首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of plant genetics on predators, especially those not living on the plant itself, are rarely studied and poorly understood. Therefore, we investigated the effect of plant hybridization and genotype on litter-dwelling spiders. Using an 18-year-old cottonwood common garden, we recorded agelenid sheet-web density associated with the litter layers of replicated genotypes of three tree cross types: Populus fremontii, Populus angustifolia, and their F1 hybrids. We surveyed 118 trees for agelenid litter webs at two distances from the trees (0–100 and 100–200 cm from trunk) and measured litter depth as a potential mechanism of web density patterns. Five major results emerged: web density within a 1-m radius of P. angustifolia was approximately three times higher than within a 1-m radius of P. fremontii, with F1 hybrids having intermediate densities; web density responded to P. angustifolia and F1 hybrid genotypes as indicated by a significant genotype × distance interaction, with some genotypes exhibiting a strong decline in web density with distance, while others did not; P. angustifolia litter layers were deeper than those of P. fremontii at both distance classes, and litter depth among P. angustifolia genotypes differed up to 300 %; cross type and genotype influenced web density via their effects on litter depth, and these effects were influenced by distance; web density was more sensitive to the effects of tree cross type than genotype. By influencing generalist predators, plant hybridization and genotype may indirectly impact trophic interactions such as intraguild predation, possibly affecting trophic cascades and ecosystem processes.  相似文献   

2.
Soils are one of the first selective environments a seed experiences and yet little is known about the evolutionary consequences of plant-soil feedbacks. We have previously found that plant phytochemical traits in a model system, Populus spp., influence rates of leaf litter decay, soil microbial communities and rates of soil net nitrogen mineralization. Utilizing this natural variation in plant-soil linkages we examined two related hypotheses: (1) Populus angustifolia seedlings are locally adapted to their native soils; and (2) Soils act as agents of selection, differentially affecting seedling survival and the heritability of plant traits. We conducted a greenhouse experiment by planting seedlings from 20 randomly collected P. angustifolia genetic families in soils conditioned by various Populus species and measured subsequent survival and performance. Even though P. angustifolia soils are less fertile overall, P. angustifolia seedlings grown in these soils were twice as likely to survive, grew 24% taller, had 27% more leaves, and 29% greater above-ground biomass than P. angustifolia seedlings grown in non-native P. fremontii or hybrid soils. Increased survival resulted in higher trait variation among seedlings in native soils compared to seedlings grown in non-native soils. Soil microbial biomass varied significantly across soil environments which could explain more of the variation in seedling performance than soil texture, pH, or nutrient availability, suggesting strong microbial interactions and feedbacks between plants, soils, and associated microorganisms. Overall, these data suggest that a “home-field advantage” or a positive plant soil feedback helps maintain genetic variance in P. angustifolia seedlings.  相似文献   

3.
Elaeagnus angustifolia L., a nonnative N2-fixer, has established within riparian corridors of the interior western United States and is now the fourth most frequently occurring woody riparian plant in this region. We examined whether E. angustifolia alters pools and fluxes of soil inorganic N at eight sites dominated by Populus deltoides ssp. wislizeni along the Rio Grande in New Mexico over 2 years. E. angustifolia contributed a small fraction of total leaf fall (<5% across sites) but accounted for a disproportionately high amount of N (19%) that entered the system from P. deltoides and E. angustifolia leaf fall, due to the high N content (>2%) of E. angustifolia senesced leaves. Soil inorganic N concentrations and potential rates of nitrification and net N mineralization varied across sites. E. angustifolia leaf fall explained 59% of the variation in soil inorganic N concentrations across years. This relationship suggests that inputs of N-rich leaf litter from E. angustifolia may increase N availability in riparian soils. We detected no relationship between E. angustifolia leaf fall and fluxes of soil inorganic N, whereas others have measured both stimulation and inhibition of soil N cycling by E. angustifolia. Greater abundance of N2-fixing species in riparian forests may augment growth of neighboring plants or increase N export to rivers. Given these possibilities, ecosystem studies and restoration projects should further examine the potential for E. angustifolia to affect N pools and fluxes along western North American rivers.  相似文献   

