首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Widespread species often occur across a range of climatic conditions, through a combination of local genetic adaptations and phenotypic plasticity. Species with greater phenotypic plasticity are likely to be better positioned to cope with rapid anthropogenic climate changes, while those displaying strong local adaptations might benefit from translocations to assist the movement of adaptive genes as the climate changes. Eucalyptus tricarpa occurs across a climatic gradient in south‐eastern Australia, a region of increasing aridity, and we hypothesized that this species would display local adaptation to climate. We measured morphological and physiological traits reflecting climate responses in nine provenances from sites of 460 to 1040 mm annual rainfall, in their natural habitat and in common gardens near each end of the gradient. Local adaptation was evident in functional traits and differential growth rates in the common gardens. Some traits displayed complex combinations of plasticity and genetic divergence among provenances, including clinal variation in plasticity itself. Provenances from drier locations were more plastic in leaf thickness, whereas leaf size was more plastic in provenances from higher rainfall locations. Leaf density and stomatal physiology (as indicated by δ13C and δ18O) were highly and uniformly plastic. In addition to variation in mean trait values, genetic variation in trait plasticity may play a role in climate adaptation.  相似文献   

2.
Dormancy break and germination of seeds are governed by climatic cues, and predicted changes in climate may impact the ecology and conservation of species. Paysonia perforata and P. stonensis are rare brassicaceous winter annuals occurring primarily in fields on floodplains, where corn or soybeans are recommended for habitat maintenance. We tested the effects of precipitation, based on two predictions of changes in climate, on seed germination in these two species and placed the results into a management framework. Seeds of both species, collected during peak dispersal in late April/early May, were given various periods of light (or darkness) followed by darkness (or light) at summer temperatures before placement in darkness during late summer/early autumn in both laboratory and field. The light requirement was met earliest at 10 wk (mid-July) on alternating wet/dry substrate (simulating current climatic conditions). However, seeds of P. perforata and P. stonensis were photostimulated earliest at 2 wk (mid-May) and 6 wk (mid-June), respectively, on a continuously moist substrate (simulating predicted future conditions). The soil seed bank could be depleted if plowing coincides with photostimulation of seeds. Fields should be prepared after dispersal but before seeds are photostimulated and harvesting completed before seed germination in early September. Because seeds are highly photostimulated in late summer, disturbance from harvesting must be low to prevent burial. Cultivation of soybean, particularly for forage, is better matched to the seed biology and life cycle of Paysonia than that of corn under current and predicted climates.  相似文献   

3.
Seed mass is an adaptive trait affecting species distribution, population dynamics and community structure. In widely distributed species, variation in seed mass may reflect both genetic adaptation to local environments and adaptive phenotypic plasticity. Acknowledging the difficulty in separating these two aspects, we examined the causal relationships determining seed mass variation to better understand adaptability and/or plasticity of selected tree species to spatial/climatic variation. A total of 504, 481 and 454 seed collections of black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss) and jack pine (Pinus banksiana Lamb) across the Canadian Boreal Forest, respectively, were selected. Correlation analyses were used to determine how seed mass vary with latitude, longitude, and altitude. Structural Equation Modeling was used to examine how geographic and climatic variables influence seed mass. Climatic factors explained a large portion of the variation in seed mass (34, 14 and 29%, for black spruce, white spruce and jack pine, respectively), indicating species-specific adaptation to long term climate conditions. Higher annual mean temperature and winter precipitation caused greater seed mass in black spruce, but annual precipitation was the controlling factor for white spruce. The combination of factors such as growing season temperature and evapotranspiration, temperature seasonality and annual precipitation together determined seed mass of jack pine. Overall, sites with higher winter temperatures were correlated with larger seeds. Thus, long-term climatic conditions, at least in part, determined spatial variation in seed mass. Black spruce and Jack pine, species with relatively more specific habitat requirements and less plasticity, had more variation in seed mass explained by climate than did the more plastic species white spruce. As traits such as seed mass are related to seedling growth and survival, they potentially influence forest species composition in a changing climate and should be included in future modeling of vegetation shifts.  相似文献   

