首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在福建省建瓯万木林自然保护区,选取针叶树种杉木(Cunninghamia lanceolata,CUL)细根和常绿阔叶树种米槠(Castanopsis carlesii,CAC)细根,采用网袋法进行了为期720d细根(分0-1mm、1-2mm两个径级)单独分解(在各自细根的起源林分)和混合分解(分别在杉木林和米槠林)干重损失及其养分释放动态的研究。结果表明:杉木和米槠细根混合分解前期(0-270d)曾对干重损失起促进作用,而之后(270-720d),细根混合起了抑制作用。分解过程中的养分释放与干重损失有所不同,混合分解前期(0-360d)出现过促进作用,分解后期(360-720d),除1-2mm径级混合细根P的释放既没有促进也没有抑制作用外,均表现为养分释放的抑制作用。细根混合分解过程中干重损失和养分释放速率变化与分解者生物群落有很大关系。  相似文献   

2.
Understory vegetation plays a crucial role in carbon and nutrient cycling in forest ecosystems; however, it is not clear how understory species affect tree litter decomposition and nutrient dynamics. In this study, we examined the impacts of understory litter on the decomposition and nutrient release of tree litter both in a pine (Pinus sylvestris var. mongolica) and a poplar (Populus × xiaozhuanica) plantation in Northeast China. Leaf litter of tree species, and senesced aboveground materials from two dominant understory species, Artemisia scoparia and Setaria viridis in the pine stand and Elymus villifer and A. sieversiana in the poplar stand, were collected. Mass loss and N and P fluxes of single-species litter and three-species mixtures in each of the two forests were quantified. Data from single-species litterbags were used to generate predicted mass loss and N and P fluxes for the mixed-species litterbags. In the mixture from the pine stand, the observed mass loss and N release did not differ from the predicted value, whereas the observed P release was greater than the predicted value. However, the presence of understory litter decelerated the mass loss and did not affect N and P releases from the pine litter. In the poplar stand, litter mixture presented a positive non-additive effect on litter mass loss and P release, but an addition effect on N release. The presence of understory species accelerated only N release of poplar litter. Moreover, the responses of mass loss and N and P releases of understory litter in the mixtures varied with species in both pine and poplar plantations. Our results suggest that the effects of understory species on tree litter decomposition vary with tree species, and also highlight the importance of understory species in litter decomposition and nutrient cycles in forest ecosystems.  相似文献   

3.

Background and aims

Litter decomposition is a key process controlling flows of energy and nutrients in ecosystems. Altered biodiversity and nutrient availability may affect litter decomposition. However, little is known about the response of litter decomposition to co-occurring changes in species evenness and soil nutrient availability.

Methods

We used a microcosm experiment to evaluate the simultaneous effects of species evenness (two levels), identity of the dominant species (three species) and soil N availability (control and N addition) on litter decomposition in a Mongolian pine (Pinus sylvestris var. mongolica) plantation in Northeast China. Mongolian pine needles and senesced aboveground materials of two dominant understory species (Setaria viridis and Artemisia scoparia) were used for incubation.

Results

Litter evenness, dominant species identity and N addition significantly affected species interaction and litter decomposition. Higher level of species evenness increased the decomposition rate of litter mixtures and decreased the incidence of antagonistic effects. A. scoparia-dominated litter mixtures decomposed faster than P. sylvestris var. mongolica- and S. viridis-dominated litter mixtures. Notably, N addition increased decomposition rate of both single-species litters and litter mixtures, and meanwhile altered the incidence and direction of non-additive effects during decomposition of litter mixtures. The presence of understory species litters stimulated the decomposition rate of pine litters irrespective of N addition, whereas the presence of pine litters suppressed the mass loss of A. scoparia litters. Moreover, N addition weakened the promoting effects of understory species litters on decomposition of pine litters.

