate that accurate phylogenies will require analyses of both nuclear and cytoplasmic genomes.  相似文献   

2.
Oxidation-reduction midpoint potentials were determined, as a function of pH, for the disulfide/dithiol couples of spinach and pea thioredoxins f, for spinach and Chlamydomonas reinhardtii thioredoxins m, for spinach ferredoxin:thioredoxin reductase (FTR), and for two enzymes regulated by thioredoxin f, spinach phosphoribulokinase (PRK) and the fructose-1,6-bisphosphatases (FBPase) from pea and spinach. Midpoint oxidation-reduction potential (Em) values at pH 7.0 of -290 mV for both spinach and pea thioredoxin f, -300 mV for both C. reinhardtii and spinach thioredoxin m, -320 mV for spinach FTR, -290 mV for spinach PRK, -315 mV for pea FBPase, and -330 mV for spinach FBPase were obtained. With the exception of spinach FBPase, titrations showed a single two-electron component at all pH values tested. Spinach FBPase exhibited a more complicated behavior, with a single two-electron component being observed at pH values >/= 7.0, but with two components being present at pH values <7.0. The slopes of plots of Em versus pH were close to the -60 mV/pH unit value expected for a process that involves the uptake of two protons per two electrons (i. e., the reduction of a disulfide to two fully protonated thiols) for thioredoxins f and m, for FTR, and for pea FBPase. The slope of the Em versus pH profile for PRK shows three regions, consistent with the presence of pKa values for the two regulatory cysteines in the region between pH 7.5 and 9.0.  相似文献   

3.
Contrasting evolutionary histories of chloroplast thioredoxins f and m   总被引:3,自引:0,他引:3  
Fourteen thioredoxin sequences were used to construct a minimal phylogenetic tree by using parsimony. The bacterial thioredoxins clustered into three groups: one containing the photosynthetic purple bacteria, Escherichia and Corynebacterium; a second containing the photosynthetic green bacterium, Chlorobium; and a third containing cyanobacteria. These groupings are similar to those generated from earlier 16s RNA analyses. Animal thioredoxins formed a fourth group. The two thioredoxins of chloroplasts (f and m) showed contrasting phylogenetic patterns. As predicted from prior studies, spinach chloroplast thioredoxin m grouped with its counterparts from cyanobacteria and eukaryotic algae, but, unexpectedly, thioredoxin f grouped with the animal thioredoxins. The results indicate that, during evolution, thioredoxin m of contemporary photosynthetic eukaryotic cells was derived from a prokaryotic symbiont, whereas thioredoxin f descended from an ancestral eukaryote common to plants and animals. The findings illustrate the potential of thioredoxin as a phylogenetic marker and suggest a relationship between the animal and f-type thioredoxins.   相似文献   

4.
5.
Introns are widespread and variable in eukaryotic genomes. Although their histories and functions, or even whether all of them have any function, remain largely unknown, analysis of intron sequences and genomic contexts may shed light on the evolutionary history of genes and organisms. The number and frequency of introns vary widely in the small number of published genomes of protists and algae suggesting that the same is true of the vast diversity of protists and algae that remain uncultivated. The objective of this study were to investigate introns in sequences of functional genes of phytoplankton, both in published genomes and in sequences obtained from environmental clone libraries. We examined the introns of the genes involved in nitrogen uptake and assimilation pathways in the genome sequences of cultivated phytoplankton as well as in environmental clone libraries of nitrate reductases (NR), nitrite reductase (NiR), nitrate transporter (Nrt2) and ammonium transporter (AMT) genes constructed from pelagic phytoplankton communities in Monterey Bay (CA, USA) and Onslow Bay (NC, USA). Here we describe the most extensive set to date of intron sequences from uncultivated marine algae and report important differences for diatom vs. non-diatom sequences. The majority of the introns in NR, NiR, Nrt2 and AMT from cultured phytoplankton and environmental libraries showed canonical splice patterns. Introns found in diatom-like NR environmental libraries had lower GC content than the respective exons. The green algal-like NR and Nrt2 environmental sequences had introns and exons of much more similar GC content, and both higher than in diatoms. These patterns suggest a different evolutionary history and recent acquisition of diatom introns compared to other algae.  相似文献   