4.
Plant hybridization is common and important in ecological and economic contexts, however little is known about the impact of plant hybridization on ectomycorrhizal fungal (EMF) communities in natural habitats. We used a Populus hybrid system (P. angustifolia x P. fremontii) in a heterogeneous riparian landscape to address the hypothesis that EMF communities differ among hybrids and their parental species (cross types). Several key results emerged. (1) Cross type influenced EMF composition, with communities on hybrids being distinct from their parents. (2) Cross type influenced the composition of hyphal exploration types important for soil resource foraging, although contact and short distance exploration types were dominant on all cross types. (3) Cross type had a marginal influence on EMF colonization, with P. angustifolia highest and P. fremontii lowest. These results highlight the potential for tree hybridization to structure belowground communities in heterogeneous natural ecosystems.  相似文献   

5.
The well-known deceleration of nitrogen (N) cycling in the soil resulting from addition of large amounts of foliar condensed tannins may require increased fine-root growth in order to meet plant demands for N. We examined correlations between fine-root production, plant genetics, and leaf secondary compounds in Populus angustifolia, P. fremontii, and their hybrids. We measured fine-root (<2mm) production and leaf chemistry along an experimental genetic gradient where leaf litter tannin concentrations are genetically based and exert strong control on net N mineralization in the soil. Fine-root production was highly correlated with leaf tannins and individual tree genetic composition based upon genetic marker estimates, suggesting potential genetic control of compensatory root growth in response to accumulation of foliar secondary compounds in soils. We suggest, based on previous studies in our system and the current study, that genes for tannin production could link foliar chemistry and root growth, which may provide a powerful setting for external feedbacks between above- and belowground processes.  相似文献   

6.
Leaf litter decomposition plays a major role in nutrient dynamics in forested streams. The chemical composition of litter affects its processing by microorganisms, which obtain nutrients from litter and from the water column. The balance of these fluxes is not well known, because they occur simultaneously and thus are difficult to quantify separately. Here, we examined C and N flow from streamwater and leaf litter to microbial biofilms during decomposition. We used isotopically enriched leaves (13C and 15N) from two riparian foundation tree species: fast-decomposing Populus fremontii and slow-decomposing Populus angustifolia, which differed in their concentration of recalcitrant compounds. We adapted the isotope pool dilution method to estimate gross elemental fluxes into litter microbes. Three key findings emerged: litter type strongly affected biomass and stoichiometry of microbial assemblages growing on litter; the proportion of C and N in microorganisms derived from the streamwater, as opposed to the litter, did not differ between litter types, but increased throughout decomposition; gross immobilization of N from the streamwater was higher for P. fremontii compared to P. angustifolia, probably as a consequence of the higher microbial biomass on P. fremontii. In contrast, gross immobilization of C from the streamwater was higher for P. angustifolia, suggesting that dissolved organic C in streamwater was used as an additional energy source by microbial assemblages growing on slow-decomposing litter. These results indicate that biofilms on decomposing litter have specific element requirements driven by litter characteristics, which might have implications for whole-stream nutrient retention.  相似文献   

7.
We examined the hypothesis that climate‐driven evolution of plant traits will influence associated soil microbiomes and ecosystem function across the landscape. Using a foundation tree species, Populus angustifolia, observational and common garden approaches, and a base population genetic collection that spans 17 river systems in the western United States, from AZ to MT, we show that (a) as mean annual temperature (MAT) increases, genetic and phenotypic variation for bud break phenology decline; (b) soil microbiomes, soil nitrogen (N), and soil carbon (C) vary in response to MAT and conditioning by trees; and (c) with losses of genetic variation due to warming, population‐level regulation of community and ecosystem functions strengthen. These results demonstrate a relationship between the potential evolutionary response of populations and subsequent shifts in ecosystem function along a large temperature gradient.  相似文献   

8.

Background and Aims

Increased N availability induced by agricultural fertilization applications and atmospheric N deposition may affect plant nutrient resorption in temperate wetlands. However, the relationship between nutrient resorption and N availability is still unclear, and most studies have focused on leaf nutrient resorption only. The aim of our study was to examine the response of leaf and non-leaf organ nutrient resorption to N enrichment in a temperate freshwater wetland.