4.
Seed bank densities respond to factors across local to landscape scales, and therefore, knowledge of these responses may be necessary in forecasting the effects of climate change on the regeneration of species. This study relates the seed bank densities of species of Taxodium distichum swamps to local water regime and regional climate factors at five latitudes across the Mississippi River Alluvial Valley from southern Illinois to Louisiana. In an outdoor nursery setting, the seed banks of twenty-five swamps were exposed to non-flooded (freely drained) or flooded treatments, and the number and species of seeds germinating were recorded from each swamp during one growing season. Based on ANOVA analysis, the majority of dominant species had a higher rate of germination in non-flooded versus flooded treatments. Similarly, an NMS comparison, which considered the local water regime and regional climate of the swamps, found that the species of seeds germinating, almost completely shifted under non-flooded versus flooded treatments. For example, in wetter northern swamps, seeds of Taxodium distichum germinated in non-flooded conditions, but did not germinate from the same seed banks in flooded conditions. In wetter southern swamps, seeds of Eleocharis cellulosa germinated in flooded conditions, but did not germinate in non-flooded conditions. The strong relationship of seed germination and density relationships with local water regime and regional climate variables suggests that the forecasting of climate change effects on swamps and other wetlands needs to consider a variety of interrelated variables to make adequate projections of the regeneration responses of species to climate change. Because regeneration is an important aspect of species maintenance and restoration, climate drying could influence the species distribution of these swamps in the future.   相似文献   

5.
When exotic species spread over novel environments, their phenotype will depend on a combination of different processes, including phenotypic plasticity (PP), local adaptation (LA), environmental maternal effects (EME) and genetic drift (GD). Few attempts have been made to simultaneously address the importance of those processes in plant invasion. The present study uses the well-documented invasion history of Senecio inaequidens (Asteraceae) in southern France, where it was introduced at a single wool-processing site. It gradually invaded the Mediterranean coast and the Pyrenean Mountains, which have noticeably different climates. We used seeds from Pyrenean and Mediterranean populations, as well as populations from the first introduction area, to explore the phenotypic variation related to climatic variation. A reciprocal sowing experiment was performed with gardens under Mediterranean and Pyrenean climates. We analyzed climatic phenotypic variation in germination, growth, reproduction, leaf physiology and survival. Genetic structure in the studied invasion area was characterized using AFLP. We found consistent genetic differentiation in growth traits but no home-site advantage, so weak support for LA to climate. In contrast, genetic differentiation showed a relationship with colonization history. PP in response to climate was observed for most traits, and it played an important role in leaf trait variation. EME mediated by seed mass influenced all but leaf traits in a Pyrenean climate. Heavier, earlier-germinating seeds produced larger individuals that produced more flower heads throughout the growing season. However, in the Mediterranean garden, seed mass only influenced the germination rate. The results show that phenotypic variation in response to climate depends on various ecological and evolutionary processes associated with geographical zone and life history traits. Seeing the relative importance of EME and GD, we argue that a “local adaptation vs. phenotypic plasticity” approach is therefore not sufficient to fully understand what shapes phenotypic variation and genetic architecture of invasive populations.  相似文献   

6.
The differential adaptation of populations of the same species to their local environmental conditions through divergent selection, known as local adaptation, is a key step in the process of diversification of species. Here, we explore the local adaptation of the perennial mountain herb Helleborus foetidus to variable environmental conditions of seedling emergence and establishment at two different spatial scales (habitats and regions) with special attention to the role of physical and chemical soil properties. The possibility of local adaptation was evaluated under the ??local versus foreign?? and the ??home versus away?? criteria. Reciprocal sowing experiments were carried out by cross-sowing seeds among habitats and regions, controlling for maternal effects by means of seed mass, and recording seedling emergence and survival. Several topsoil properties were measured linked to each sowing point. Only partial patterns of local adaptation were found, which were insufficient to eventually state the existence of local adaptation at any spatial scale or under any criteria assessed. Here, we discuss how soil properties and selection on seed size may be related to the non-achievement of local adaptation criteria. Negative evidence of local adaptation seems to be due to a congruency in the selective pressures exerted by the different soil environments on seedling emergence and survival.  相似文献   

