首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quinoa is regarded as a highly salt tolerant halophyte crop, of great potential for cultivation on saline areas around the world. Fourteen quinoa genotypes of different geographical origin, differing in salinity tolerance, were grown under greenhouse conditions. Salinity treatment started on 10 day old seedlings. Six weeks after the treatment commenced, leaf sap Na and K content and osmolality, stomatal density, chlorophyll fluorescence characteristics, and xylem sap Na and K composition were measured. Responses to salinity differed greatly among the varieties. All cultivars had substantially increased K+ concentrations in the leaf sap, but the most tolerant cultivars had lower xylem Na+ content at the time of sampling. Most tolerant cultivars had lowest leaf sap osmolality. All varieties reduced stomata density when grown under saline conditions. All varieties clustered into two groups (includers and excluders) depending on their strategy of handling Na+ under saline conditions. Under control (non-saline) conditions, a strong positive correlation was observed between salinity tolerance and plants ability to accumulate Na+ in the shoot. Increased leaf sap K+, controlled Na+ loading to the xylem, and reduced stomata density are important physiological traits contributing to genotypic differences in salinity tolerance in quinoa, a halophyte species from Chenopodium family.  相似文献   

2.
The effect of low temperature on growth, sucrose–starch partitioning and related enzymes in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) was studied. The growth of cotyledons and growing axes in seedlings grown at 25/20 °C (light/dark) and shifted to 5/5 °C was lower than in those only growing at 25/20 °C (unstressed). However, there were no significant differences between low-temperature control and salt-treated seedlings. The higher activities of sucrose phosphate synthase (SPS, EC 2.4.1.14) and soluble acid invertase (acid INV, EC 3.2.1.25) were observed in salt-stressed cotyledons; however, the highest acid INV activity was observed in unstressed cotyledons. ADP-glucose pyrophosphorylase (ADP-GPPase, EC 2.7.7.27) was higher in unstressed cotyledons than in stressed ones. However, between 0 and 4 days the highest value was observed in salt-stressed cotyledons. The lowest value of ADP-GPPase was observed in salt-acclimated cotyledons. Low temperature also affected sucrose synthase (SuSy, EC 2.4.1.13) activity in salt-treated cotyledons. Sucrose and glucose were higher in salt-stressed cotyledons, but fructose was essentially higher in low-temperature control. Starch was higher in low-temperature control; however, the highest content was observed at 0 day in salt-acclimated cotyledons. Results demonstrated that low temperature induces different responses on sucrose–starch partitioning in salt-stressed and salt-acclimated cotyledons. Data also suggest that in salt-treated cotyledons source–sink relations (SSR) are changed in order to supply soluble sugars and proline for the osmotic adjustment. Relationships between starch formation and SuSy activity are also discussed.  相似文献   

3.
Growth, osmotic adjustment, antioxidant enzyme defense and the principle medicinal component bacoside A were studied in the in vitro raised shoot cultures of Bacopa monnieri, a known medicinal plant, under different concentrations of NaCl [0.0 (control), 50, 100, 150 or 200 mM]. A sharp increase in Na+ content was observed at 50 mM NaCl level and it was about 6.4-fold higher when compared with control. While Na+ content increased in the shoots with increasing levels of NaCl in the medium, both K+ and Ca2+ concentrations decreased. Significant reduction was observed in shoot number per culture; shoot length, fresh weight (FW), dry weight (DW) and tissue water content (TWC) when shoots were exposed to increasing NaCl concentrations (50–200 mM) as compared with the control. Decrease in TWC was not significant at higher NaCl level (150 and 200 mM). At 200 mM NaCl, growth of shoots was adversely affected and microshoots died under prolonged stress. Minimum damage to the membrane as assessed by malondialdehyde (MDA) content was noticed in the controls in contrast to sharp increase of it in NaCl-stressed shoots. Higher amounts of free proline, glycinebetaine and total soluble sugars (TSS) accumulated in NaCl-stressed shoots indicating that it is a glycinebetaine accumulator. About 2.11-fold higher H2O2 content was observed at 50 mM NaCl as compared with control and it reached up to 7.1-folds more at 200 mM NaCl. Antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase) also increased with a rise in NaCl level. Increase in bacoside A, a triterpene saponin content was observed only up to 100 mM NaCl level. Higher salt concentrations inhibited the accumulation of bacoside A. It appears from the data that accumulation of osmolytes, ions and elevated activities of antioxidant enzymes play an important role in osmotic adjustment in shoot cultures of Bacopa under salt stress.  相似文献   