Methods

We conducted a 7-year N addition experiment to investigate the effects of increased N loading on leaf, sheath and stem nutrient (N and P) resorption of two dominant species (Deyeuxia angustifolia and Glyceria spiculosa) in a freshwater marsh in the Sanjiang Plain, Northeast China.

Results

Our results showed that, for both leaf and non-leaf organs (sheath and stem), N addition decreased N resorption proficiency and hence increased litter N concentration. Moreover, the magnitude of N addition effect on N resorption proficiency varied with fertilization rates for D. angustifolia sheaths and stems, and G. spiculosa leaves. However, increased N loading produced inconsistent impacts on N and P resorption efficiencies and P resorption proficiency, and the effects only varied with species and plant organs. In addition, N enrichment increased litter mass and altered litter allocation among leaf, sheath and stem.

Conclusions

Our results highlight that leaf and non-leaf organs respond differentially to N addition regarding N and P resorption efficiencies and P resorption proficiency, and also suggest that N enrichment in temperate freshwater wetlands would alter plant internal nutrient cycles and increase litter quality and quantity, and thus substantially influence ecosystem carbon and nutrient cycles.  相似文献   

9.
Forest ecosystem nitrogen (N) response to disturbance has often been examined by space-for-time substitution, but there are few objective tests of the possible variation in disturbance type and intensity across chronosequence sites. We hypothesized that tree ring δ15N, as a record of ecosystem N status, could validate chronosequence assumptions and provide isotopic evidence to corroborate N trends. To test this we measured soil N availability, soil δ15N, and foliar N attributes of overstory Douglas-fir (Pseudotsuga menziesii) and understory western hemlock (Tsuga heterophylla) across three old-growth stands and nine second-growth plantations on southeast Vancouver Island, British Columbia (Canada). Increment cores for wood δ15N were retrieved from three co-dominant Douglas-fir per plot. Bulk soil δ15N was well aligned with both foliar and recent wood δ15N, demonstrating the utility of wood δ15N in monitoring ecosystem N status. Strongly contrasting trends in tree ring δ15N were evident among second-growth stands, with most trees from plantations older than 50 years exhibiting steep declines (3–4‰) in δ15N but with no temporal trends detected for younger plantations. The discrepancy in tree ring δ15N suggests disturbance history varied considerably among second-growth sites, likely because of greater slash loads and hotter broadcast burns on older cutblocks. As a consequence, the pattern of increased soil N availability and foliar N concentration with time since disturbance derived from the chronosequence could not be validated. Tree ring δ15N may provide insights into disturbance intensity, especially fire, and correlations with foliar N concentration could inform the extent of changes in stand nutrition.  相似文献   

10.
Cottonwoods are well known as foundation riparian trees that support diverse communities and drive ecosystem processes. Although hybridization naturally occurs when the distributions of two or more cottonwood species overlap, few cottonwood hybrid zones have been genetically characterized. We use genetic and genomic analyses to characterize patterns of admixture and introgression for a newly described hybrid zone at the intersection of three species (Populus L. Salicaceae—Populus deltoides, Populus fremontii, and Populus angustifolia) in southwestern Colorado, USA. Analysis of nuclear and chloroplast microsatellite marker data detected substantial genetic variation among individuals, revealing that (1) hybridization is occurring between two, not three, species (P. deltoides and P. angustifolia); (2) gene flow is bidirectional; (3) hybrids are not abundant (admixture detected in only 34 of 270 trees), with most being early-generation F1 hybrids; (4) cytonuclear disequilibria exists and F1 hybrids tend to retain P. deltoides—like chloroplasts; and (5) roughly 30 % of the nuclear markers deviated from a neutral pattern of introgression, suggesting that selection may play a role in shaping the genetic structure of the hybrid zone in this region. Overall, our results show that despite strong selection maintaining species divergence, transfer of allelic variants across species boundaries can occur. Our study assesses the fine-scale genetic structure of hybridization between P. angustifolia and P. deltoides and lays the foundation for examining how geographic differences in hybrid zone dynamics arise and may influence subsequent ecological and evolutionary processes.  相似文献   

