首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We report the overexpression, purification, and properties of the regulatory protein, GlnR, for glutamine synthetase synthesis of Bacillus cereus. The protein was found to be a dimer with a molecular weight of approximately 30,000, and its subunit molecular weight was 15,000 in agreement with that (15,025) of deduced amino acid sequence of GlnR. The purified GlnR protein bound specifically to the promoter region of the glnRA operon of B. cereus and Bacillus subtilis. The binding of the GlnR protein to the DNA fragment was enhanced by the presence of glutamine synthetase, the product of glnA, of B. cereus or B. subtilis, although the affinity of the GlnR protein for DNA was not affected in the presence of glutamate, glutamine, Mg2+, Mn2+, or ammonia. These results indicate the existence of an interaction between GlnR and glutamine synthetase, and support the hypothesis that the regulation of glnA expression requires both GlnR protein and glutamine synthetase in Bacillus.  相似文献   

3.
Mutations in a site, glnF, linked by P1-mediated transduction of argG on the chromosome of Klebsiella aerogenes, result in a requirement for glutamine. Mutants in this gene have in all media a level of glutamine synthetase (GS) corresponding to the level found in the wild-type strain grown in the medium producing the strongest repression of GS. The adenylylation and deadenylylation of GS in glnF mutants is normal. The glutamine requirement of glnF mutants could be suppressed by mutations in the structural gene for GS, glnA. These mutations result in altered regulation of GS synthesis, regardless of the presence or absence of the glnF mutation (GlnR phenotype). In GlnR mutants the GS level is higher than in the wild-type strain when the cells are cultured in strongly repressing medium, but lower than in the wild-type strain when cells are cultured in a derepressing medium. Heterozygous merodiploids carrying a normal glnA gene as well as a glnA gene responsible for the GlnR phenotype behave in every respect like merodiploids carrying two normal glnA genes. These results confirm autogenous regulation of GS synthesis and indicate that GS is both a repressor and an activator of GS synthesis. The mutation in glnA responsible for the GLnR phenotype has apparently resulted in the formation of a GS that is incompetent both as repressor and as activator of GS synthesis. According to this hypothesis, the product of the glnF gene is necessary for activation of the glnA gene by GS.  相似文献   

4.
We have determined the complete nucleotide sequence of a 2.4 kb chromosomal EcoT22I-NspV fragment, containing the Bacillus cereus glnA gene (structural gene of glutamine synthetase). The deduced amino acid sequence indicates that the glutamine synthetase subunit consists of 444 amino acid residues (50,063 Da). Comparisons are made with reported amino acid sequences of glutamine synthetases from other bacteria. Upstrem of glnA we found an open reading frame of 129 codons (ORF129) preceded by the consensus sequence for a typical promoter. Maxicell experiments showed two polypeptide bands, with molecular weights in good agreement with that of glutamine synthetase and that of ORF129, in addition to vector-coded protein. It is possible that the product of this open reading frame upstream of glnA has a regulatory role in glutamine synthetase expression.  相似文献   

5.
6.
7.
Rhizobium leguminosarum, biovar viceae, strain RCC1001 contains two glutamine synthetase activities, GSI and GSII. We report here the identification of glnA, the structural gene for GSI. A 2 kb fragment of DNA was shown to complement the Gln- phenotype of Klebsiella pneumoniae glnA mutant strains. DNA sequence analysis revealed an open reading frame (ORF) of 469 codons specifying a polypeptide of 52,040 daltons. Its deduced amino acid sequence was found to be highly homologous to other glutamine synthetase sequences. This ORF was expressed in Escherichia coli minicells and the corresponding polypeptide reacted with an antiserum raised against GSI. Upstream of glnA we found an ORF of 111 codons (ORF111) preceded by the consensus sequence for an ntrA-dependent promoter. Minicells experiments showed a protein band, with a molecular weight in good agreement with that (10,469) deduced from the nucleotide sequence. On the basis of homology studies we discuss the possibility that the product of ORF111 is equivalent to the PII protein of E. coli and plays a similar role in regulation of nitrogen metabolism.  相似文献   

8.
9.
10.
The glutamine synthetase (GS) gene glnA of Thiobacillus ferrooxidans was cloned on recombinant plasmid pMEB100 which enabled Escherichia coli glnA deletion mutants to utilize (NH4)2SO4 as the sole source of nitrogen. High levels of GS-specific activity were obtained in the E. coli glnA deletion mutants containing the T. ferrooxidans GS gene. The cloned T. ferrooxidans DNA fragment containing the glnA gene activated histidase activity in an E. coli glnA glnL glnG deletion mutant containing the Klebsiella aerogenes hut operon. Plasmid pMEB100 also enabled the E. coli glnA glnL glnG deletion mutant to utilize arginine or low levels of glutamine as the sole source of nitrogen. There was no detectable DNA homology between the T. ferrooxidans glnA gene and the E. coli glnA gene.  相似文献   