Conclusions

Pine litter retarded the decomposition of understory species litters whereas its own decomposition was accelerated in mixtures. Nitrogen addition and understory species evenness altered species interaction through species-specific responses in litter mixtures and thus affected litter decomposition in Mongolian pine forests, which could produce a potential influence on ecosystem C budget and nutrient cycling.  相似文献   

4.
Many studies across a range of ecosystems have shown that decomposition in mixed litter is not predictable from single-species results due to synergistic or antagonistic interactions. Some studies also reveal that species composition and relative abundance may be more important than just richness in driving non-additive effects. Most studies on litter decomposition in Mediterranean maquis, an high-diversity shrubby ecosystem, have dealt exclusively with single species. In this study we investigated, at the individual-litter level, as well as at the litter-mixture level, the effect of litter mixing on decomposition of 3-species litter assemblages with different relative abundance of the component litters; we set up two types of litter assemblages that reflected the heterogeneity of bush cover in the inner maquis and at the edge maquis/gaps, as related to the leaf traits, i.e. sclerophylly vs mesophylly. We measured mass loss, decay of lignin, cellulose and ADSS (acid detergent soluble substances) and fungal mycelium ingrowth. The results show that over a 403-day incubation period, the decomposition of individual litters in mixtures deviated from that of monospecific litters and had different directions. In litter mixtures of the sclerophylls Phillyrea angustifolia and Pistacea lentiscus with the mesophyll Cistus, decomposition was lower than expected (antagonistic effect); in the mixtures of litters with similar physical structure (Ph. angustifolia and P. lentiscus with Quercus ilex) decomposition was faster than expected (synergistic effect). When considering the different decomposition phases, both negative and positive effects occurred in Quercus mixtures depending on the phase of decomposition. In both types of 3-species litter assemblages the greatest effect occurred in uneven mixtures rather than in even mixtures. Our results show that species composition drives the direction whilst the decomposability and the relative abundance drive the magnitude of non-additive effects of litter mixing on decomposition.  相似文献   

5.
The mass loss of litter mixtures is often different than expected based on the mass loss of the component species. We investigated if the identity of neighbour species affects these litter-mixing effects. To achieve this, we compared decomposition rates in monoculture and in all possible two-species combinations of eight tree species, widely differing in litter chemistry, set out in two contrasting New Zealand forest types. Litter from the mixed-species litter bags was separated into its component species, which allowed us to quantify the importance of litter-mixing effects and neighbour identity, relative to the effects of species identity, litter chemistry and litter incubation environment. Controlling factors on litter decomposition rate decreased in importance in the order: species identity (litter quality) >> forest type >> neighbour species. Species identity had the strongest influence on decomposition rate. Interspecific differences in initial litter lignin concentration explained a large proportion of the interspecific differences in litter decomposition rate. Litter mass loss was higher and litter-mixture effects were stronger on the younger, more fertile alluvial soils than on the older, less-fertile marine terrace soils. Litter-mixture effects only shifted percentage mass loss within the range of 1.5%. There was no evidence that certain litter mixtures consistently showed interactive effects. Contrary to common theory, adding a relatively fast-decomposing species generally slowed down the decomposition of the slower decomposing species in the mixture. This study shows that: (1) species identity, litter chemistry and forest type are quantitatively the most important drivers of litter decomposition in a New Zealand rain forest; (2) litter-mixture effects—although statistically significant—are far less important and hardly depend on the identity and the chemical characteristics of the neighbour species; (3) additive effects predominate in this ecosystem, so that mass dynamics of the mixtures can be predicted from the monocultures.  相似文献   