11.
Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest   总被引:19,自引:0,他引:19  
Fire can cause severe nitrogen (N) losses from grassland, chaparral, and temperate and boreal forest ecosystems. Paradoxically, soil ammonium levels are markedly increased by fire, resulting in high rates of primary production in re-establishing plant communities. In a manipulative experiment, we examined the influence of wild-fire ash residues on soil, microbial and plant N pools in a recently burned Californian bishop pine (Pinus muricata D. Don) forest. Ash stimulated post-fire primary production and ecosystem N retention through direct N inputs from ash to soils, as well as indirect ash effects on soil N availability to plants. These results suggest that redistribution of surface ash after fire by wind or water may cause substantial heterogeneity in soil N availability to plants, and could be an important mechanism contributing to vegetation patchiness in fire-prone ecosystems. In addition, we investigated the impact of fire on ecosystem N cycling by comparing 15N natural abundance values from recently burned and nearby unburned P. muricata forest communities. At the burned site, 15N natural abundance in recolonising species was similar to that in bulk soil organic matter. By contrast, there was a marked 15N depletion in the same species relative to the total soil N pool at the unburned site. These results suggest that plant uptake of nitrate (which tends to be strongly depleted in 15N because of fractionation during nitrification) is low in recently burned forest communities but could be an important component of eco- system N cycling in mature conifer stands. Received: 29 June 1999 / Accepted: 24 October 1999  相似文献   

12.
Global dryland vegetation communities will likely change as ongoing drought conditions shift regional climates towards a more arid future. Additional aridification of drylands can impact plant and ground cover, biogeochemical cycles, and plant–soil feedbacks, yet how and when these crucial ecosystem components will respond to drought intensification requires further investigation. Using a long-term precipitation reduction experiment (35% reduction) conducted across the Colorado Plateau and spanning 10 years into a 20+ year regional megadrought, we explored how vegetation cover, soil conditions, and growing season nitrogen (N) availability are impacted by drying climate conditions. We observed large declines for all dominant plant functional types (C3 and C4 grasses and C3 and C4 shrubs) across measurement period, both in the drought treatment and control plots, likely due to ongoing regional megadrought conditions. In experimental drought plots, we observed less plant cover, less biological soil crust cover, warmer and drier soil conditions, and more soil resin-extractable N compared to the control plots. Observed increases in soil N availability were best explained by a negative correlation with plant cover regardless of treatment, suggesting that declines in vegetation N uptake may be driving increases in available soil N. However, in ecosystems experiencing long-term aridification, increased N availability may ultimately result in N losses if soil moisture is consistently too dry to support plant and microbial N immobilization and ecosystem recovery. These results show dramatic, worrisome declines in plant cover with long-term drought. Additionally, this study highlights that more plant cover losses are possible with further drought intensification and underscore that, in addition to large drought effects on aboveground communities, drying trends drive significant changes to critical soil resources such as N availability, all of which could have long-term ecosystem impacts for drylands.  相似文献   

13.
The impacts of exotic insects and pathogens on forest ecosystems are increasingly recognized, yet the factors influencing the magnitude of effects remain poorly understood. Eastern hemlock (Tsuga canadensis) exerts strong control on nitrogen (N) dynamics, and its loss due to infestation by the hemlock woolly adelgid (Adelges tsugae) is expected to decrease N retention in impacted stands. We evaluated the potential for site variation in N availability to influence the magnitude of effects of hemlock decline on N dynamics in mixed hardwood stands. We measured N pools and fluxes at three elevations (low, mid, high) subjected to increasing atmospheric N deposition where hemlock was declining or absent (as reference), in western North Carolina. Nitrogen pools and fluxes varied substantially with elevation and increasing N availability. Total forest floor and mineral soil N increased (P?<?0.0001, P?=?0.0017, resp.) and forest floor and soil carbon (C) to N ratio decreased with elevation (P?<?0.0001, P?=?0.0123, resp.), suggesting that these high elevation pools are accumulating available N. Contrary to expectations, subsurface leaching of inorganic N was minimal overall (<1?kg?ha?1 9 months?1), and was not higher in stands with hemlock mortality. Mean subsurface flux was 0.16?±?0.04 (SE) (kg?N?ha?1 100?days?1) in reference and 0.17?±?0.05 (kg?N?ha?1 100?days?1) in declining hemlock stands. Moreover, although subsurface N flux increased with N availability in reference stands, there was no relationship between N availability and flux in stands experiencing hemlock decline. Higher foliar N and observed increases in the growth of hardwood species in high elevation stands suggest that hemlock decline has stimulated N uptake and growth by healthy vegetation within this mixed forest, and may contribute to decoupling the relationship between N deposition and ecosystem N flux.  相似文献   

