首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polymorphism of C lambda genes and units of duplication in the genus Mus   总被引:4,自引:0,他引:4  
The number of Ig C lambda genes in nine geographically widespread species from the four subgenera in the genus Mus was estimated from the number of Bam HI and Eco RI restriction fragments that hybridize under high stringency conditions to cDNA probes of BALB/c inbred mouse origin (Mus musculus domesticus). Three closely related species in the subgenus Mus, M. musculus, M. spretus, and M. spicelegus, show considerable variation in the number of C lambda genes. Estimates of gene numbers in these animals range from two C lambda genes in M. spretus from Puerto Real, Spain to 12 C lambda genes in M. musculus musculus from Studenec, Czechoslovakia. Strains of mice carrying either six or 10 C lambda genes were derived from a single population of M. musculus domesticus from Centreville, MD. The hybridization patterns of mice exhibiting C lambda gene amplification indicate that duplications are of relatively recent origin and probably occurred by reiteration of a DNA segment closely related to the 6.5 kb [C lambda 3 - C lambda 1] unit found in BALB/c inbred mice. Three more distantly related species in the subgenus Mus, and a species representing the Nannomys subgenus all appear to carry only four C lambda genes. DNA of species representing the Coelomys and Pyromys subgenera hybridized weakly to the C lambda cDNA probes, but these animals also have no more than four C lambda genes. Thus, there may be a base number of four C lambda genes in most species in the genus Mus. All inbred strains of mice so far examined also have only four C lambda genes, but no feral M. musculus examined have fewer than six C lambda genes. One explanation of the discrepancy in the number of genes between inbred and feral M. musculus is that C lambda genes were deleted during the process of inbreeding.  相似文献   

2.
In a previous publication we identified a novel human GTP-binding protein that was related to DRG, a developmentally regulated GTP-binding protein from the central nervous system of mouse. Here we demonstrate that both the human and the mouse genome possess two closely related drg genes, termed drg1 and drg2. The two genes share 62% sequence identity at the nucleotide and 58% identity at the protein level. The corresponding proteins appear to constitute a separate family within the superfamily of the GTP-binding proteins. The DRG1 and the DRG2 mRNA are widely expressed in human and mouse tissues and show a very similar distribution pattern. The human drg1 gene is located on chromosome 22q12, the human drg2 gene on chromosome 17p12. Distantly related species including Caenorhabditis elegans, Schizosaccharomyces pombe and Saccharomyces cerevisiae also possess two drg genes. In contrast, the genomes of archaebacteria (Halobium, Methanococcus, Thermoplasma) harbor only one drg gene, while eubacteria do not seem to contain any. The high conservation of the polypeptide sequences between distantly related organisms indicates an important role for DRG1 and DRG2 in a fundamental pathway.  相似文献   

3.
Two different kappa light chain genes have previously been isolated from one mouse myeloma. The V (variable, abbreviations in ref. 2) gene segments of the two genes were now used to identify their germline counterparts in EcoRI digests of mouse liver DNA. In addition two sets of related V gene segments were found which hybridize with either of the two DNA probes. Five of the V region fragments of one set were cloned in a lambda phage vector and partially characterized by restriction mapping and Southern blot hybridization. Repetitive DNA sequences were found on each of the five fragments as well as on other cloned immunoglobulin gene containing fragments. Cross-hybridization between some but not all of the regions containing repetitive DNA sequences was observed.  相似文献   