6.
Avian chicks use different begging strategies when soliciting parental care. A novel begging strategy was recently observed in Horsfield’s hawk-cuckoo Hierococcyx hyperythrus (=Cuculus fugax). Chicks of this brood-parasitic species raise and shake their wings and display to fosterers a gape-coloured patch on the undersides of their wings. Although the gape-coloured wing-patch may be a unique trait of Horsfield’s hawk-cuckoo, wing-shaking in the context of begging is virtually universal in both brood parasites and their hosts. A simple qualitative comparison across different avian taxa suggests that wing-shake begging is most probably an ancestral feature of cuckoos and perhaps all altricial birds. The wing-shaking may be an honest signal of chick quality. It could also reduce the risk of predation if wing-shaking was coupled with reduced loudness of begging. Horsfield’s hawk-cuckoo chicks could have exploited the universal pre-existing host responsiveness to wing-shake begging. Evolution could have then further proceeded by making the wing-shaking more conspicuous by addition of another stimulus—the unique colourful wing-patch. I also hypothesize that wing-shake begging may have evolved from pre-fledging restlessness and is used secondarily in courtship displays, threatening postures, and distraction displays by adults. Further discussions and tests of these hypotheses may facilitate research into the so far unstudied phylogenetic history of avian chick-begging strategies. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Mestres-Ortega D  Meyer Y 《Gene》1999,240(2):307-316
Screening of cDNA libraries at low stringency and complete sequencing of EST clones with homology to thioredoxins allowed us to characterize five new prokaryotic type Arabidopsis thaliana thioredoxins. All present N-terminal extensions with characteristics of transit peptides. Four are clustered in a phylogenetic tree with the chloroplastic thioredoxin m from red and green algae and higher plants, and their transit peptides have typical characteristics of chloroplastic transit peptides. One is clearly divergent and defines a new prokaryotic thioredoxin type that we have named thioredoxin x. Its transit peptide sequence presents characteristics of both chloroplastic and mitochondrial transit peptides. The five corresponding genes are expressed at different levels, but mostly in green tissues and in in-vitro cultivated cells.  相似文献   

8.
Spliceosomal introns are present in almost all eukaryotic genes, yet little is known about their origin and turnover in the majority of eukaryotic phyla. There is no agreement whether most introns are ancestral and have been lost in some lineage or have been gained recently. We addressed this question by analyzing the spatial and temporal distribution of introns in actins of foraminifera, a group of testate protists whose exceptionally rich fossil record permits the calibration of molecular phylogenies to date intron origins. We identified 24 introns dispersed along the sequence of two foraminiferan actin paralogues and actin deviating proteins, an unconventional type of fast-evolving actin found in some foraminifera. Comparison of intron positions indicates that 20 of 24 introns are specific to foraminifera. Four introns shared between foraminifera and other eukaryotes were interpreted as parallel gains because they have been found only in single species belonging to phylogenetically distinctive lineages. Moreover, additional recent intron gain due to the transfer between the actin paralogues was observed in two cultured species. Based on a relaxed molecular clock timescale, we conclude that intron gains in actin took place throughout the evolution of foraminifera, with the oldest introns inserted between 550 and 500 million years ago and the youngest ones acquired less than 100 million years ago. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Debashish Bhattacharya]  相似文献   

9.
10.
11.
Convergent evolution may be elucidated as a series of stages which show a decreasing number of common characters and become more and more generalized, the characters defining the stages finally being difficult to interpret as adaptive. The series starts with ecological races (genoecodemes), proceeds with parallel ecological races (ecotypes) to sub-life-forms, life-forms (growth forms), ecophysiological 'types' (e.g. xerophytes, halbphytes), and finishes with morpho-physiological levels. The ecotype concept is discussed, and it is proposed that it be restricted to cover parallel ecological races. Other discussions concern the possible occurrence of neutral or non-adaptive characters, the bunching of character gradients, and the two main classification systems of living entities.  相似文献   