7.
Adaptation to environmental factors may influence the germination and establishment of focal species in ecological restoration. Reciprocal transplants remain one of the best methods to detect local adaptation, but long‐term studies are often not feasible. We conducted reciprocal transplants of the native California bunchgrasses Elymus glaucus and Bromus carinatus between two central California locations to seek evidence of adaptation to local environmental conditions in a single growing season. Experimental plots at one location included grazed and ungrazed sites. The combination of locations and grazing treatments allowed us to determine whether the ability to detect evidence for adaptation depended on grazing regime. In addition, we measured the direct effects of grazing on seedling growth and survival concurrent with our investigation of local adaptation. We detected a homesite advantage for seedling growth or survival in both species, but the factors contributing to adaptive differentiation were species specific. Evidence of local adaptation was detected for seedling biomass in Bromus and for survivorship in Elymus. The homesite advantage observed in both species was greatly reduced under grazed conditions and in Elymus was significant only in the ungrazed plots. Climate and soil analyses detected significant differences between locations in five soil attributes and two climate variables. In particular, differences in exchangeable magnesium indicated that one of the two transplant locations consisted of serpentine soil, which is widely known to drive adaptation in plant populations. Together, these results suggest that it is possible to investigate the scale and factors involved in local adaptation with short‐term transplant studies.  相似文献   

8.
Nurse‐plants generally have positive effects on understorey species by creating more suitable conditions for stress‐intolerant plants relative to open micro‐habitats. However, long‐term effects of this plant–plant facilitation system have been rarely examined. Seeds of five desert annual species from Atiquipa coastal desert in Southern Peru were used to examine whether different microenvironmental conditions under the nurse‐plants Caesalpinia spinosa Molina (Kuntze) lead to differences in seed biology and germinability of annual plants relative to open, canopy‐free conditions. Seeds collected from plants associated with nurse‐plants were predicted to be (i) larger due to more favourable growing conditions, (ii) more viable and with greater germination rates, (iii) less variable in size and viability due to reduced environmental heterogeneity, and (iv) to germinate faster to avoid apparent competition with other annuals. Seed attribute measurements and germination trials in growth chambers were used to test these predictions. Although the plant abundance of only 2 of 5 species was strongly facilitated by the nurse‐plant, no significant differences were found in seed mass, viability or relative variability between understorey and open micro‐habitats for any of the species. Contrary to our predictions, final seed germination rates of seeds from open micro‐habitats were higher, and the open micro‐habitat treatment was more favourable for germination of seeds from both open and understorey environments. Taken together, these results suggest that plant–plant facilitation does not necessarily affect seed biology traits. Further studies addressing larger distribution ranges and/or density gradients of understorey species will illuminate the potential evolutionary effects of nurse‐plants.  相似文献   

9.
Seed germination is the most important transitional event between early stages in the life cycle of spermatophytes and understanding it is crucial to understand plant adaptation and evolution. However, so far seed germination of phylogenetically closely related species has been poorly investigated. To test the hypothises that phylogenetically related plant species have similar seed ecophysiological traits thereby reflecting certain habitat conditions as a result of local adaptation , we studied seed dormancy and germination in seven Mediterranean species in the genus Romulea (Iridaceae). Both the across‐species model and the model accounting for shared evolutionary history showed that cool temperatures (≤ 15°C) were the main factor that promoted seed germination. The absence of embryo growth before radicle emergence is consistent with a prompt germination response at cool temperatures. The range of temperature conditions for germination became wider after a period of warm stratification, denoting a weak primary dormancy. Altogether these results indicate that the studied species exhibit a Mediterranean germination syndrome, but with species‐specific germination requirements clustered in a way that follows the phylogenetic relatedness among those species. In addition, species with heavier seeds from humid habitats showed a wider range of conditions for germination at dispersal time than species from dry habitats possessing lighter seeds. We conclude that while phylogenetically related species showed very similar germination requirements, there are subtle ecologically meaningful differences, confirming the onset of adaptation to local ecological factors mediated by species relatedness.  相似文献   