4.
In order to study the molecular actions of growth hormone on gene expression, we have cloned and characterized two unique, but related, cDNA sequences from rat liver, lambda Spi-1 and lambda Spi-2. These two cDNA sequences are complementary to rat hepatic mRNA species previously designated as Spots 3 and 20 when assayed by in vitro translation and two-dimensional gel electrophoresis. By Northern blot, the two mRNAs are both 1900 bases in length and growth hormone administered to hypophysectomized rats increases the levels of both of these mRNAs. In contrast, the combined administration of thyroxine, corticosterone, and dihydrotestosterone to hypophysectomized rats did not augment these mRNAs. The simultaneous administration of all four hormones resulted in a level greater than that observed for animals treated with growth hormone alone. Analysis of genomic DNA suggests the presence of two similar, but not identical, genes. DNA sequencing of lambda Spi-1 and lambda Spi-2 revealed that they were 90% homologous at the nucleotide level and 87% homologous at the amino acid sequence level. lambda Spi-2 has 78% homology with mouse contrapsin, 60% with human alpha 1-antichymotrypsin, and 51-55% with alpha 1-antitrypsins, all members of the serine protease inhibitor gene family. The nucleotide and deduced amino acid sequences of lambda Spi-1 and lambda Spi-2 which align with the reactive centers of known members of this family differ substantially from each other and from other members of the family. The difference in the reactive center suggests that the specificity or function of these proteins may differ from other members of serine protease inhibitor gene family.  相似文献   

5.
Human promoters divide into 2 classes, the low CpG (LCG) and the high CpG (HCG), based on their CpG dinucleotide content. The LCG class of promoters is hypermethylated and is associated with tissue-specific genes, whereas the HCG class is hypomethylated and associated with broadly expressed genes. By analyzing several chordate genomes separated for hundreds of millions of years, here we show that the divide between low CpG and high CpG promoters is conserved in several distantly related vertebrate taxa (including human, chicken, frog, lizard, and fish) but not in close invertebrate outgroups (sea squirts). Furthermore, LCG and HCG promoters are distinctively associated with tissue-specific and broadly expressed genes in these distantly related vertebrate taxa. Our results indicate that the function of DNA methylation on gene expression is conserved across these vertebrate taxa and suggest that the 2 classes of promoters have evolved early in vertebrate evolution, as a consequence of the advent of global DNA methylation.  相似文献   

6.
Variation in V lambda genes in the genus Mus   总被引:2,自引:0,他引:2  
The complement of Ig V lambda genes in nine species of feral mice representing the four extant subgenera of the genus Mus was examined and compared with that of BALB/c inbred mice. Although all inbred strains examined have two V lambda genes, there is variation in the number of copies of V lambda genes in the wild mice. All feral representatives of M. musculus domesticus, from which inbred strains are derived, have at least three V lambda genes, indicating that a V lambda gene may have been lost during the inbreeding process. At least three V lambda genes are also found in representatives of three other M. musculus subspecies, including the stock of M. musculus musculus "Czech II" shown to have at least 12 C lambda genes. In comparing the complement of V lambda and C lambda genes in these animals, evidence is found that supports a mechanism of lambda gene reiteration involving duplication of a unit containing a V lambda and two C lambda genes. However, the possibility that C lambda gene amplification occurred independent of V lambda gene evolution cannot be ruled out. M. spicelegus and M. spretus, species that are semifertile with M. musculus, have one to three V lambda genes. Species more distantly related to M. musculus, such as M. cookii and M. platythrix, appear to have more (four to six) V lambda genes. Greater V lambda gene heterogeneity is also found in these animals. We propose that the ancestors of the subgenus Mus had more V lambda genes than are seen in modern species and that the paucity of V lambda genes in M. musculus, M. spicelegus, and M. spretus may be the result of V lambda gene deletion events that occurred since the divergence of the ancestor of these three species and those of the distantly related species.  相似文献   

7.
int-2 is one of two cellular genes (int-1 and int-2) currently implicated in the genesis of mammary carcinomas by mouse mammary tumor virus and may constitute a novel cellular proto-oncogene. Using low-stringency hybridization with mouse int-2 probes, we established that homologous genes exist in a variety of mammalian species, including humans, but failed to detect related sequences in other classes and phyla. Recombinant bacteriophage clones and a single cosmid encompassing the human int-2 gene were isolated and characterized by restriction enzyme mapping. A survey of nine primary human breast tumors, three breast tumor cell lines, and three normal individuals revealed no evidence for gross amplification or rearrangement of the int-2 locus. Three distinct restriction fragment length polymorphisms were observed which could prove useful in future linkage studies. By a combination of in situ hybridization of metaphase chromosomes and somatic cell genetics, the human int-2 gene was mapped to chromosome 11, band q13.  相似文献   