6.
Decomposition of plant litter is a key process for the flow of energy and nutrients in ecosystems that may be sensitive to the loss of biodiversity. Two hypothetical mechanisms by which changes in plant diversity could affect litter decomposition are (1) through changes in litter species composition, and (2) by altering the decomposition microenvironment. We tested these ideas in relation to the short-term decomposition of herbaceous plant litter in experimental plant assemblages that differed in the numbers and types of plant species and functional groups that they contained to simulate loss of plant diversity. We used different litterbag experiments to separate the two potential pathways through which diversity could have an effect on decomposition. Our two litterbag trials showed that altering plant diversity affected litter breakdown differently through changes in decomposition microenvironment than through changes in litter composition. In the decomposition microenvironment experiment there was a significant but weak decline in decomposition rate in relation to decreasing plant diversity but no significant effect of plant composition. The litter composition experiment showed no effect of richness but significant effects of composition, including large differences between plant species and functional groups in litter chemistry and decomposition rate. However, for a nested subset of our litter mixtures decomposition was not accurately predicted from single-species bags; there were positive, non-additive effects of litter mixing which enhanced decomposition. We critically assess the strengths and limitations of our short-term litterbag trials in predicting the longer-term effects of changes in plant diversity on litter decomposition rates.  相似文献   

7.
The decomposition rates of plant litter mixtures often deviate from the averaged rates of monocultures of their component litter species. The mechanisms behind these non‐additive effects in decomposition of litter mixtures are lively debated. One plausible explanation for non‐additive effects is given by the improved microenvironmental condition (IMC) theory. According to this theory, plant litter species, whose physical characteristics improve the microclimatic conditions for decomposers, will promote the decomposition of their co‐occurring litter species. We tested the IMC theory in relation to leaf litter and soil moisture in two contrasting moisture conditions in a dry subarctic mountain birch forest with vascular plant leaf litters of poor and high quality. The non‐additive effects in mass loss of litter mixtures increased when moisture conditions in litter and soil became more favourable for plant litter decomposition. The sign of this increase (antagonistic or synergistic) in non‐additive effects was more predictable for litter mixtures of poor litter quality. Although the specific mechanisms underlying the IMC theory depended on the litter quality of the litter mixtures, a standardized water holding capacity (WHC) was the litter trait most closely related to the non‐additive effects in mixtures of both poor and high quality litter types. Furthermore, we found that higher dissimilarity in WHC traits between the component litter species in a mixture increased synergistic effects in litter mixtures under limiting moisture conditions. However, under improved moisture conditions, increased antagonistic effects were observed. Thus, we found clear support for the IMC theory and showed that climatic conditions and leaf litter physical traits determine whether the non‐additive effects in litter mixtures are antagonistic or synergistic. Our study emphasizes the need to include litter physical traits into predictive models of mixing effects on plant litter decomposition and in general suggests climate specificity into these models.  相似文献   

8.
Plant litter diversity effects on decomposition rates are frequently reported, but with a strong bias towards temperate ecosystems. Altered decomposition and nutrient recycling with changing litter diversity may be particularly important in tree species-rich tropical rainforests on nutrient-poor soils. Using 28 different mixtures of leaf litter from 16 Amazonian rainforest tree species, we tested the hypothesis that litter mixture effects on decomposition increase with increasing functional litter diversity. Litter mixtures and all single litter species were exposed in the field for 9 months using custom-made microcosms with soil fauna access. In order to test the hypothesis that the long-term presence of tree species contributing to the litter mixtures increases mixture effects on decomposition, microcosms were installed in a plantation at sites including the respective tree species composition and in a nearby natural forest where these tree species are absent. We found that mixture decomposition deviated from predictions based on single species, with predominantly synergistic effects. Functional litter diversity, defined as either richness, evenness, or divergence based on a wide range of chemical traits, did not explain the observed litter mixture effects. However, synergistic effects in litter mixtures increased with the long-term presence of tree species contributing to these mixtures as the home field advantage hypothesis assumes. Our data suggest that complementarity effects on mixed litter decomposition may emerge through long-term interactions between aboveground and belowground biota.  相似文献   