14.
A discrepancy between plant demand and soil supply of nitrogen (N) has been observed in early successional stages of riparian vegetation in interior Alaska. We hypothesized that a hydrologically mediated N supply serves as a mechanism to balance this apparent deficiency of plant N supply. To test this hypothesis, we conducted a tracer experiment and measured the activity of nitrate reductase (NRA) over the summer on the early successional floodplain of the Tanana River in interior Alaska. Isotopic data showed that river-/groundwater was an important source of plant water and that hyporheic N could be absorbed by early successional species. Plant NRA generally increased as the growing season progressed, and NO 3 ? -N availability increased. Both Salix interior Rowlee and Populus balsamifera L. used NO 3 ? -N, and the timing of plant NRA relative to river discharge chemistry and soil NO 3 ? -N concentrations, strongly suggest that plant uptake of NO 3 ? -N is coupled to fluvial dynamics. Moreover, this physiological function helps explain the apparent discrepancy between N mineralization and productivity in these riparian ecosystems, and demonstrates that plant N availability in these riparian stands is under significant hydrological control.  相似文献   

15.
Nutrient rich conditions often promote plant invasions, yet additions of non-nitrogen (N) nutrients may provide a novel approach for conserving native symbiotic N-fixing plants in otherwise N-limited ecosystems. Lupinus oreganus is a threatened N-fixing plant endemic to prairies in western Oregon and southwest Washington (USA). We tested the effect of non-N fertilizers on the growth, reproduction, tissue N content, and stable isotope δ15N composition of Lupinus at three sites that differed in soil phosphorus (P) and N availability. We also examined changes in other Fabaceae (primarily Vicia sativa and V. hirsuta) and cover of all plant species. Variation in background soil P and N availability shaped patterns of nutrient limitation across sites. Where soil P and N were low, P additions increased Lupinus tissue N and altered foliar δ15N, suggesting P limitation of N fixation. Where soil P was low but N was high, P addition stimulated growth and reproduction in Lupinus. At a third site, with higher soil P, only micro- and macronutrient fertilization without N and P increased Lupinus growth and tissue N. Lupinus foliar δ15N averaged −0.010‰ across all treatments and varied little with tissue N, suggesting consistent use of fixed N. In contrast, foliar δ15N of Vicia spp. shifted towards 0‰ as tissue N increased, suggesting that conditions fostering N fixation may benefit these exotic species. Fertilization increased cover, N fixation, and tissue N of non-target, exotic Fabaceae, but overall plant community structure shifted at only one site, and only after the dominant Lupinus was excluded from analyses. Our finding that non-N fertilization increased the performance of Lupinus with few community effects suggests a potential strategy to aid populations of threatened legume species. The increase in exotic Fabaceae species that occurred with fertilization further suggests that monitoring and adaptive management should accompany any large scale applications.  相似文献   

16.

Background and aims

Spatial distribution of soil nutrients (soil heterogeneity) and availability have strong effects on above- and belowground plant functional traits. Although there is ample evidence on the tight links between functional traits and ecosystem functioning, the role played by soil heterogeneity and availability as modulators of such relationship is poorly known.

Methods

We conducted a factorial experiment in microcosms containing grasses, legumes and non-legume forbs communities differing in composition to evaluate how soil heterogeneity and availability (50 and 100 mg N) affect the links between traits and ecosystem functioning. Community-aggregated specific leaf area (SLAagg) and specific root length (SRLagg) were measured as both relevant response traits to soil heterogeneity and availability, and significant effect traits affecting ecosystem functioning (i.e., belowground biomass, β-glucosidase and acid phosphatase activities, and in situ N availability rate).

Results

SRLagg was negatively and significantly associated to β-glucosidase, phosphatase and N availability rate in the high nutrient availability and heterogeneous distribution scenario. We found a significant negative relationship between SLAagg and availability rate of mineral-N under low nutrient availability conditions.