8.
A cDNA plasmid insert encoding the constant (C) region of a rabbit immunoglobulin-lambda light chain was used as a probe for screening a rabbit liver genomic DNA cosmid library. This allowed the isolation and identification of four distinct C lambda genes, designated C lambda 1, C lambda 2, C lambda 3, and C lambda 4, which were shown to be widely separated from each other along chromosomal DNA. Their nucleotide sequences have been determined. No in-frame termination codons were found within the coding regions. The C lambda 1, C lambda 2, and C lambda 3 sequences are quite similar to each other, but share less homology with the C lambda 4 gene or the cDNA-C lambda sequence used as a probe. The C lambda gene coding for the cDNA sequence was not isolated. Translation of the C lambda 1, C lambda 2, and C lambda 3 sequences predicts a Cys-Pro carboxy-terminal amino acid sequence, as found so far only for horse lambda-chains. Compared to the other rabbit C lambda genes, the C lambda 3 sequence exhibits two deletions, one of 9 bp, the other of 3 bp. The latter occurs at the same position as in the mouse C lambda 2 and C lambda 3 genes. These two deletions are located in the loops between anti-parallel beta-pleated sheets of the C lambda domain. When the C lambda nucleotide sequences from man, mouse, and rabbit are compared, there is less divergence within the same species than for interspecies comparisons. Possible genetic implications of this finding are discussed.  相似文献   

9.
10.
M Burri  Y Tromvoukis  D Bopp  G Frigerio    M Noll 《The EMBO journal》1989,8(4):1183-1190
Sequences homologous to the paired domain of Drosophila melanogaster have been conserved in species as distantly related as nematodes, sea urchins, or man. In particular, paired domains of three human genes, HuP1, HuP2 and HuP48, have been isolated and sequenced. Together with four Drosophila paired domains, they fall into two separate paired domain classes named according to their Drosophila members, paired--gooseberry and P29 class. The P29 class includes the mouse Pax 1 and the human HuP48 gene which are nearly identical in their sequenced portions and hence might be true homologues. In addition to the paired domain, the two human genes HuP1 and HuP2 share the highly conserved octapeptide HSIAGILG with the two gooseberry genes of Drosophila. Possible functions of the paired domain are discussed in the light of a predicted helix-turn-helix structure in its carboxy-terminal portion.  相似文献   

11.
A cloned alpha-amylase cDNA sequence from the mouse is homologous to a small set of DNA sequences from Drosophila melanogaster under appropriate conditions of hybridization. A number of recombinant lambda phage that carry homologous Drosophila genomic DNA sequences were isolated using the mouse clone as a hybridization probe. Putative amylase clones hybridized in situ to one or the other of two distinct sites in polytene chromosome 2R and were assigned to one of two classes, A and B. Clone lambda Dm32, representing class A, hybridizes within chromosome section 53CD. Clone lambda Dm65 of class B hybridizes within section 54A1-B1. Clone lambda Dm65 is homologous to a 1450- to 1500-nucleotide RNA species, which is sufficiently long to code for alpha-amylase. No RNA homologous to lambda Dm32 was detected. We suggest that the class B clone, lambda Dm65, contains the functional Amy structural gene(s) and that class A clones contain an amylase pseudogene.  相似文献   