10.
Several theoretical and empirical studies have examined the influence of environmental conditions on seed traits and germination strategies of annual species. A positive relationship between seed mass and dormancy has been described for annuals occupying climatically unpredictable ecosystems. Larger-seeded species tend to have higher seedling survival rates, while dormancy allows a bet-hedging strategy in unpredictable environments. Until now, these ideas have been addressed primarily for only one or a few focal species, without considering differences among populations and communities. The novelty of the present study lies in the population and community-level approach, where a comprehensive seed trait database including 158 annual species occurring along a gradient of rainfall variability and aridity in Israel was used to ask the following question: Does average seed mass and dormancy of annual populations and communities decrease with increasing aridity and rainfall unpredictability?Soil seed bank samples were collected at the end of the summer drought, before the onset of the rains, from four plant communities. Germination was tested under irrigated conditions during three consecutive germination seasons to determine the overall seed germinability in each soil sample. Seed mass was obtained from newly produced seeds collected at the study sites in late spring. The community level results showed that, in contrast to common theoretical knowledge, seed mass and dormancy of the dominant annual species decreased with increasing aridity and rainfall variability. Accordingly, a negative correlation was found between seed mass and seed germination fractions. The present study demonstrates that an analysis of seed traits along climatic gradients is significantly improved by approaches that target both population and community levels simultaneously. A critical evaluation sheds new light upon the selective pressures that act on seed ecology of annuals along a climatic gradient and facilitates formulation of more mechanistic hypotheses about factors governing critical seed traits.  相似文献   

11.
The temporal control or timing of the life cycle of annual plants is presumed to provide adaptive strategies to escape harsh environments for survival and reproduction. This is mainly determined by the timing of germination, which is controlled by the level of seed dormancy, and of flowering initiation. However, the environmental factors driving the evolution of plant life cycles remain largely unknown. To address this question we have analysed nine quantitative life history traits, in a native regional collection of 300 wild accessions of Arabidopsis thaliana. Seed dormancy and flowering time were negatively correlated, indicating that these traits have coevolved. In addition, environmental–phenotypic analyses detected strong altitudinal and climatic clines for most life history traits. Overall, accessions showing life cycles with early flowering, small seeds, high seed dormancy and slow germination rate were associated with locations exposed to high temperature, low summer precipitation and high radiation. Furthermore, we analysed the expression level of the positive regulator of seed dormancy DELAY OF GERMINATION 1 (DOG1), finding similar but weaker altitudinal and climatic patterns than seed dormancy. Therefore, DOG1 regulatory mutations are likely to provide a quantitative molecular mechanism for the adaptation of A. thaliana life cycle to altitude and climate.  相似文献   

12.
Endozoochory, the dispersal of seeds by animal ingestion, is the most dominant mode of seed dispersal in tropical forests and is a key process shaping current and future forest dynamics. However, it remains largely unknown how endozoochory is associated with environmental conditions at regional and local scales. Here, we investigated the effects of elevation, climate, and microhabitat conditions on the proportion of endozoochorous plant species in the seed rain of the tropical Andes of southern Ecuador. Over 1 year, we measured seed rain in 162 seed traps on nine 1-ha forest plots located at 1000, 2000, and 3000 m a.s.l. We recorded climatic conditions (mean annual temperature and rainfall) in each plot and microhabitat conditions (leaf area index and soil moisture) adjacent to each seed trap. In total, we recorded 331,838 seeds belonging to 323 morphospecies. Overall, the proportion of endozoochorous species in the seed rain decreased with elevation. The relative biomass of endozoochorous species decreased with increasing rainfall, whereas the relative seed richness of endozoochorous species increased with increasing temperature and leaf area index. These findings suggest an interplay between climate factors and microhabitat conditions in shaping the importance of endozoochorous plant species in the seed rain of tropical montane forests. We conclude that changing climatic and microhabitat conditions are likely to cause changes in the dominant dispersal modes of plant communities which may trigger changes in the current and future dynamics of tropical forests.  相似文献   