9.
Ecosystem-level nutrient dynamics during decomposition are often estimated from litter monocultures. If species effects are additive, we can statistically predict nutrient dynamics in multi-species systems from monoculture work, and potential consequences of species loss. However, if species effects are dependent on interactions with other litter species (that is, non-additive), predictions based on monoculture data will likely be inaccurate. We conducted a 3-year, full-factorial, mixed-litter decomposition study of four dominant tree species in a temperate forest and measured nitrogen and phosphorus dynamics to explore whether nutrient dynamics in mixtures were additive or non-additive. Following common approaches, we used litterfall data to predict nutrient dynamics at the ecosystem-level. In mixtures, we observed non-additive effects of litter mixing on nutrient dynamics: the presence of nutrient-rich species in mixture facilitated nutrient release, whereas nutrient-poor species facilitated nutrient retention. Fewer nutrients were released from mixtures containing high-quality litter, and more immobilized from mixtures containing low-quality litter, than predicted from monocultures, creating a difference in overall nutrient release between predicted and actual dynamics in litter mixtures. Nutrient release at the ecosystem-level was greatly overestimated when based on monocultures because the effect of species interactions on nutrient immobilization was not accounted for. Our data illustrate that the identity of species in mixtures is key to their role in non-additive interactions, with repercussions for mineral nutrient availability and storage. These results suggest that predictions of ecosystem-level nutrient dynamics using litter monoculture data likely do not accurately represent actual dynamics because the effects of litter species interactions are not incorporated. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Foliar litter decomposition of nine species in broadleaf-mixed Korean pine plantation forests, northeast China was assessed over a 34-month field experiment using litterbag method. Litter mass loss generally followed a sequential decomposition of water-soluble fraction (WSF), acid-soluble fraction (ASF), and acid-insoluble fraction (AIF). WSF decomposition contributed most of litter mass loss in the first 6 months, while ASF accounted for most of litter mass loss thereafter. There existed significant autocorrelations among the initial litter quality indices. Initial N, K, Ca, AIF, AIF/N, ASF/N, and WSF/N were significantly related to the percent remaining of litter mass, N, P, Ca, and Mg in both month 12 and month 34. No litter quality can significantly predict the percent remaining of AIF and K. N and P were immobilized by all litters, but Ca, Mg, and K exhibited minor or no immobilization phase. N was the most limiting element in this forest based on the results of correlation analysis and nutrient elements release dynamics. The relationships between WSF, ASF, and AIF loss and N or P release rate fitted the polynomial regression. The decomposition of WSF and ASF were faster than N and P were mineralized during the study. AIF loss rate relative to N and P loss varied greatly among species, with high-N litter showing slower AIF decomposition rates than N and P. The loss rates of WSF and ASF were in proportion to that of K, Ca, and Mg, while AIF decomposed slower than K, Ca, and Mg. This suggested that the decomposition of WSF and ASF caused the net release of K, Ca, and Mg. Responsible Editor: David E. Crowley.  相似文献   

11.
Litter decomposition and nutrient release of selected dominant synusiae in an old-growth, evergreen, broad-leaved mossy forest on Ailao Mountain, Yunnan, south-west China, were studied over a 22-month period. The species studied were three dominant tall tree species, Lithocarpus xylocarpus Markg., Lithocarpus chintungensis Hsu et Qian and Castanopsis wattii A. Camus; one dominant understory species (the bamboo Sinarundinaria nitida Nakai); and a mixture of dominant mosses (including Homaliodendron scalpellifolium Fleisch, Symphyodon perrottetti Mont., Herberta longifolissa Steph. and Bazzania albicans Horik.). Fast initial litter decomposition was followed by lower rates. Decomposition rates of canopy species and bamboo leaf litter appear to be controlled by the initial concentration of lignin, nitrogen (N) and phosphorus (P) more than by morphological features of the leaves. The decay rate of moss litter was less correlated with nutrient composition and lignin concentration in initial mass. The order of decomposition rates was Castanopsis wattii > L. xylocarpus > L. chintungensis > bamboo > moss. The decomposition rate constants (k) of the leaf litter for the canopy species L. xylocarpus, L. chintungensis and Castanopsis wattii were 0.62, 0.50 and 0.64, respectively, and 0.40 and 0.22 for bamboo and moss, respectively. Turnover time (1/k) for the three canopy species was 1.61 years, 2.0 years and 1.55 years, respectively, and 2.50 years and 4.55 years for bamboo and moss, respectively. The N and P concentration in the decomposing leaf litter increased in the first 6 months and then decreased over the remaining period. There was a relatively rapid initial loss of potassium (K), followed by a slight increase. Each of calcium (Ca) and magnesium (Mg) decreased with time whereas iron (Fe) and manganese (Mn) increased with time to some extent. Nutrient release from decomposing leaf litter was in the order of K > Mg > Ca > N > P > Mn > Fe, except for bamboo (Sinarundinaria nitida) K > Ca > P > N > Mg > Mn > Fe.  相似文献   