4.
Plants of bean (Vicia faba L. cv. Calvor 103) were salt-stressed with NaCl and CaCl2 in concentrations inducing soil osmotic potentials (ψsoil) from 0 to -1.2 MPa and were sprayed with proline (8.7 μM) and glycinebetaine (8.5 μM) solutions. Bean plants respond to increasing soil salinity by decreased leaf relative water content and osmotic potential. Salinity decreased the contents of dry mass, chlorophyll, soluble and hydrolysable sugars, soluble proteins and enhanced content of total free amino acids, Na+, Ca2+ and Cl-. The ratio of K+/Na+ was decreased on salinization. The membranes of leaf discs from salt-stressed plants appeared to be less stable under heat stress (51 °C) than that of unstressed plants. The reverse was true for discs placed under dehydration stress (40 % polyethylene glycol 6000). Proline and glycinebetaine application reduced membrane injury, improved K+ uptake and growth. Also both solutes increased chlorophyll contents. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The salt tolerance of peanut (Arachis hypogaea L.) seedlings was evaluated by analyzing growth, nutrient uptake, electrolyte leakage, lipid peroxidation and alterations in levels of some organic metabolites under NaCl stress. The plant height, leaf area and plant biomass decreased significantly in salt-treated seedlings as compared with control. The relative water content (RWC %) of leaf decreased by 16 % at high concentrations of NaCl. There was an increase in the lipid peroxidation level and decrease in the electrolyte leakage at high concentrations of NaCl. The total free amino acid and proline contents of leaf increased by 5.5- and 43-folds, respectively in 150 mM NaCl-treated plants as compared with control. Total sugar and starch content increased significantly at high concentrations of NaCl. Chl a, Chl b, total chlorophyll and carotenoid contents decreased significantly at high salinity. Na+ contents of leaf, stem and root increased in dose-dependent manner. K+ content remained unaffected in leaf and root and decreased in stem by salinity. The results from present study reveal that the peanut plants have an efficient adaptive mechanism to tolerate high salinity by maintaining adequate leaf water status associated with growth restriction. In order to circumvent the stress resulting from high salinity, the levels of some organic metabolites such as total free amino acids, proline, total sugars and starch were elevated. The elevated levels of the organic metabolites may possibly have some role in maintenance of osmotic homeostasis, nutrient uptake and adequate tissue water status in peanut seedlings under high-salinity conditions.  相似文献   

6.
In the face of diminishing fresh water resources and increasing soil salinisation it is relevant to evaluate the potential of halophytic plant species to be cultivated in arid and semi-arid regions, where the productivity of most crop plants is markedly affected. Quinoa is a facultative halophytic plant species with the most tolerant varieties being able to cope with salinity levels as high as those present in sea water. This characteristic has aroused the interest in the species, and a number of studies have been performed with the aim of elucidating the mechanisms used by quinoa in order to cope with high salt levels in the soil at various stages of plant development. In quinoa key traits seem to be an efficient control of Na+ sequestration in leaf vacuoles, xylem Na+ loading, higher ROS tolerance, better K+ retention, and an efficient control over stomatal development and aperture. The purpose of this review is to give an overview on the existing knowledge of the salt tolerance of quinoa, to discuss the potential of quinoa for cultivation in salt-affected regions and as a basis for further research in the field of plant salt tolerance.  相似文献   

