首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background and aims

The quantification of root dynamics remains a major challenge in ecological research because root sampling is laborious and prone to error due to unavoidable disturbance of the delicate soil-root interface. The objective of the present study was to quantify the distribution of the biomass and turnover of roots of poplars (Populus) and associated understory vegetation during the second growing season of a high-density short rotation coppice culture.

Methods

Roots were manually picked from soil samples collected with a soil core from narrow (75 cm apart) and wide rows (150 cm apart) of the double-row planting system from two genetically contrasting poplar genotypes. Several methods of estimating root production and turnover were compared.

Results

Poplar fine root biomass was higher in the narrow rows than in the wide rows. In spite of genetic differences in above-ground biomass, annual fine root productivity was similar for both genotypes (ca. 44 g DM m?2 year?1). Weed root biomass was equally distributed over the ground surface, and root productivity was more than two times higher compared to poplar fine roots (ca. 109 g DM m?2 year?1).

Conclusions

Early in SRC plantation development, weeds result in significant root competition to the crop tree poplars, but may confer certain ecosystem services such as carbon input to soil and retention of available soil N until the trees fully occupy the site.  相似文献   

2.
Cai  Huiying  Li  Fengri  Jin  Guangze 《Plant and Soil》2019,443(1-2):463-471
Plant and Soil - Priming effect (PE) of soil organic carbon (SOC) decomposition induced by exogenous organic C is an important ecological process in regulating the soil C cycle. The objective of...  相似文献   

3.
Fine root turnover of irrigated hedgerow intercropping in Northern Kenya   总被引:3,自引:0,他引:3  
Lehmann  Johannes  Zech  Wolfgang 《Plant and Soil》1998,198(1):19-31
Fine root turnover (<2 mm) was determined from repeated measurements of root distribution up to 120 cm soil depth by core sampling in four month intervals. Sole cropped Sorghum bicolor and Acacia saligna were compared with the agroforestry combination in an alley cropping system in semiarid Northern Kenya. Three methods for the calculation of root production were used: the max-min, balancing-transfer and compartment-flow method. The highest root biomass was found in the topsoil for all cropping systems, though trees had a deeper root system. Trees and crops had a similar amount of below-ground biomass during the vegetation period (0.3 and 0.4 Mg DM ha-1 120 cm-1), but in the agroforestry combination root biomass was more than the sum of the sole cropped systems (1.1 Mg DM ha-1 120 cm-1). The tree system showed a very static root development with little fluctuation between seasons, whereas root biomasses were very dynamic in the crop and tree + crop systems. Root production was highest in the tree + crop combination with 2.1 Mg DM ha-1 a-1, with about 50% less in sole cropped trees and crops. Root N input to soil decreased in the order tree + crop>tree>crop system with 13.5, 11.0 and 3.2 kg N ha-1 a-1, and cannot be estimated from total below-ground biomass or carbon turnover, as N is accumulated in senescing roots. Such low N input to soil stresses the need for investigating other processes of nutrient input from roots to soil. Areas of highest N input were identified in the topsoil under the tree row in the tree system. Resource utilisation and C and N input to soil were highest with a combination of annual and perennial crops.  相似文献   

4.
Fine roots constitute a large and dynamic component of the carbon cycles of terrestrial ecosystems. The reported fivefold discrepancy in turnover estimates between median longevity (ML) from minirhizotrons and mean residence time (MRT) using carbon isotopes may have global consequences. Here, a root branch order-based model and a simulated factorial experiment were used to examine four sources of error. Inherent differences between ML, a number-based measure, and MRT, a mass-based measure, and the inability of the MRT method to account for multiple replacements of rapidly cycling roots were the two sources of error that contributed more to the disparity than did the improper choice of root age distribution models and sampling bias. Sensitivity analysis showed that the rate at which root longevity increases as order increases was the most important factor influencing the disparity between ML and MRT. Assessing root populations for each branch order may substantially reduce the errors in longevity estimates of the fine root guild. Our results point to the need to acquire longevity estimates of different orders, particularly those of higher orders.  相似文献   

5.
武夷山甜槠林细根生物量和生长量研究   总被引:65,自引:8,他引:65  
对武夷山甜槠林细根生物量和生长量的季节动态及其在不同群落发育阶段下的变化进行了初步研究,并对细根在养分归还中的作用进行了分析.结果表明,甜槠成熟林细根生物量为10.645t·hm-2,生长量为7.3715t·hm-2·a-1,分解量为4.6775t·hm-2·a-1,年周转率0.69次;细根生物量和生长量随林龄增长的变化模式为单峰型曲线,生物量至34龄时达到最大值,生长量至群落郁闭阶段(58龄)达到最大值;甜槠成熟林中,通过细根死亡的N素归还量占群落年归还总量的49.5%,多于凋落物途径,P、Mg归还量所占比例为42.3%和28.9%,略低于凋落物途径;K、Ca归还以降水淋溶为主,其次是凋落物途径,而细根途径仅占总归还量的19.3%和9.2%.  相似文献   