13.
We examined adaptive clinal variation in seed mass among populations of an invasive annual species, Echium plantagineum, in response to climatic selection. We collected seeds from 34 field populations from a 1,000 km long temperature and rainfall gradient across the species'' introduced range in south-eastern Australia. Seeds were germinated, grown to reproductive age under common glasshouse conditions, and progeny seeds were harvested and weighed. Analyses showed that seed mass was significantly related to climatic factors, with populations sourced from hotter, more arid sites producing heavier seeds than populations from cooler and wetter sites. Seed mass was not related to edaphic factors. We also found that seed mass was significantly related to both longitude and latitude with each degree of longitude west and latitude north increasing seed mass by around 2.5% and 4% on average. There was little evidence that within-population or between-population variation in seed mass varied in a systematic manner across the study region. Our findings provide compelling evidence for development of a strong cline in seed mass across the geographic range of a widespread and highly successful invasive annual forb. Since large seed mass is known to provide reproductive assurance for plants in arid environments, our results support the hypothesis that the fitness and range potential of invasive species can increase as a result of genetic divergence of populations along broad climatic gradients. In E. plantagineum population-level differentiation has occurred in 150 years or less, indicating that the adaptation process can be rapid.  相似文献   

14.
Seed persistence is the survival of seeds in the environment once they have reached maturity. Seed persistence allows a species, population or genotype to survive long after the death of parent plants, thus distributing genetic diversity through time. The ability to predict seed persistence accurately is critical to inform long‐term weed management and flora rehabilitation programs, as well as to allow a greater understanding of plant community dynamics. Indeed, each of the 420000 seed‐bearing plant species has a unique set of seed characteristics that determine its propensity to develop a persistent soil seed bank. The duration of seed persistence varies among species and populations, and depends on the physical and physiological characteristics of seeds and how they are affected by the biotic and abiotic environment. An integrated understanding of the ecophysiological mechanisms of seed persistence is essential if we are to improve our ability to predict how long seeds can survive in soils, both now and under future climatic conditions. In this review we present an holistic overview of the seed, species, climate, soil, and other site factors that contribute mechanistically to seed persistence, incorporating physiological, biochemical and ecological perspectives. We focus on current knowledge of the seed and species traits that influence seed longevity under ex situ controlled storage conditions, and explore how this inherent longevity is moderated by changeable biotic and abiotic conditions in situ, both before and after seeds are dispersed. We argue that the persistence of a given seed population in any environment depends on its resistance to exiting the seed bank via germination or death, and on its exposure to environmental conditions that are conducive to those fates. By synthesising knowledge of how the environment affects seeds to determine when and how they leave the soil seed bank into a resistance–exposure model, we provide a new framework for developing experimental and modelling approaches to predict how long seeds will persist in a range of environments.  相似文献   