7.
Effects of NaCl on growth in vitro and contents of sugars, free proline and proteins in the seedlings and leaf explants of Nicotiana tabacum cv. Virginia were investigated. The fresh and dry mass of the seedlings decreased under salinity. These growth parameters in leaf explants decreased at 50 mM NaCl and increased up to 150 mM NaCl and then decreased at higher level of salinity. Free proline content in both seedlings and leaf explants increased and polysaccharide content decreased continuously with increasing of NaCl concentration. Reducing sugars, oligosaccharides, soluble sugars and total sugars contents in both seedlings and leaf explants decreased up to 150 mM NaCl and then increased at higher concentrations of NaCl.  相似文献   

8.
Salinity tolerance of sugar beet (Beta vulgaris L.) cultivars in terms of growth, proline and soluble sugars concentrations, and Na+/K+ and Na+/Ca2+ ratios were analyzed in this study. Three-week-old seedlings of three sugar beet cultivars, ‘Gantang7’, ‘SD13829’, and ‘ST21916’, differing in salinity tolerance, were treated with 0, 50, 100, and 200 mM NaCl. Plant shoots and roots were harvested at 7 days after treatment and subjected to analysis. Low concentration of NaCl (50 mM) enhanced fresh and dry weights of shoot and root in ‘Gantang7’, whereas high one (200 mM) reduced growth in all cultivars and the less reduction was observed in ‘ST21916’. Shoot proline was strongly induced by salinity stress in both ‘Gantang7’ and ‘SD13829’, while it remained unchanged in ‘ST21916’. The addition of 50 mM NaCl significantly increased shoot soluble sugars concentrations in ‘Gantang7’ while it had no significant effects in the other two cultivars. ‘Gantang7’ also showed a higher level of root soluble sugars concentration as compared to the other two cultivars. At 50 mM NaCl, the lower shoot Na+ concentration, and the higher shoot K+ and root Ca2+ concentration in ‘Gantang7’ resulted in the lower shoot Na+/K+ and root Na+/Ca2+ ratio. However, ‘SD13829’ maintained a lower Na+/K+ ratio in both shoot and root when subjected to 200 mM NaCl treatment. According to comprehensive evaluation on salinity tolerance, it is clear that ‘Gantang7’ is more tolerant to salinity than the other two cultivars. Therefore, it is suggested that ‘Gantang7’ should be more suitable for cultivating in the arid and semi-arid irrigated regions.  相似文献   

9.
The effects of NaCl (0, 50, 100, 150 and 200 mM) on growth, water relations, glycinebetaine, free proline, ion contents, stomata number and size of Kochia prostrata (L.) Schard were determined. Shoot and root fresh and dry matter, root and shoot length, relative growth rate, net assimilation rate, relative water content, water use efficiency, soluble sugars and glycinebetaine contents were not changed at low NaCl concentrations, but they were significantly decreased at 200 mM NaCl. The K+, Mg2+ and Ca2+ contents, water potential, chlorophyll a+b and carotenoides contents, and stomata number and size were reduced already at low concentrations of NaCl. In contrast, the Na+, Cl and proline contents increased several times with increasing NaCl concentration. Kochia prostrata is a salt tolerant species, the optimal growth of this plant occurred up to 150 mM NaCl. The mechanisms of salt tolerance in the plant may be balance among ion accumulation and production of glycinebetaine, proline, soluble sugars for maintenance of pressure potential.  相似文献   

10.
We studied the NaCl-induced changes in cotyledons and the embryonic axis of establishing dwarf cashew (Anacardium occidentale) seedlings. The salt stress reduced the growth of dwarf cashew seedlings, and this response was related to the inhibition of cotyledonary reserve depletion. Lipid mobilization was inhibited by NaCl due to reduced lipase activity in the emerging and establishing seedlings. Additionally, there was reduced transient starch accumulation in the cotyledons of the salt-stressed seedlings that was associated with lower starch synthase activity at the early developmental stages and inhibited amylolytic and starch phosphorylase activities at the established seedling stage. The NaCl-induced changes in lipid and starch metabolism influenced the soluble sugar content in the cotyledons. Protein mobilization was inhibited by NaCl, and we observed the accumulation of amino acids and the inhibition of proteolytic activity in the cotyledons of the salt-stressed established seedlings. Salinity significantly reduced the free amino acid and reducing sugar contents in the embryonic axes of both emerged and established seedlings, whereas the non-reducing sugar content was affected by this stress only in the established seedlings. The Na+ and Cl? contents progressively increased in the cotyledons and embryonic axis of the seedlings as the salinity increased. We conclude that salt stress inhibits dwarf cashew seedling establishment by inhibiting the mobilization of reserves, an inhibition that was related to increased Na+ and Cl? accumulation in the cotyledons. Additionally, these toxic ions reduced the sink strength of the embryonic axis with regard to the products of cotyledonary reserve mobilization.  相似文献   