6.
Summary Belowground processes in light gap openings are poorly understood, particularly in tropical forests. Fine roots in three zones of light gap openings and adjacent intact forest were regularly measured in buried bags and surface litter envelopes for 2 years. Fine root biomass does not vary significantly within gaps for either buried bags or for surface litter envelopes. When entire gaps are compared without regard for within gap zones, root growth into both surface litter and buried bags is significantly different between gaps, with highest rates of fine root biomass accumulation in the smallest gap. These results suggest that the aboveground within-gap zones do not result in a congruent pattern of below-ground zonation. Gap size, decomposition of the fallen tree, and pre-gap fine root growth rates should be considered to determine fine root growth patterns following the formation of light gap openings.  相似文献   

7.
Seasonality in fine root standing crop and production was studied in two tropical dry evergreen forests viz., Marakkanam reserve forest (MRF) and Puthupet sacred grove (PSG) in the Coromandel coast of India. The study extended from December 89 to December 91 in MRF and from August 90 to December 91 in PSG with sampling at every 2 months. Total fine interval. Mean fine root standing crop was 134 g m−2 in MRF and 234 g m−2 in PSG. root production was 104 g m−2 yr−1 in MRF and 117 g m−2 yr−1 in PSG. These estimates lie within the range for fine roots reported for various tropical forests. Rootmass showed a pronounced seasonal pattern with unimodal peaks obtained during December in the first year and from October–December in the second year in MRF. In PSG greater rootmass was noticed from June–October than other times of sampling. The total root mass in MRF ranged from 114 to 145 g m−2 at the 13 sampling dates in the three sites. The live biomass fraction of fine roots in MRF ranged from 46 to 203 g m−2 and in PSG it ranged from 141 to 359 g mm−2 during the study periods. The dead necromass fraction of fine roots ranged from 6 to 37 g m−2 in MRF and from 12 to 66 g m−2 in PSG. Fine root production peaked during December in both the forest sites. The necromass fraction of newly produced roots was negligible. Total N was slightly greater in PSG than in MRF. Whereas total P level was almost similar in both the sites. The study revealed that season and site characteristics influenced fine root system.  相似文献   

8.
General regularities in the structure of the microbial communities of southern taiga soil ecosystems and taxonomic differences between the microbial communities of soils with different hydrothermal characteristics are discussed with reference to the main types of soils of the Central State Forest Biosphere Reserve.  相似文献   

9.
Singh  Bajrang  Tripathi  K.P.  Jain  R.K.  Behl  H.M. 《Plant and Soil》2000,219(1-2):81-89
The study was carried out under three types of plantation forest of 40 years, growing on infertile sodic soils, poor in organic matter and N content, of Indogangetic alluvium at Lucknow (26°45 N; 80°53 E). Fine root biomass estimated under three forests did not differ much with season, or with species (106–113 g m-2) but varied with soil depth to 0.45 m. The proportion of very fine roots (<0.5 mm) increased with soil depth. Available N in soil was greatest under mixed forest followed by Eucalyptus camaldulensis and Acacia nilotica planted soils. N was maximum in summer season and decreased with soil depth. Nitrogen mineralization during anerobic incubation of 14 days could not be differentiated by tree species, but the monsoon season favoured the process and winter season retarded it. Mineralization decreased with soil depth corresponding to fine roots. There was a reduction in bulk density of soil, pH and EC in forested soil compared to a similar but non forested soil, whereas, organic C and total N increased in forested soils. N mineralization was found to be affected significantly with the fine root biomass and available N content in the soils, whereas negative relations of mineralized N with pH and EC were noticed, though these were not significantly different in this study.  相似文献   

10.
三峡库区马尾松人工林细根生产和周转   总被引:2,自引:0,他引:2  
2011年3-12月,采用连续根钻法和分解袋法,研究了三峡库区20年生马尾松人工林细根的季节动态,计算了细根的年生产量和周转率.结果表明:三峡库区马尾松人工林细根(<2 mm)年均生物量为146.98 g·m-2,其中活细根年均生物量(102.92 g·m-2)远大于死细根生物量(44.06 g·m-2);不同径级细根现存量的时间动态不同,<1 mm根系季节动态较为明显,整体呈单峰型曲线;马尾松人工林细根(<2 mm)的年生产量为104.12 g·m-2·a-1,年周转率为1.05 a-1,其中<1 mm和1~2 mm的年生产量分别为58.35和45.77 g·m-2·a-1,周转率为1.41和0.69 a-1.  相似文献   

