首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For over 40 years germ-cell mutagenesis experiments have generated many new mutations at the brown (b or Tyrp1) locus on mouse Chromosome (Chr) 4. These mutations, many of which are deletions, were recovered by the specific-locus mutagenesis technique. Previous analysis of a panel of brown deletions, generated at Oak Ridge, has enabled both a preliminary molecular and a functional map around the locus to be generated. We have used a panel of hybrid DNA from 25 Oak Ridge deletions, where the deleted chromosome was heterozygous with a Mus spretus chromosome, to map polymorphic markers including microclones, microsatellites, and cloned DNA markers. We have generated a fine structure map, based on 25 new markers, of an 8.5-cM region surrounding the brown locus. This map will prove useful in future mapping studies of this region and in the isolation of the genes that lie within it.  相似文献   

2.
3.
The TYRP (brown) locus determines pigmentation and coat color in the mouse. The human homolog of the TYRP locus has been recently identified and shown to encode a 75-kDa transmembrane melanosomal glycoprotein called gp75. The gp75 glycoprotein is homologous to tyrosinase, an enzyme involved in the synthesis of melanin, forming a family of tyrosinase-related proteins. A genomic clone of human gp75 was used to map the human TYRP locus to chromosome 9, region 9p23, by nonradioactive fluorescent in situ hybridization. Specificity of hybridization was tested with a genomic fragment of human tyrosinase that mapped to a distinct site on 11q21. The 9p region has been reported to be nonrandomly altered in human melanoma, suggesting a role for the region near the TYRP locus in melanocyte transformation.  相似文献   

4.
Summary The interferons have been classified into alpha, beta, and gamma (leukocyte, fibroblast, and immune). We used a human genomic clone for 1 interferon IFB to determine the gene copy number in two patients with unbalanced rearrangements of 9p. Our results provide evidence for regional assignment of this gene to 9p21.  相似文献   

5.
Vascular anomalies are congenital lesions that usually occur sporadically, but can be inherited. Previously, we have described that venous malformations, localized bluish-purple skin lesions, are caused by an activating mutation in the TIE2/TEK receptor. Moreover, we mapped another locus to chromosome 1p21-p22, for venous malformations with glomus cells (VM-GLOM). Here we report a physical map, based on 18 overlapping YAC clones, spanning this 5-Mb VMGLOM locus, from marker GATA63C06 to D1S2664. In addition, we report a sequence-ready PAC map of 46 clones covering 1.48 Mb within the YAC contig, a region to which we have restricted VMGLOM. We describe 21 new STSs and nine novel CA repeats, seven of which are polymorphic. These data will enable positional cloning of genes for diseases mapped to this locus, including the VMGLOM gene, likely a currently unknown regulator of vasculogenesis and/or angiogenesis.  相似文献   

6.
Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex   总被引:9,自引:0,他引:9  
Genotoxic stress activates checkpoint signaling pathways that block cell cycle progression, trigger apoptosis, and regulate DNA repair. Studies in yeast and humans have shown that Rad9, Hus1, Rad1, and Rad17 play key roles in checkpoint activation. Three of these proteins-Rad9, Hus1, and Rad1-interact in a heterotrimeric complex (dubbed the 9-1-1 complex), which resembles a PCNA-like sliding clamp, whereas Rad17 is part of a clamp-loading complex that is related to the PCNA clamp loader, replication factor-C (RFC). In response to genotoxic damage, the 9-1-1 complex is loaded around DNA by the Rad17-containing clamp loader. The DNA-bound 9-1-1 complex then facilitates ATR-mediated phosphorylation and activation of Chk1, a protein kinase that regulates S-phase progression, G2/M arrest, and replication fork stabilization. In addition to its role in checkpoint activation, accumulating evidence suggests that the 9-1-1 complex also participates in DNA repair. Taken together, these findings suggest that the 9-1-1 clamp is a multifunctional complex that is loaded onto DNA at sites of damage, where it coordinates checkpoint activation and DNA repair.  相似文献   