15.
Variation in seed weight is common within and among plant species, but few studies have attempted to document the pattern of seed weight and germination attributes for aquatic macrophytes at a large scale. This study examined within‐species variation in seed weight and germination attributes and the effects of environmental factors on seed traits of the submerged plant Potamogeton pectinatus in the arid zone of northwest China. Our results showed that the average seed weight was 0.24 g per 100 seeds with a coefficient of variation (CV) of 28.4% among the eight P. pectinatus populations. The total germination fraction of seeds of P. pectinatus was relatively poor, less than 35% in seven P. pectinatus populations, and the lowest germination percentage found was only 2%. There were significant differences in seed weight, time to onset of germination, and total germination fraction among the eight different populations. Hierarchical partitioning analysis showed a strongly positive correlation between seed weight and water temperature and pH. Seed weight and the maternal environmental factors significantly affected both time to initiation of germination and total germination fraction. Our results suggest that (1) seed weight variation in P. pectinatus primarily is the result of temperature variation during fruit development; (2) relatively poor germination fraction suggests that seeds are relatively unimportant in the short‐term survival of populations and that it may be another adaptive trait allowing plants to take place in the right place and at the right time, especially in harsh environment; and (3) variation in seed germination traits should be determined by local environmental and intrinsic factors that interact in a complex fashion.  相似文献   

16.
In order to predict the long-term consequences of climate change, it is necessary to link future environmental changes to mechanisms that control plant population processes. This information can then be incorporated into strategies to more accurately model climate change impacts on species or to estimate future extinction risks. We examined the impact of increased temperatures on the longevity and dynamics of the persistent soil seed banks of eight ephemeral species from arid Australia. We found that the predicted global temperature increases under climate change will be reflected in increased soil temperatures, and that seeds in the soil seed bank will be exposed to long durations of high temperatures over the summer months. Three of the eight species studied had significantly greater levels of germination after exposure to predicted increased soil temperatures. Another species displayed a dramatic decrease in seed viability after such exposure. The capacity of such species to use the seed bank to bet hedge against rainfall events that cause germination but are insufficient to allow plant maturation, is compromised by increased germinability and subsequent loss or reduction of seed bank persistence. These predicted changes in the dynamics of soil seed banks increase the risk of local extinctions of these species, while the composition of the community may be altered by changes in species abundance. Our results show that the risk spreading mechanism provided by persistent seed banks could be compromised by the mechanistic impact of forecast temperature increases in arid habitats, and highlight the need to understand mechanisms that control population dynamics when attempting to address likely future impacts of climate change on biodiversity.  相似文献   

17.
Seed germination recovery aptitude is an adaptive trait of overriding significance for the successful establishment and dispersal of extremophile plants in their native ecosystems. Cakile maritima is an annual halophyte frequent on Mediterranean coasts, which produces transiently dormant seeds under high salinity, that germinate fast when soil salinity is lowered by rainfall. Here, we report ecophysiological and proteomic data about (1) the effect of high salt (200 mM NaCl) on the early developmental stages (germination and seedling) and (2) the seed germination recovery capacity of this species. Upon salt exposure, seed germination was severely inhibited and delayed and seedling length was restricted. Interestingly, non‐germinated seeds remained viable, showing high germination percentage and faster germination than the control seeds after their transfer onto distilled water. The plant phenotypic plasticity during germination was better highlighted by the proteomic data. Salt exposure triggered (1) a marked slower degradation of seed storage reserves and (2) a significant lower abundance of proteins involved in several biological processes (primary metabolism, energy, stress‐response, folding and stability). Yet, these proteins showed strong increased abundance early after stress release, thereby sustaining the faster seed storage proteins mobilization under recovery conditions compared to the control. Overall, as part of the plant survival strategy, C. maritima seems to avoid germination and establishment under high salinity. However, this harsh condition may have a priming‐like effect, boosting seed germination and vigor under post‐stress conditions, sustained by active metabolic machinery.  相似文献   