12.
Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.  相似文献   

13.
Litter decomposition is an essential process for biogeochemical cycling and for the formation of new soil organic matter. Mixing litter from different tree species has been reported to increase litter decomposition rates through synergistic effects. We assessed the decomposition rates of leaf litter from five tree species in a recently established tree diversity experiment on a post-agriculture site in Belgium. We used 20 different leaf litter compositions with diversity levels ranging from 1 up to 4 species. Litter mass loss in litterbags was assessed 10, 20, 25, 35, and 60 weeks after installation in the field. We found that litter decomposition rates were higher for high-quality litters, i.e., with high nitrogen content and low lignin content. The decomposition rates of mixed litter were more affected by the identity of the litter species within the mixture than by the diversity of the litter per se, but the variability in litter decomposition rates decreased as the litter diversity increased. Among the 15 different mixed litter compositions in our study, only three litter combinations showed synergistic effects. Our study suggests that admixing tree species with high-quality litter in post-agricultural plantations helps in increasing the mixture's early-stage litter decomposition rate.  相似文献   

14.
Decomposition dynamics in mixed-species leaf litter   总被引:57,自引:1,他引:57  
Literature on plant leaf litter decomposition is substantial, but only in recent years have potential interactions among leaves of different species during decomposition been examined. We review emerging research on patterns of mass loss, changes in nutrient concentration, and decomposer abundance and activity when leaves of different species are decaying in mixtures. Approximately 30 papers have been published that directly examine decomposition in leaf mixtures as well as in all component species decaying alone. From these litter‐mix experiments, it is clear that decomposition patterns are not always predictable from single‐species dynamics. (Characteristics of decomposition in litter‐mixes that deviate from responses predicted from decomposition of single‐species litters alone are designated "non‐additive"; "additive" responses in mixes are predictable from component species decaying alone.) Non‐additive patterns of mass loss were observed in 67% of tested mixtures; mass loss is often (though not always) increased when litters of different species are mixed. Observed mass loss in some mixtures is as much as 65% more extensive than expected from decomposition of single‐species litter, but more often mass loss in mixtures exceeds expected decay by 20% or less. Nutrient transfer among leaves of different species is striking, with 76% of the mixtures showing non‐additive dynamics of nutrient concentrations. Non‐additive patterns in the abundance and activity of decomposers were observed in 55% and 65% of leaf mixes, respectively. We discuss some methodological details that likely contribute to conflicting results among mixed‐litter studies to date. Enough information is available to begin formulating mechanistic hypotheses to explain patterns in litter‐mix experiments. Emerging patterns in the mixed‐litter decomposition literature have implications for relationships between biodiversity and ecosystem function (in this case, the function being decomposition), and for potential mechanisms through which invasive plant species could alter carbon and nutrient dynamics in ecosystems.  相似文献   