12.
13.
Summary The earliest fossil stromatolites present evidence of a complex ecosystem of photosynthetic organisms. Because the origin of present life can be dated within a few hundred million years prior to these fossils, their complexity poses a problem. A heuristic model outlines the first radiation leading to the universal ancestor.  相似文献   

14.
Filamentous phage assembly in vivo shows an absolute requirement for thioredoxin and a partial requirement for thioredoxin reductase. Mutants in which one or both of the active site cysteine residues of thioredoxin were changed to alanine or serine were constructed and shown to support filamentous phage assembly. Some of the mutants were almost as effective as wild-type thioredoxin, while others supported phage assembly only when high levels of the mutant protein were present in the infected cell. The mutant proteins were all inactive in an assay which couples oxidation of NADPH to reduction of 5,5'-dithiobis-2-nitrobenzoic acid) via thioredoxin reductase and thioredoxin. These active site mutants make phage assembly completely independent of thioredoxin reductase, which suggests that the phage needs, and the active site mutants provide, the proteins in the reduced conformation. Other mutants were isolated on the basis of their failure to support filamentous phage growth. These specified mutant thioredoxin proteins with varying levels of redox activity in vivo and in vitro. The locations of these mutations suggest that the surface of thioredoxin thought to interact with thioredoxin reductase also interacts with the filamentous phage assembly machinery. An in vivo assay for thioredoxin redox function, based on the ability of cells to utilize methionine sulfoxide, was developed. Met- cells containing mutant thioredoxins that are inactive in vitro do not form colonies on plates containing methionine sulfoxide as the sole methionine source.  相似文献   

15.
Animal mitochondrial DNA (mtDNA) is playing an increasingly important role as a genetic marker in population and evolutionary biology. The popularity of this molecule derives, in part, from the relative ease with which clearly homologous sequences can be isolated and compared. Simple sequence organization, maternal inheritance and absence of recombination make mtDNA an ideal marker for tracing maternal genealogies. Rapid rate of sequence divergence (at least in vertebrates) allows discrimination of recently diverged lineages. Studies of mtDNAs from a diversity of animal groups have revealed significant variation among taxa in mtDNA sequence dynamics, gene order and genome size. They have also provided important insights into population structure, geographic variation, zoogeography and phylogeny.  相似文献   

16.
17.
The human Y chromosome: an evolutionary marker comes of age   总被引:1,自引:0,他引:1  
Until recently, the Y chromosome seemed to fulfil the role of juvenile delinquent among human chromosomes--rich in junk, poor in useful attributes, reluctant to socialize with its neighbours and with an inescapable tendency to degenerate. The availability of the near-complete chromosome sequence, plus many new polymorphisms, a highly resolved phylogeny and insights into its mutation processes, now provide new avenues for investigating human evolution. Y-chromosome research is growing up.  相似文献   

18.
19.
运用对PCR产物直接测序和克隆后测序的方法测定了蚌壳蕨科1种和桫椤科11种(其中桫椤分别测定19株:小羽桫椤测定2株)植物的叶绿体trnL基因内含子和trnL-trnF基因间隔区序列。12种植物相应的长度介亍l004-l082之间,A T平均含量60.9%,G C平均含量39.1%。计算了不同种间以及种内不同个体间序列的碱基差别(转换值/颠换值)和Kimura遗传距离。序列数据经排列后分别进行最简约法、最大似然法和邻接法分析,结果显示:(1)白桫椤、海南白桫椤和大羽桫椤构成的分支最早和该科内其余植物组成的另一分支分歧,而后者又进一步分为刃个亚分支,分别和桫椤亚属、黑桫椤亚属对应,支持夏群的分类处理:(2)大桫椤~狭羽桫椤~毛轴桫椤~篦齿桫椤、多羽桫椤一白桫椤~海南白桫椤以及小羽桫椤一桫椤各自构成独立、自然的末端分支,再参照分支内植物间的遗传距蔼取值,建议将此3个末端分支依次归并为3种:大桫椤、白桫椤和桫椤;(3)白桫椤属在科内处于基部位置,桫椤属奇桫椤亚属和黑桫椤亚属为衍生分支,赞同Tryon关于桫椤科进化和囊群盖起源的假说。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号