12.
13.
M L Steen  L Hellman  U Pettersson 《Gene》1987,55(1):75-84
The immunoglobin lambda locus of the rat has been studied. Germ-line V lambda and C lambda genes were isolated from recombinant-phage libraries and characterized by nucleotide sequencing. The results showed that the lambda locus of the rat contains one single V lambda gene and two C lambda genes, thus representing one of the least complex lambda loci so far characterized. The two C lambda genes are separated by a spacer approx. 3 kb long. Two J segments are located at the 5' side of each C lambda gene. One of the C lambda genes (C lambda 1) probably represents a pseudogene, as the J lambda 1 segments have non-functional recombination and splice signals. The organization of the rat lambda locus resembles that of mouse, except that only one cluster is present in the rat. Thus since the evolutionary separation of the rat and mouse species ten MYR ( = 10(6) years) ago, either one cluster has been lost from the rat, or duplicated in the mouse.  相似文献   

14.
15.
We have constructed phage lambda and plasmid DNA substrates (lambda tk2 and ptk2) that contain two defective herpesvirus thymidine kinase (tk) genes that can be used to detect homologous recombination during the transfer of DNA into mouse L cells deficient in thymidine kinase activity. The recombination event reconstructs a wild-type tk gene and is scored because it converts Tk- cells to Tk+. Using this system, we have shown that (i) both intramolecular and intermolecular homologous recombination can be detected after gene transfer; (ii) the degree of recombination decreases with decreasing tk gene homology; and (iii) the efficiency of recombination can be stimulated 10- to 100-fold by cutting the tk2 DNA with restriction enzymes at appropriate sites relative to the recombining sequences. Based on the substrate requirements for these recombination events, we propose a model to explain how recombination might occur in mammalian cells. The essential features of the model are that the cut restriction site ends are substrates for cellular exonucleases that degrade DNA strands. This process exposes complementary strands of the two defective tk genes, which then pair. Removal of unpaired DNA at the junction between the paired and unpaired regions permits a gap repair process to reconstruct an intact gene.  相似文献   

16.
The multigene family encoding the five classes of replication-dependent histones has been identified from the human and mouse genome sequence. The large cluster of histone genes, HIST1, on human chromosome 6 (6p21-p22) contains 55 histone genes, and Hist1 on mouse chromosome 13 contains 51 histone genes. There are two smaller clusters on human chromosome 1: HIST2 (at 1q21), which contains six genes, and HIST3 (at 1q42), which contains three histone genes. Orthologous Hist2 and Hist3 clusters are present on mouse chromosomes 3 and 11, respectively. The organization of the human and mouse histone genes in the HIST1 cluster is essentially identical. All of the histone H1 genes are in HIST1, which is spread over about 2 Mb. There are two large gaps (>250 kb each) within this cluster where there are no histone genes, but many other genes. Each of the histone genes encodes an mRNA that ends in a stemloop followed by a purine-rich region that is complementary to the 5' end of U7 snRNA. In addition to the histone genes on these clusters, only two other genes containing the stem-loop sequence were identified, a histone H4 gene on human chromosome 12 (mouse chromosome 6) and the previously described H2a.X gene located on human chromosome 11. Each of the 14 histone H4 genes encodes the same protein, and there are only three histone H3 proteins encoded by the 12 histone H3 genes in each species. In contrast, both the mouse and human H2a and H2b proteins consist of at least 10 non-allelic variants, making the complexity of the histone protein complement significantly greater than previously thought.  相似文献   

17.
We described previously the cloning and DNA sequence of the human gene encoding pancreatic phospholipase A2 [DNA 5, 519]. When pancreatic phospholipase A2 (PLA2) cDNA was used to screen a human genomic library, two classes of clones were obtained. One class encoded the pancreatic enzyme, and a second class encoded one exon of an apparently related PLA2. No additional PLA2 gene exons displayed sufficient homology to be detected by the probe. A homologous sequence in both rat and porcine genomic DNA was detected by DNA blot hybridization, and the corresponding gene fragments were cloned and sequenced. Within the deduced amino acid sequences, the presence of known functional residues along with the high degree of interspecies conservation suggests the genes encode a functional PLA2 enzyme form. The encoded sequence lacks Cys11, as do the "type II" viperid venom and other nonpancreatic mammalian PLA2 enzymes. The sequence is distinct from porcine intestinal PLA2 and appears not to be a direct homolog of the recently published rabbit ascites and rat platelet enzymes. Hybridization of DNA probes containing sequences from these genes to genomic DNA blots of mouse/human somatic cell hybrids permitted chromosomal assignment for both. The pancreatic gene mapped to human chromosome 12, and the homologous gene mapped to chromosome 1.  相似文献   