15.
The litter mass loss, concentration and mass of some major nutrient elements, degradation of lignin and cellulose in decomposing Quercus serrata Murray leaf litter were monitored for 3 years using the litterbag method. The mobility of elements during the course of the study was in the order of: K > P > C > Mg > Ca > N. Three patterns of nutrient dynamics were observed: (i) concentration increased while mass decreased (N, Mg and Ca); (ii) concentration and nutrient mass decreased (K and C); and (iii) both concentration and mass had fluctuated (P). The C to element ratio tended to increase as the element was released, and decreased as the element was retained. Nitrogen mobility in relation to carbon was characterized by three phases: (i) initial release; (ii) accumulation and (iii) final release. The decay rate (k) calculated from 0–6 months period was overestimated for an average annual rate while those of 0–36 months fit the negative single exponential model (Adj. r2 = 0.99) better than shorter periods. For lignin, the concentration had increased then decreased but tended to stabilize after 1 year while the lignin mass had continuously decreased throughout the study period. During the first 9 months, both the concentrations and mass of cellulose had fluctuated but declined thereafter. The amounts of N had initially increased but declined after 1 year; P had fluctuated while K, Ca, Mg and C had decreased throughout the study. N and C/N ratio exerted strong influence on mass loss during the first24 months but the influence of lignin emerged after 24 months.  相似文献   

16.
The leaf litter environment (single species versus mixed species), and interactions between litter diversity and macrofauna are thought to be important in influencing decomposition rates. However, the role of soil macrofauna in the breakdown of different species of leaf litter is poorly understood. In this study we examine the multiple biotic controls of decomposition – litter quality, soil macrofauna and litter environment and their interactions. The influence of soil macrofauna and litter environment on the decomposition of six deciduous tree species (Fraxinus excelsior L., Acer pseudoplatanus L., Acer campestre L., Corylus avellana L., Quercus robur L., Fagus sylvatica L.) was investigated in a temperate forest, Wytham Woods, Southern England. We used litterbags that selectively excluded macrofauna to assess the relative importance of macrofauna versus microbial, micro and mesofauna decomposition, and placed single species bags in either conspecific single species or mixed species litter environments. The study was designed to separate plant species composition effects on litter decomposition rates, allowing us to evaluate whether mixed species litter environments affect decomposition rates compared to single species litter environments, and if so whether the effects vary among litter species, over time, and with regard to the presence of soil macrofauna. All species had faster rates of decomposition when macrofauna were present, with 22–41% of the total mass loss attributed to macrofauna. Macrofauna were most important for easily decomposable species as soon as the leaves were placed on the ground, but were most important for recalcitrant species after nine months in the field. The mass loss rates did not differ between mixed and single species litter environments, indicating that observed differences between single species and mixed species litterbags in previous field studies are due to the direct contact of neighbouring species inside the litterbag rather than the litter environment in which they are placed.  相似文献   

17.
Following studies that showed negative effects of species loss on ecosystem functioning, newer studies have started to investigate if similar consequences could result from reductions of genetic diversity within species. We tested the influence of genotypic richness and dissimilarity (plots containing one, three, six or 12 genotypes) in stands of the invasive plant Solidago canadensis in China on the decomposition of its leaf litter and associated soil animals over five monthly time intervals. We found that the logarithm of genotypic richness was positively linearly related to mass loss of C, N and P from the litter and to richness and abundance of soil animals on the litter samples. The mixing proportion of litter from two sites, but not genotypic dissimilarity of mixtures, had additional effects on measured variables. The litter diversity effects on soil animals were particularly strong under the most stressful conditions of hot weather in July: at this time richness and abundance of soil animals were higher in 12-genotype litter mixtures than even in the highest corresponding one-genotype litter. The litter diversity effects on decomposition were in part mediated by soil animals: the abundance of Acarina, when used as covariate in the analysis, fully explained the litter diversity effects on mass loss of N and P. Overall, our study shows that high genotypic richness of S. canadensis leaf litter positively affects richness and abundance of soil animals, which in turn accelerate litter decomposition and P release from litter.  相似文献   

18.

Background and aims

Precipitation and nitrogen (N) deposition are predicted to increase in northern China. The present paper aimed to better understand how different dominant species in semi-arid grasslands in this region vary in their litter decomposition and nutrient release responses to increases in precipitation and N deposition.