11.
12.
A 3.3-kb BamHI fragment of Lactobacillus delbrueckii subsp. bulgaricus DNA was cloned and sequenced. It complements an Escherichia coli glnA deletion strain and hybridizes strongly to a DNA containing the Bacillus subtilis glnA gene. DNA sequence analysis of the L. delbrueckii subsp. bulgaricus DNA showed it to contain the glnA gene encoding class I glutamine synthetase, as judged by extensive homology with other prokaryotic glnA genes. The sequence suggests that the enzyme encoded in this gene is not controlled by adenylylation. Based on a comparison of glutamine synthetase sequences, L. delbrueckii subsp. bulgaricus is much closer to gram-positive eubacteria, especially Clostridium acetobutylicum, than to gram-negative eubacteria and archaebacteria. The fragment contains another open reading frame encoding a protein of unknown function consisting of 306 amino acids (ORF306), which is also present upstream of glnA of Bacillus cereus. In B. cereus, a repressor gene, glnR, is found between the open reading frame and glnA. Two proteins encoded by the L. delbrueckii subsp. bulgaricus gene were identified by the maxicell method; the sizes of these proteins are consistent with those of the open reading frames of ORF306 and glnA. The lack of a glnR gene in the L. delbrueckii subsp. bulgaricus DNA in this position may indicate a gene rearrangement or a different mechanism of glnA gene expression.  相似文献   

13.
14.
Sequence of the Bacillus subtilis glutamine synthetase gene region   总被引:19,自引:0,他引:19  
The nucleotide sequence of the glutamine synthetase (GS) region of Bacillus subtilis has been determined and found to contain several unique features. An open reading frame (ORF) upstream of the GS structural gene is part of the same operon as GS and is involved in regulation. Two downstream ORFs are separated from glnA by an apparent Rho-independent termination site. One of the downstream ORFs encodes a very hydrophobic polypeptide and contains its own potential RNA polymerase and ribosome-binding sites. The derived amino acid (aa) sequence of B. subtilis GS is similar to that of several other prokaryotes, especially to the GS of Clostridium acetobutylicum. The B. subtilis and C. acetobutylicum enzymes differ from the others in the lack of a stretch of about 25 aa as well as the presence of extra cysteine residues in a region known to contain regulatory as well as catalytic mutations. The region around the tyrosine residue that is adenylylated in GS from many species is fairly similar in the B. subtilis GS despite its lack of adenylylation.  相似文献   

15.
The structural gene for glutamine synthetase, glnA, from Amycolatopsis mediterranei U32 was cloned via screening a genomic library using the analog gene from Streptomyces coelicolor. The clone was functionally verified by complementing for glutamine requirement of an Escherichia coli glnA null mutant under the control of a lac promoter. Sequence analysis showed an open reading frame encoding a protein of 466 amino acid residues. The deduced amino acid sequence bears significant homologies to other bacterial type I glutamine synthetases, specifically, 71% and 72% identical to the enzymes of S. coelicolor and Mycobacterium tuberculosis, respectively. Disruption of this glnA gene in A. mediterranei U32 led to glutamine auxotrophy with no detectable glutamine synthetase activity in vivo. In contrast, the cloned glnA^+ gene can complement for both phenotypes in trans. It thus suggested that in A. mediterranei U32, the glnA gene encoding glutamine synthetase is uniquely responsible for in vivo glutamine synthesis under our laboratory defined physiological conditions.  相似文献   

16.
Glutamine synthetase gene of Bacillus subtilis   总被引:22,自引:0,他引:22  
The glutamine synthetase gene (glnA) of Bacillus subtilis was purified from a library of B. subtilis DNA cloned in phage lambda. By mapping the locations of previously identified mutations in the glnA locus it was possible to correlate the genetic and physical maps. Mutations known to affect expression of the glnA gene and other genes were mapped within the coding region for glutamine synthetase, as determined by measuring the sizes of truncated, immunologically cross-reacting polypeptides coded for by various sub-cloned regions of the glnA gene. When the entire B. subtilis glnA gene was present on a plasmid it was capable of directing synthesis in Escherichia coli of B. subtilis glutamine synthetase as judged by enzymatic activity, antigenicity, and ability to allow growth of a glutamine auxotroph. By use of the cloned B. subtilis glnA gene as a hybridization probe, it was shown that the known variability of glutamine synthetase specific activity during growth in various nitrogen sources is fully accounted for by changes in glnA mRNA levels.  相似文献   

17.
DNA was prepared from a strain of Escherichia coli bearing a mutation which confers the GlnC phenotype (inability to reduce the expression of glnA and other nitrogen-regulated operons in response to ammonia in the growth medium). A fragment of this DNA carrying glnA, the structural gene for glutamine synthetase, was cloned on plasmid pBR322. By using recombination in vitro, we mapped the GlnC mutation to a region between glnA and glnG. This region defines a gene, glnL, which codes for a trans-acting product; the GlnC mutant produces an altered product. The glnL product plays a key role in the communication of information concerning the quality and abundance of the nitrogen source in the growth medium to a destination responsible for the regulation of glnA and other genes for enzymes responsible for nitrogen utilization.  相似文献   

18.
19.
20.
Abstract The glnAntrBC operon of Proteus vulgaris was cloned and heterologously expressed in Escherichia coli . The nucleotide sequence was determined. An open reading frame of 1407 bp was identified as the glnA gene and the deduced amino acid sequence showed 82% identity with the E. coli glutamine synthetase protein. Heterologous expression of the glnA gene in E. coli restored glutamine synthetase (GS) activity in a GS-negative mutant and a 52 kDa protein was detected and addressed as the GS subunit of P. vulgaris . Adjacent to the glnA gene the regulatory genes ntrB and ntrC were identified. Their coding regions comprised 1053 and 1452 bp, respectively, and the deduced gene products NRII (NtrB) and NRI (NtrC) shared 72% identity with the corresponding E. coli proteins. Heterologous expression in E. coli revealed only a 54 kDa protein which was shown to be NRI. NRII was not detectable using the methods employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号