11.
12.
施氮肥对水曲柳人工林细根生产和周转的影响   总被引:3,自引:0,他引:3  
细根周转与土壤养分密切相关,但由于根系研究方法的差异以及研究对象的不同,土壤养分对细根周转影响的研究存在不一致的结论。本文以水曲柳(Fraxinus mandshurica)人工林为对象,应用3种方法研究施氮肥对细根生产和周转的影响。结果表明:施肥降低了活细根现存生物量,但施氮肥样地细根年生产量平均值(93.105g&#183;m^-2&#183;a^-1)与对照样地(93.505g&#183;m^-2&#183;a^-1)没有差异,不同方法得出施氮肥样地细根平均周转率(0.917次&#183;a^-1)大于对照样地(0.710次&#183;a^-1);不同土层内细根的生产量显著不同,表层生产量最大,土层越深细根生产量越低,但细根周转率一般随土壤加深而加快;不同的研究方法得出细根的年生产量和周转率差异较大,分室模型法最高,其次是内生长土芯法,极差法和积分法最低。  相似文献   

13.
The effects of fertilization [control (C), 200kgNha–1+25kgP ha–1 (LNP) and 400kgNha–1+ 50kgP ha–1 (HNP)] on fine root dynamics were examined in a 40-year-old Larix leptolepis plantation in central Korea. The average fine root biomass during the growing season for C, LNP and HNP was 957, 934 and 814kgha–1, respectively, whereas the fine root production for C, LNP and HNP was 2103, 2131 and 2066kgha–1, respectively. Nitrogen and P inputs into the soil via fine root turnover for C, LNP and HNP were 23.0 and 1.2, 23.3 and 1.2 and 22.6 and 1.2kgha–1, respectively. There were no significant differences in fine root biomass, production and N and P inputs through fine root turnover between the fertilization treatments during the first growing season after fertilization.  相似文献   

14.
15.
Du YX  Pan GX  Li LQ  Hu ZL  Wang XZ 《应用生态学报》2010,21(8):1926-1932
为了解喀斯特生态系统退化过程中树木细根生物量和土壤养分的变化,选择贵州中部喀斯特山地乔木林、灌木林和灌草丛3种植被生态系统,比较分析不同深度(0~5 cm、5~10 cm和10~15 cm)土壤细根数量及其养分情况.结果表明:树木细根主要分布在0~10 cm土层,并随土层加深而减少.在0~10 cm土层中,乔木林、灌木林和灌草丛的活细根生物量分别占0~15 cm总细根生物量的42.78%、56.75%和53.38%,总活细根生物量的83.36%、86.91%和93.79%.不同植被下优势种植物细根生物量存在差异.0~5 cm土层乔木林活细根氮素和磷素储量均显著高于灌草丛和灌木林(P0.05),但灌木林和灌草丛间没有差异;5~10 cm土层乔木林活细根氮和磷储量显著高于灌草丛和灌木林(P0.05),灌木林下又显著高于灌草丛下(P0.05).0~10 cm土层的活细根生物量与植株地上部分生物量呈正相关,植物叶片氮、磷养分含量与细根比根长呈显著的负相关,说明细根的养分储量对地上生物量的建成和生态系统功能的发挥具有重要作用.  相似文献   

16.
Fine root biomass and C content are critical components in ecosystem C models, but they cannot be directly determined by minirhizotron techniques, and indirect methods involve estimating 3-dimensional values (biomass/ soil volume) from 2-dimensional measurements. To estimate biomass from minirhizotron data, a conversion factor for length to biomass must be developed, and assumptions regarding depth of view must be made. In a scrub-oak ecosystem in central Florida, USA, root length density (RLD) was monitored for 10 years in a CO2 manipulation experiment using minirhizotron tubes. In the seventh year of the study, soil cores were removed from both ambient and elevated CO2 chambers. Roots from those cores were used to determine specific root length values (m/g) that were applied to the long-term RLD data for an estimation of root biomass over 10 years of CO2 manipulation. Root length and biomass estimated from minirhizotron data were comparable to determinations from soil cores, suggesting that the minirhizotron biomass model is valid. Biomass estimates from minirhizotrons indicate the <0.25 mm diameter roots accounted for nearly 95% of the total root length in 2002. The long-term trends for this smallest size class (<0.25 mm diameter) mirrored the RLD trends closely, particularly in relation to suspected root closure in this system. Elevated CO2 did not significantly affect specific root length as determined by the soil cores. A significant treatment effect indicated smallest diameter fine roots (<0.25 mm) were greater under elevated CO2 during the early years of the study and the largest (2–10 mm) had greater biomass under elevated CO2 during the later years of the study. Overall, this method permits long-term analysis of the effects of elevated CO2 on fine root biomass accumulation and provides essential information for carbon models.  相似文献   

17.