7.
Larsson C  Ng CE 《Radiation research》2003,160(2):205-209
The mechanism of thermal radiosensitization is related to the inhibition of repair of radiation-induced DNA damage by heat. Due to the interaction of the gene p21/WAF1/CIP1 (now known as CDKN1A) with a variety of DNA repair proteins, its involvement in thermal radiosensitization was investigated. Two isogenetic human colorectal cancer cell lines with wild-type TP53 status were used. The 80S4 cell line was deficient in CDKN1A and the HCT116 cells were CDKN1A proficient. Both cell lines were significantly more sensitive to 44 degrees C than 42 degrees C heating (P < 0.01), and both cell lines expressed thermotolerance for heating times longer than about 2 h at the lower temperature. There were no significant differences in the X-radiation response of the two cell lines. Further, the two cell lines displayed similar cell survival levels after hyperthermia given before or after X radiation for both hyperthermia temperatures. Comparison of thermal enhancement ratios confirmed that there was no difference in the amount of thermal radiosensitization induced in the two cell lines. The induction and subsequent repair of DNA double-strand breaks, as measured by clamped homogeneous gel electrophoresis, was also the same in both cell lines. These findings strongly suggest that the gene CDKN1A does not play an important role in the expression of thermal radiosensitization.  相似文献   

8.
In this study, we constructed high-resolution radiation hybrid (RH) and comparative maps of ovine chromosomes or chromosomal segments that are homologous to human chromosome 6 (HSA6). A total of 251 markers were successfully genotyped across the recently developed USUoRH5000 whole-genome panel; 208 of these markers were assigned to five RH linkage groups distributed on three ovine chromosomes (OAR8, 9 and 20). The RH maps have good correspondence with previous chromosome painting data, although a small centromeric region on OAR9 that is homologous to HSA6 had not been previously detected using human chromosome paints on ovine chromosomal spreads. High percentages of the ovine markers were identified as orthologues in the bovine (86.3%), dog (85.8%), horse (69.3%) and human (88.7%) genomes. These maps contribute to investigations in mammalian chromosome evolution and the search for economic trait loci in sheep.  相似文献   

9.
10.
11.
Combined treatment of teratocarcinoma F9 cells with retinoic acid and dibutyryl-cAMP induces the differentiation into cells with a phenotype resembling parietal endoderm. We show that the levels of cyclin-dependent kinase inhibitor p21/WAF1/Cip1 (p21) protein and mRNA are dramatically elevated at the end of this differentiation, concomitantly with the appearance of p21 in the immunoprecipitated CDK2-cyclin E complex. The induction of differentiation markers could not be achieved by expression of ectopic p21 alone and still required treatment with differentiation agents. Clones of F9 cells transfected with sense or antisense p21 cDNA constructs revealed, upon differentiation, upregulated levels of mRNA for thrombomodulin, a parietal endoderm-specific marker, or increased fraction of cells in sub-G1 phase of the cell cycle, respectively. Consistent with this observation, whereas p21 was strictly nuclear in undifferentiated cells, a large proportion of differentiated cells had p21 localized also in the cytoplasm, a site associated with the antiapoptotic function of p21. Furthermore, p21 activated the thrombomodulin promoter in transient reporter assays and the p21 mutant defective in binding to cyclin E was equally efficient in activation. The promoter activity in differentiated cells was reduced by cotransfection of p21-specific siRNA or antisense cDNA. Coexpression of p21 increased the activity of the GAL-p300(1-1303) fusion protein on the GAL sites-containing TM promoter. This implies that p21 might act through a derepression of the p300 N-terminal-residing repression domain, thereby enhancing the p300 coactivator function. As differentiation of F9 cells into parietal endoderm-like cells requires the cAMP signaling, the results together suggest that the cyclin-dependent kinase inhibitor p21 may promote specifically this pathway in F9 cells.  相似文献   

12.
Conserved segments have been identified by ZOO-FISH between pig chromosome 9 (SSC9) and human chromosomes 1, 7 and 11. To assist in the identification of positional candidate genes for QTL on SSC9, the comparative map was further developed. Primers were designed from porcine EST sequence homologous to genes in regions of human chromosomes 1, 7 and 11. Porcine ESTs were then physically assigned using the INRA somatic cell hybrid panel (INRASCHP) and the high-resolution radiation hybrid panel (IMpRH). Seventeen genes (PEPP3, RAB7L1, FNBP2, MAPKAPK2, GNAI1, ABCB1, STEAP, AKAP9, CYP51A1, SGCE, ROBO4, SIAT4C, GLUL, CACNA1E, PTGS2, C1orf16 and ETS1) were mapped to SSC9, while GUSB, CPSF4 and THG-1 were assigned to SSC3.  相似文献   