18.
Several molecular data sets suggest that acoelomorph flatworms are not members of the phylum Platyhelminthes but form a separate branch of the Metazoa that diverged from all other bilaterian animals before the separation of protostomes and deuterostomes. Here we examine the Hox gene complement of the acoel flatworms. In two distantly related acoel taxa, we identify only three distinct classes of Hox gene: an anterior gene, a posterior gene, and a central class gene most similar to genes of Hox classes 4 and 5 in other Bilateria. Phylogenetic analysis of these genes, together with the acoel caudal homologue, supports the basal position of the acoels. The similar gene sets found in two distantly related acoels suggest that this reduced gene complement may be ancestral in the acoels and that the acoels may have diverged from other bilaterians before elaboration of the 8- to 10-gene Hox cluster that characterizes most bilaterians.  相似文献   

19.
Cloning and expression of a mouse adenine phosphoribosyltransferase gene   总被引:6,自引:0,他引:6  
A functional mouse adenine phosphoribosyltransferase (APRT) gene was identified and cloned by screening a mouse sperm genomic DNA library in lambda Charon 4A. The probe utilized for screening was a restriction fragment encoding much of the hamster APRT gene. Six recombinants that hybridized with the probe were identified, and after digestion with restriction enzymes EcoRI and PvuII revealed three different patterns of digestion for each enzyme. Of the six recombinants, five representing two of the restriction patterns possessed transforming activity. A sixth recombinant, which has a unique restriction pattern, lacks transforming activity but hybridizes well with hamster APRT coding sequences and is a possible candidate for a pseudogene. We used three criteria for conclusively identifying the mouse APRT genes. (1) DNA from the recombinant lambda phage hybridizes with DNA encoding hamster APRT. (2) The recombinant lambda phages and their DNAs transform mouse, hamster and human APRT- cells to the APRT+ phenotype. (3) The hamster and human transformants display APRT activity that migrates with a mobility characteristic of mouse APRT and not of hamster or human. A 3.1-kb EcoRI-SphI restriction fragment which retains transforming activity has been subcloned into the plasmid pBR328. Comparison of restriction enzyme sites with those contained in a mouse APRT cDNA, coupled with loss of transforming activity after enzyme digestion, indicates that the mouse APRT gene is larger than 1.8 kb and contains at least three introns.  相似文献   

20.
Molecular analysis of the human interferon-alpha gene family   总被引:22,自引:0,他引:22  
C Brack  S Nagata  N Mantei  C Weissmann 《Gene》1981,15(4):379-394
Fifteen DNA clones containing sequences related to human interferon-alpha cDNA were isolated from a human chromosomal gene bank (Nagata et al., Nature 287 (1980) 401-408) and characterized by restriction mapping, R-loop and heteroduplex analysis. Nine distinct DNA segments hybridized strongly with interferon-alpha 1 cDNA and formed R-loops with poly(A) RNA from interferon-producing human leukocytes; most if not all of these segments represent functional interferon genes. Five segments hybridized weakly with the probe and did not form R-loops with the poly(A) RNA; one of these was characterized as an interferon-alpha pseudogene. Several DNA segments overlap and define a region of 36 kilobase pairs (kb) that contains three strongly and three weakly hybridizing sequences. From our data and those of Goeddel et al. (Nature 290 (1981) 20-25) we conclude that there exist at least 11 distinct genes of gene-like sequences of the interferon-alpha type in the human genome, of which most likely represents an allelic variant, and at least five pseudogenes distantly related to the interferon-alpha genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号