11.
Salinity extent and severity is rising because of poor management practices on agricultural lands, possibility lies to grow salt‐tolerant crops with better management techniques. Therefore, a highly nutritive salt‐tolerant crop quinoa with immense potential to contribute for future food security was selected for this investigation. Soil drenching of paclobutrazol (PBZ; 20 mg l?1) was used to understand the ionic relations, gaseous exchange characteristics, oxidative defense system and yield under saline conditions (400 mM NaCl) including normal (0 mM NaCl) and no PBZ (0 mg l?1) as controls. The results revealed that salinity stress reduced the growth and yield of quinoa through perturbing ionic homeostasis with the consequences of overproduction of reactive oxygen species (ROS), oxidative damages and reduced photosynthesis. PBZ improved the quinoa performance through regulation of ionic homeostasis by decreasing Na+, Cl?, while improving K+, Mg2+ and Ca2+ concentration. It also enhanced the antioxidative system including ascorbic acid, phenylalanine ammonia‐lyase, polyphenol oxidase and glutathione peroxidase, which scavenged the ROS (H2O2 and O2?‐) and lowered the oxidative damages (malondialdehyde level) under salinity in roots and more specifically in leaf tissues. The photosynthetic rate and stomatal conductance consequently improved (16 and 21%, respectively) in salt‐stressed quinoa PBZ‐treated compared to the non‐treated ones and contributed to the improvement of panicle length (33%), 100‐grain weight (8%) and grain yield (38%). Therefore, PBZ can be opted as a shotgun approach to improve quinoa performance and other crops under high saline conditions.  相似文献   

12.
Low temperature represents one of the principal limitations in species distribution and crop productivity. Responses to chilling include the accumulation of simple carbohydrates and changes in enzymes involved in their metabolism. Soluble carbohydrate levels and invertase, sucrose synthase (SS), sucrose-6-phosphate synthase (SPS) and alpha-amylase activities were analysed in cotyledons and embryonic axes of quinoa seedlings grown at 5 degrees C and 25 degrees C in the dark. Significant differences in enzyme activities and carbohydrate levels were observed. Sucrose content in cotyledons was found to be similar in both treatments, while in embryonic axes there were differences. Invertase activity was the most sensitive to temperature in both organs; however, SS and SPS activities appear to be less stress-sensitive. Results suggest that 1) metabolism in germinating perispermic seeds would be different from endospermic seeds, 2) sucrose futile cycles would be operating in cotyledons, but not in embryonic axes of quinoa seedlings under our experimental conditions, 3) low temperature might induce different regulatory mechanisms on invertase, SS and SPS enzymes in both cotyledons and embryonic axes of quinoa seedlings, and 4) low temperature rather than water uptake would be mainly responsible for the changes observed in carbohydrate and related enzyme activities.  相似文献   

13.
To elucidate the osmotic adjustment characteristics of mangrove plants, inorganic ion and organic solute contents of intermediate leaves were investigated in 3-month-old Kandelia candel (L.) Druce seedlings during 45 days of NaCl treatments (0, 200, and 500 mM NaCl). The contents of Na+, Cl, total free amino acids, proline, total soluble sugars, pinitol and mannitol increased to different degree by salinity, whereas, K+ content decreased by salinity compared with control. NaCl treatment induced an increase of inorganic ion contribution while a decrease of organic solute contribution. It was concluded that accumulating a large amount of inorganic ions was used as the main osmotic adjustment mechanism under salinity treatment. However, accumulation of organic osmolytes might be considered to play much more important role in osmoregulation under severe salinity (500 mM NaCl) than under moderate salinity (200 mM NaCl), thus the damage caused by high toxic ions (Na+ and Cl) concentration in K. candel leaves could be avoided.  相似文献   