13.
ZOO-FISH mapping shows human chromosomes 1, 9 and 10 share regions of homology with pig chromosome 10 (SSC10). A more refined comparative map of SSC10 has been developed to help identify positional candidate genes for QTL on SSC10 from human genome sequence. Genes from relevant chromosomal regions of the public human genome sequence were used to BLAST porcine EST databases. Primers were designed from the matching porcine ESTs to assign them to porcine chromosomes using the INRA somatic cell hybrid panel (INRA-SCHP) and the INRA-University of Minnesota Radiation Hybrid Panel (IMpRH). Twenty-eight genes from HSA1, 9 and 10 were physically mapped: fifteen to SSC10 (ACO1, ATP5C1, BMI1, CYB5R1, DCTN3, DNAJA1, EPHX1, GALT, GDI2, HSPC177, OPRS1, NUDT2, PHYH, RGS2, VIM), eleven to SSC1 (ADFP, ALDHIB1, CLTA, CMG1, HARC, PLAA, STOML2, RRP40, TESK1, VCP and VLDLR) and two to SSC4 (ALDH9A1 and TNRC4). Two anonymous markers were also physically mapped to SSC10 (SWR1849 and S0070) to better connect the physical and linkage maps. These assignments have further refined the comparative map between SSC1, 4 and 10 and HSA1, 9 and 10.  相似文献   

14.
Maple syrup urine disease (MSUD) is caused by the deficiency of the mitochondrial branched-chain alpha-keto acid dehydrogenase complex. The multienzyme complex is a macromolecule (Mr 4 X 10(6] consisting of at least six distinct subunits. In this study, the human E1 beta gene (BCKDHB) has been localized to human chromosome 6 by hybrid somatic cell analysis, and regionally assigned to chromosome bands 6p21-22 by in situ hybridization. The E2 gene (DBT), which was previously localized to chromosome 1, is regionally assigned to the chromosome band 1p31 also by in situ hybridization. Localization of the E1 beta gene to chromosome 6p21-22 assigns another major human disease locus to a region that contains several important genes, including the major histocompatability complex, tumor necrosis factor, and heat-shock protein HSP70. Mapping of the E1 beta and the E2 genes may provide information for the linkage analysis of MSUD families with mutations in these two loci.  相似文献   

15.
16.
Yang Y  Wang C  Wang F  Zhu L  Liu H  He X 《Gene》2012,502(2):154-158
We describe a 5-year-old girl presented with autism and mental retardation features. Conventional karyotyping revealed a novel unidirectional translocation t(11;9)(p15;p23). HumanCytoSNP-12 Chip analysis identified a 13 Mb deletion from 9p24.3 to 9p23 and a 12.5Mb duplication from 9p23 to 9p21.2. The karyotype was described as 45,XX,psu dic(11; 9)(p15;p23), which was reported for the first time here. The deleted region, extending from 9p24.3 to 9p23, overlaps with the candidate region for monosomy 9p syndrome and contains a potential autism spectrum disorders (ASD) locus. The duplication region extending from 9p23 to 9p21.2 was previously identified as a critical region for the 9p duplication syndrome. These results suggested that the apparently balanced de novo translocations could produce cryptic deletions or duplications, and the precise mapping of the abnormal area may improve clinical management.  相似文献   

17.
Lee CF  Pu HY  Wang LC  Sayler RJ  Yeh CH  Wu SJ 《Planta》2006,224(2):482-483
Previously, the growth of Arabidopsis hit1-1 (heat-intolerant) mutant was found to be inhibited by both heat and water stress (Wu et al. in J Plant Physiol 157:543–547, 2000). In order to determine the genetic mutation underlying the hit1-1 phenotype, map-based cloning of HIT1 gene was conducted. Transformation of the hit1-1 mutant with a HIT1 cDNA clone reverts the mutant to the heat tolerance phenotype, confirming the identity of HIT1. Sequence analysis revealed the HIT1 gene encodes a protein of 829 amino acid residues and is homologous to yeast (Saccharomyces cerevisiae) Vps53p protein. The yeast Vps53p protein has been shown to be a tethering factor that associates with Vps52p and Vps54p in a complex formation involved in the retrograde trafficking of vesicles to the late Golgi. An Arabidopsis homolog of yeast Vps52p has previously been identified and mutation of either the homolog or HIT1 by T-DNA insertion resulted in a male-specific transmission defect. The growth of yeast vps53Δ null mutant also shows reduced thermotolerance, and expression of HIT1 in this mutant can partially complement the defect, supporting the possibility of a conserved biological function for Vps53p and HIT1. Collectively, the hit1-1 is the first mutant in higher plant linking a homolog of the vesicle tethering factor to both heat and osmotic stress tolerance.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