Methods

Above-ground litter of three dominant species (two grasses, Agropyron cristatum and Stipa krylovii, and one forb, Artemisia frigida) was collected from areas without experimental treatments in a semi-arid grassland in Inner Mongolia. Litter decomposition was studied over three years to determine the effects of water and N addition on litter decomposition rate and nutrient dynamics.

Results

Litter mass loss and nutrient release were faster for the forb species than for the two grasses during decomposition. Both water and N addition increased litter mass loss of the grass A. cristatum, while the treatments showed no impacts on that of the forb A. frigida. Supplemental N had time-dependent, positive effects on litter mass loss of the grass S. krylovii. During the three-year decomposition study, the release of N from litter was inhibited by N addition for the three species, and it was promoted by water addition for the two grasses. Across all treatments, N and potassium (K) were released from the litter of all three species, whereas calcium (Ca) was accumulated. Phosphorus (P) and magnesium (Mg) were released from the forb litter but accumulated in the grass litter after three years of decomposition.

Conclusions

Our findings revealed that the litter decomposition response to water and N supplementation differed among dominant plant species in a semi-arid grassland, indicating that changes in dominant plant species induced by projected increases in precipitation and N deposition are likely to affect litter decomposition, nutrient cycling, and further biogeochemical cycles in this grassland. The asynchronous nutrient release of different species’ litter found in the present study highlights the complexity of nutrient replenishment from litter decomposition in the temperate steppe under scenarios of enhancing precipitation and N deposition.
  相似文献   

19.
Many studies have estimated relationships between biodiversity and ecosystem functioning, and observed generally positive effects. Because detritus is a major food resource in stream ecosystems, decomposition of leaf litter is an important ecosystem process and many studies report the full range of positive, negative and no effects of diversity on decomposition. However, the mechanisms underlying decomposition processes in fresh water remain poorly understood. Organism body stoichiometry relates to consumption rates and tendencies, and decomposition processes of litter may therefore be affected by diversity in detritivore body stoichiometry. We predicted that the stoichiometric diversity of detritivores (differences in C: nutrient ratios among species) would increase the litter processing efficiency (litter mass loss per total capita metabolic capacity) in fresh water through complementation regarding different nutrient requirements. To test this prediction, we conducted a microcosm experiment wherein we manipulated the stoichiometric diversity of detritivores and quantified mass loss of leaf litter mixtures. We compared litter processing efficiency among litter species in each microcosm with single species detritivores, and observed detritivores with nutrient‐rich bodies tended to prefer litter with lower C: nutrient ratios over litter with higher C: nutrient ratios. Furthermore, litter processing efficiencies were significantly higher in the microcosms containing species of detritivores with both nutrient‐rich and ‐poor bodies than microcosms containing species of detritivores including only nutrient‐rich or ‐poor bodies. This might mean a higher stoichiometric diversity of detritivores increased litter processing efficiency. Our results suggest that ecological stoichiometry may improve understanding of links between biodiversity and ecosystem function in freshwater ecosystems.  相似文献   

20.
Plant species can differ in the quantity and quality of leaf litter they produce, and many studies have examined whether plant species diversity affects leaf-litter decomposition and nutrient release. A growing number of studies have indicated that intra-specific variation within plant species can also affect key ecosystem processes. However, the relative importance of intra- versus inter-specific variation for the functioning of ecosystems remains poorly known. Here, we investigate the effects of intra-specific variation in a dominant old-field plant species, tall goldenrod (Solidago altissima), and inter-specific variation among goldenrod species on litter quality, decomposition, and nitrogen (N) release. We found that the nutrient concentration of leaf litter varied among genotypes, which translated into ~50% difference in decomposition rates. Variation among other goldenrod species in decomposition rate was more than twice that of genetic variation within S. altissima. Furthermore, by manipulating litterbags to contain 1, 3, 6, or 9 genotypes, we found that S. altissima genotype identity had much stronger effects than did genotypic diversity on leaf-litter quality, decomposition, and N release. Taken together, these results suggest that the order of ecological importance for controlling leaf-litter decomposition and N release dynamics is plant species identity?genotype identity>genotypic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号