14.
The effects of NaCl stress on growth, water status, contents of protein, proline, malondialdehyde (MDA), various sugars and photosynthetic pigments were investigated in seedlings of Salicornia persica and S. europaea grown in vitro. Seeds were germinated under NaCl (0, 100, 200, 300, 400, 500 and 600 mM) on Murashige and Skoog medium for 45 d. The shoot growth of both species increased under low NaCl concentration (100 mM) and then decreased with increasing NaCl concentrations. In contrast to S. persica, root length in S. europaea reduced steadily with an increase in salinity. Proline content in S. persica was higher than in S. europaea at most NaCl concentrations. Proline, reducing saccharide, oligosaccharide and soluble saccharide contents increased under salinity in both species. In contrast, contents of proteins and polysaccharides reduced in both species under salt stress. MDA content remained close to control at moderate NaCl concentrations (100 and 200 mM) and increased at higher salinities. MDA content in S. europaea was significantly higher than S. persica at higher salinities. Salt treatments decreased K+ and P contents in seedlings of both species. Significant reduction in contents of chlorophylls and carotenoids due to NaCl stress was also observed in seedlings of both species. Some differences appeared between S. persica and S. europaea concerning proteins profile. On the basis of the data obtained, S. persica is more salt-tolerant than S. europaea.  相似文献   

15.
To determine the effects of vermicompost leachate (VCL) on resistance to salt stress in plants, young tomato seedlings (Solanum lycopersicum, cv. Ailsa Craig) were exposed to salinity (150 mM NaCl addition to nutrient solution) for 7 days after or during 6 mL L??1 VCL application. Salt stress significantly decreased leaf fresh and dry weights, reduced leaf water content, significantly increased root and leaf Na+ concentrations, and decreased K+ concentrations. Salt stress decreased stomatal conductance (gs), net photosynthesis (A), instantaneous transpiration (E), maximal efficiency of PSII photochemistry in the dark-adapted state (Fv/Fm), photochemical quenching (qP), and actual PSII photochemical efficiency (ΦPSII). VCL applied during salt stress increased leaf fresh weight and gs, but did not reduce leaf osmotic potential, despite increased proline content in salt-treated plants. VCL reduced Na+ concentrations in leaves (by 21.4%), but increased them in roots (by 16.9%). VCL pre-treatment followed by salt stress was more efficient than VCL concomitant to salt stress, since VCL pre-treatment provided the greatest osmotic adjustment recorded, with maintenance of net photosynthesis and K+/Na+ ratios following salt stress. VCL pre-treatment also led to the highest proline content in leaves (50 µmol g??1 FW) and the highest sugar content in roots (9.2 µmol g??1 FW). Fluorescence-related parameters confirmed that VCL pre-treatment of salt-stressed plants showed higher PSII stability and efficiency compared to plants under concomitant VCL and salt stress. Therefore, VCL represents an efficient protective agent for improvement of salt-stress resistance in tomato.  相似文献   

16.
  • Seedling establishment is a critical step in environment colonisation by higher plants that frequently occurs under adverse conditions. Thus, we carried out an integrated analysis of seedling growth, water status, ion accumulation, reserve mobilisation, metabolite partitioning and hydrolase activity during seedling establishment of the native Caatinga species Piptadenia moniliformis (Benth.) Luckow & R.W. Jobson under salinity.
  • Two‐day‐old seedlings were cultivated in vitro for 4 days in water agar (control) or supplemented with 50 or 100 mm NaCl. Biochemical determinations were performed according to standard spectrophotometric protocols.
  • We found that 100 mm NaCl stimulated starch degradation, amylase activity and soluble sugar accumulation, but limited storage protein hydrolysis in the cotyledons of P. moniliformis seedlings. Although Na+ accumulation in the seedling affected K+ partitioning between different organs, it was not possible to associate the salt‐induced changes in reserve mobilisation with Na+ toxicity, or water status, in the cotyledons. Remarkably, we found that starch content increased in the roots of P. moniliformis seedlings under 100 mm NaCl, probably in response to the toxic effects of Na+.
  • The mobilisation of carbon and nitrogen reserves is independently regulated in P. moniliformis seedlings under salt stress. The salt‐induced delay in seedling establishment and the resulting changes in the source–sink relationship may lead to storage protein retention in the cotyledons. Possibly, the intensification of starch mobilisation in the cotyledons supported starch accumulation in the root as a potential mechanism to mitigate Na+ toxicity.
  相似文献   