18.
Melanin biosynthesis is a multistep process with the first step being the conversion of L-tyrosine to L-Dopa catalyzed by the enzyme tyrosinase. The enzymes which catalyze the other steps of melanogenesis are not known. One murine pigmentation gene, the brown (b) locus, when mutated, leads to a brown or hypopigmented coat. The b-locus protein has been shown to display catalase activity. The human b-locus, therefore, is designated as CAS2. We used the mouse b-locus cDNA to isolate the human homologue, which in turn, was used to map the CAS2 locus to a human chromosome. The potential CAS2 protein codes for 527 amino acids containing a putative signal sequence and transmembrane domain. The CAS2 protein has primary and probably secondary structures similar to human tyrosinase. The CAS2 was mapped to human Chromosome 9 by somatic cell hybridization and, more specifically, to 9p22-pter by in situ hybridization. The assignment of CAS2 on the human Chromosome 9 extends this region of known homology on mouse Chromosome 4.  相似文献   

19.
We report on 2 similarly affected cousins with a compound imbalance resulting from a familial t(5;9)(q34;p23) and entailing both an ~17-Mb 5q terminal duplication and an ~12-Mb 9p terminal deletion as determined by G-banding, subtelomere FISH, and aCGH. The proband's karyotype was 46,XX,der(9)t(5;9)(q34;p23)mat.ish der(9)t(5;9)(q34;p23)(9pter-,5qter+).arr 5q34q35(163,328,000-180,629,000)×3, 9p24p23(194,000-12,664,000)×1. Her cousin had the same unbalanced karyotype inherited from his father. The clinical phenotype mainly consists of a distinct craniofacial dysmorphism featuring microcephaly, flat facies, down slanting palpebral fissures, small flat nose, long philtrum, and small mouth with thin upper lip. Additional remarkable findings were craniosynostosis of several sutures, craniolacunia and preaxial polydactyly in the proband and hypothyroidism in both subjects. The observed clinical constellation generally fits the phenotypic spectrum of the 5q distal duplication syndrome (known also as Hunter-McAlpine syndrome), except for the thyroid insufficiency which can likely be ascribed to the concurrent 9p deletion, as at least 4 other 9pter monosomic patients without chromosome 5 involvement had this hormonal disorder. The present observation further confirms the etiology of the HMS phenotype from gain of the 5q35→qter region, expands the clinical pictures of partial trisomy 5q and monosomy 9p, and provides a comprehensive list of 160 patients with 5q distal duplication.  相似文献   

20.
DNA damage activates cell cycle checkpoint signaling pathways that coordinate cell cycle arrest and DNA repair. Three of the proteins involved in checkpoint signaling, Rad1, Hus1, and Rad9, have been shown to interact by immunoprecipitation and yeast two-hybrid studies. However, it is not known how these proteins interact and assemble into a complex. In the present study we demonstrated that in human cells all the hRad9 and hHus1 and approximately one-half of the cellular pool of hRad1 interacted as a stable, biochemically discrete complex, with an apparent molecular mass of 160 kDa. This complex was reconstituted by co-expression of all three recombinant proteins in a heterologous system, and the reconstituted complex exhibited identical chromatographic behavior as the endogenous complex. Interaction studies using differentially tagged proteins demonstrated that the proteins did not self-multimerize. Rather, each protein had a binding site for the other two partners, with the N terminus of hRad9 interacting with hRad1, the N terminus of hRad1 interacting with hHus1, and the N terminus of hHus1 interacting with the C terminus of hRad9's predicted PCNA-like region. Collectively, these analyses suggest a model of how these three proteins assemble to form a functional checkpoint complex, which we dubbed the 9-1-1 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号