18.
Abstract Seed characteristics are key components of plant fitness that are influenced by temperature in their maternal environment, and temperature will change with global warming. To study the effect of such temperature changes, Arabidopsis thaliana plants were grown to produce seeds along a uniquely designed polyethylene tunnel having a thermal gradient reflecting local global warming predictions. Plants therefore experienced the same variations in temperature and light conditions but different mean temperatures. A range of seed‐related plant fitness estimates were measured. There were dramatic non‐linear temperature effects on the germination behaviour in two contrasting ecotypes. Maternal temperatures lower than 15–16 °C resulted in significantly greater primary dormancy. In addition, the impact of nitrate in the growing media on dormancy was shown only by seeds produced below 15–16 °C. However, there were no consistent effects on seed yield, number, or size. Effects on germination behaviour were shown to be a species characteristic responding to temperature and not time of year. Elevating temperature above this critical value during seed development has the potential to dramatically alter the timing of subsequent seed germination and the proportion entering the soil seed bank. This has potential consequences for the whole plant life cycle and species fitness.  相似文献   

19.
《Plant Ecology & Diversity》2013,6(5-6):431-442
Background: Seed germination strategies depend on a number of factors such as climatic variables, habitat, life cycle, phylogenetic affiliation and morphological seed traits.

Aims: We present a novel evaluation of the ecological correlates of germination strategies focussing on plant populations drawn from a single genus and considering a number of relevant explanatory variables.

Methods: Temperature and light-controlled germination experiments were carried out on 21 seed accessions belonging to 13 closely related species of the genus Silene L. Accessions were selected to tightly control the phylogenetic effect and give broad ecological and geographic coverage of the genus in Europe, with three North American and Macaronesian outgroups from climatically extreme environments. We used principal component analysis and correlation analyses to identify the correlation structure of germination traits and include multiple explanatory variables.

Results: Three germination strategies were shown to be related to climatic control. (1) Seeds from arid regions with hot, dry summers germinated optimally at cool temperatures associated with the rainfall period under field conditions, whereas (2) the benefit of cold stratification was more marked in provenances characterised by cold, dry winters, and (3) seeds from mild climates preferred warm temperatures for germination. Moreover, (4) biennial populations of disturbed habitats showed synchronised and rapid seed germination over a wide thermal window. In agreement with previous findings, (5) habitat-related syndromes were observed only for wetland populations. Correlations with seed mass were significant when related to summer precipitation, but weak or absent in relation to germination traits, indicating that, though influenced by the local climate, seed mass is a poor predictor of germination strategies.

Conclusions: These results suggest that whilst habitat and life cycle might shape germination patterns to a certain extent, long-term climatic differences play a substantial role in selecting specific germination traits and strategies.  相似文献   

20.
The potential for the pre‐zygotic plant growth environment to play a role in determining seed longevity was investigated for a species that inhabits arid to semi‐arid Australia. Seed longevity is particularly important for wild populations in fluctuating environments because the longer a seed‐lot is able to survive in the soil seed bank the more likely it is to buffer the population from unpredictable environments. Thus Wahlenbergia tumidifructa plants received wet or dry soil moisture within a warm or cool glasshouse until flowering. Seeds subsequently produced by flowers that opened on the day that plants were moved to a common environment were collected at maturity and longevity assessed by controlled ageing at 60% relative humidity and 45°C. Mean seed longevity was similar for seeds produced by plants that grew in warm‐wet, warm‐dry and cool‐dry conditions (P50 of about 20 days), but extended for plants in cool‐wet conditions (P50 = 41.7 days). Cool temperatures resulted in seeds with a wider distribution of lifespans (σ = 20 days) than warm conditions (σ = 12 days); the large σ caused the extended P50 for cool‐wet plants, but not cool‐dry as a result of a concomitant reduction in initial seed germination (Ki). After moving to the common environment, all plants generated new vegetative material, which went on to produce seeds with similar longevity (P50 approx. 20 days) irrespective of original environment. Visible phenotypic responses of the parent to environmental conditions correlated with longevity and quality parameters of the progeny seeds, suggesting that a parental effect modified seed longevity. Our study provides novel empirical data showing that environmental conditions expected under climate change scenarios may potentially cause seed longevity to decline for a species that inhabits arid to semi‐arid Australia. These negative impacts on population buffering may weaken the storage effect mechanism of species coexistence in fluctuating environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号