Key message

In black spruce stands on permafrost, trees and understory plants showed higher biomass allocation especially to ‘thin’ fine roots (diam. < 0.5 mm) when growing on shallower permafrost table.

Abstract

Black spruce (Picea mariana) forests in interior Alaska are located on permafrost and show greater below-ground biomass allocation than non-permafrost forests. However, information on fine roots (roots <2 mm in diameter), which have a key role in nutrient uptake and below-ground carbon flux, is still limited especially for effects of different permafrost conditions. In this study, we examined fine root biomass in two black spruce stands with different depths to the permafrost table. In the shallow permafrost (SP) plot, fine root biomass of black spruce trees was 70 % of that in the deep permafrost (DP) plot. In contrast, ratio of the fine root biomass to above-ground biomass was greater in the SP plot than in the DP plot. Understory plants, on the other hand, showed larger fine root biomass in the SP plot than in the DP plot, whereas their above-ground biomass was similar between the two plots. In addition, biomass proportion of ‘thin’ fine roots (diam. <0.5 mm) in total fine roots was greater in the SP plot than in the DP plot. These results suggest that black spruce trees and understory plants could increase biomass allocation to fine roots for efficient below-ground resource acquisition from colder environments with shallower permafrost table. In the SP plot, fine roots of understory plants accounted for 30 % of the stand fine root biomass, suggesting that understory plants such as Ledum and Vaccinium spp. would have significant contribution to below-ground carbon dynamics in permafrost forests.
  相似文献   

18.
Surnames of parents and grandparents were collected from 1993 children in the primary schools of the thirteen Italo-Greco communes that lie in two areas, four communes in Reggio Calabria in the "toe" of Italy and nine in Lecce in the "heel." The coefficients of relationship by isonymy show almost no relationship between the two areas. The smaller area in Reggio Calabria Province has consistently larger coefficients of relationship between communes than the larger area in Lecce Province. The difference can be ascribed to greater accumulated random isonymy in the smaller area. These populations are not genetic isolates, but each area shows a degree of cohesiveness with respect to surnames that suggests that they are genetically somewhat distinct. Contiguous pairs of communes tend to have higher coefficients of relationship than pairs of communes separated by intervening communes.  相似文献   

19.
This paper presents a technique for accurate estimation of growth in root culture systems. Biomass correlations, were used to estimate fresh weight time course data in shake flasks and reactors based on a model of liquid nutrient uptake and osmolality, to account for changing specific water content of roots. This mass balance technique has been developed to permit accurate aseptic on-line estimation of dry weight (DW), fresh weight (FW), and liquid volume (V) in root cultures utilizing either refractive index or electrical conductivity of the liquid medium along with liquid medium osmolality. The ability to predict fresh weight is particularly important since this is proportional to the biomass volume fraction which determines mass transfer and other culture transport characteristics. The proposed model has been validated with time course information (DW, FW, and V) from 125 mL shake flasks and corroborated with data obtained from 2 L reactors. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

20.
The Rhinelander free-air CO(2) enrichment (FACE) experiment is designed to understand ecosystem response to elevated atmospheric carbon dioxide (+CO(2)) and elevated tropospheric ozone (+O(3)). The objectives of this study were: to understand how soil respiration responded to the experimental treatments; to determine whether fine-root biomass was correlated to rates of soil respiration; and to measure rates of fine-root turnover in aspen (Populus tremuloides) forests and determine whether root turnover might be driving patterns in soil respiration. Soil respiration was measured, root biomass was determined, and estimates of root production, mortality and biomass turnover were made. Soil respiration was greatest in the +CO(2) and +CO(2) +O(3) treatments across all three plant communities. Soil respiration was correlated with increases in fine-root biomass. In the aspen community, annual fine-root production and mortality (g m(-2)) were positively affected by +O(3). After 10 yr of exposure, +CO(2) +O(3)-induced increases in belowground carbon allocation suggest that the positive effects of elevated CO(2) on belowground net primary productivity (NPP) may not be offset by negative effects of O(3). For the aspen community, fine-root biomass is actually stimulated by +O(3), and especially +CO(2) +O(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号