17.
Prior to sowing, seeds of bean (Phaseolus vulgaris L.) were treated with 4 mM arginine or 0.1% urea, as nitrogen source. The seeds were then subjected to salinity stress. Arginine and urea treatments stimulated germination of both unstressed and salinity-stressed seeds. It was interesting to observe that the increased germination percentage in response to arginine and urea treatments was associated with increased content of polyamines, particularly putrescine (Put), spermidine (Spd) and spermine (Spm). Growth of the seedlings was also improved by application of arginine and urea, which was also associated with increased content of the polyamines Spd and Spm, while the Put content decreased. Total soluble sugars were much accumulated in response to arginine and urea treatments under salinity stress for cellular osmoregulation. The ratio of K+/Na+ increased in the leaves by application of arginine and urea, indicating a more alleviation to the adverse effects of salinity stress. Changes in proteinogenic amino acids were also investigated.  相似文献   

18.
Abstract Lentil seeds were sown in water and with different concentrations of polyethylene glycol (PEG) 4000 or NaCl. Radicle emergence and growth were delayed by these substances. In cotyledons under stress no variations in solutes occurred, whereas in embryonic axes an accumulation of soluble sugars was observed. The major constituents of the soluble carbohydrates were sucrose, galactose and mannose. Glycosidase activities were not significantly affected in PEG- or NaCl-germinatcd seeds, except axis α-galactosidase, whose activity during axis growth was higher under stress. Water and salt stress did not have a marked effect on carbohydrate metabolism in intact seedlings. The rate of release of 14C from [6-14C]-glucose was similar in the stressed seeds and in the control seeds.  相似文献   

19.
The interactive effects of salinity stress (40, 80, 120 and 160 mM NaCl) and ascorbic acid (0.6 mM), thiamin (0.3 mM) or sodium salicylate (0.6 mM) were studied in wheat (Triticum aestivum L.). The contents of cellulose, lignin of either shoots or roots, pectin of root and soluble sugars of shoots were lowered with the rise of NaCl concentration. On the other hand, the contents of hemicellulose and soluble sugars of roots, starch and soluble proteins of shoots, proline of either shoots or roots, and amino acids of roots were raised. Also, increasing NaCl concentration in the culture media increased Na+ and Ca2+ accumulation and gradually lowered K+ and Mg2+ concentration in different organs of wheat plant. Grain soaking in ascorbic acid, thiamin or sodium salicylate could counteract the adverse effects of NaCl salinity on the seedlings of wheat plant by suppression of salt stress induced accumulation of proline.  相似文献   

20.
Salinity reduced mung bean (Vigna radiata Wilczek) radicle and root elongation, delayed and inhibited hypocotyl elongation and mobilization of reserves from the cotyledons to the embryo axis. Fresh and dry masses and water content of the embryo axes were reduced. Under salinity, a net leakage of K to the media increased with time and increasing NaCl concentrations. Sugars present in the cotyledons of seeds were of primary importance for growth of the embryo axis upto 18 h after sowing whereas breakdown of starch by amylase contributed later, the contribution being delayed and reduced with increasing NaCl concentration. Even when amylase activity in the cotyledons was progressively reduced with increasing NaCl concentration, the increasing contents of soluble sugars in the cotyledons indicated that sugars were not limiting for mung bean seedling growth under salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号