Conclusions

Soil heterogeneity modulated the effects of both traits and nutrient availability on ecosystem functioning. Specific root length was the key trait associated with soil nutrient cycling and belowground biomass in contrasted heterogeneous soil conditions. The inclusion of soil heterogeneity into the trait-based response-effect framework may help to scale from plant communities to the ecosystem level.  相似文献   

17.
Understanding the main and interactive effects of chronically altered resource availability and disturbance on phosphorus (P) availability is increasingly important in light of the rapid pace at which human activities are altering these processes and potentially introducing P limitation. We measured P pools and fluxes in eighteen mixed forest stands at three elevations (low, mid, high) subjected to increasing atmospheric N deposition, where hemlock (Tsuga canadensis) was absent or declining due to infestation by the exotic hemlock woolly adelgid (Adelges tsugae). While total soil P was similar across the study area, phosphorus fractionation revealed distinct differences in the distribution of soil P fractions as elevation and N availability increased. Soils from high elevation plots where N availability was greatest had 139 % larger organic P pools and 55 % smaller residual and refractory P pools than soils from low elevation plots with less N availability, suggesting that increased N availability has driven the depletion of recalcitrant P pools by stimulating biotic demand and sequestration. These differences in P distribution among fractions influenced how tree mortality affected P dynamics. At high elevations, plots containing declining hemlocks had significantly greater foliar P concentrations and fluxes of P from the forest floor than reference plots at similar elevations, whereas at low and mid-elevations there were no consistent differences between plots. Across all elevation classes, hardwood foliar N:P ratios were lower in plots with declining hemlocks. Collectively, these results suggest that increased N availability enhances bioavailable P, which is sequestered in vegetation until disturbances liberate it.  相似文献   

18.
Post-fire nutrient flushes are an important precursor to secondary succession in fire-driven boreal forest. We studied the magnitude of changes in post-fire soil nutrient status across a chronosequence of ericaceous shrub-dominated boreal forest stands in eastern Newfoundland, Canada. The chronosequence comprised nine stands burned between 1 and 38 years prior to the study. These sites have resisted tree reestablishment following forest fire-induced mortality of black spruce and a concomitant increase in dominance of the ericaceous dwarf shrub Kalmia angustifolia L. Our objectives were: (1) to identify the factors driving soil nutrient status in these post-fire stands dominated by ericaceous plants, and (2) to test hypotheses that specific relationships exist among environmental factors, dominant vegetation and indicators of soil nutrient status. Macronutrients such as NH4+, total organic N and mineral soil P concentrations showed non-linear declines with time since fire. These parameters were also negatively associated with cover of ericaceous plants. Potential phytotoxins such as total phenolics and aluminium concentrations increased with increasing cover of K. angustifolia. Variability in net ammonification, total P and total phenolic acids in organic soils were strongly related to ericaceous dominance even when the effect of time since fire was partialled out using regression analysis. These findings suggest a strong capacity for ericaceous vegetation to have top-down effects on soil chemical property particularly in the organic horizon with the increase in its post-fire dominance.  相似文献   

19.
Microbial enzymes play a critical role in organic matter decomposition and enzyme activity can dynamically respond to shifts in inorganic nutrient and substrate availability, reflecting the nutrient and energy limitation of the microbial community. We characterized microbial enzyme response to shifting nitrogen (N) and phosphorus (P) availability across terrestrial and aquatic environments at the Bear Brook Watershed in Maine, the site of a whole-watershed N enrichment experiment. We compared activity of β-1,4-glucosidase (BG); β-1,4-N-acetylglucosaminidase (NAG); acid phosphatase (AP) in soil, leaf litter in terrestrial and stream habitats and stream biofilms in a reference and N enriched watershed, representing whole-ecosystem response to chronic N enrichment. In addition, we used shorter, experimental P enrichments to address potential P limitation under ambient and elevated N availability. We found that BG and NAG activity were not affected by the long-term N enrichment in either habitat. Enhanced P limitation due to N enrichment was evident only in the aquatic habitats with 5- and 8-fold higher treated watershed AP activity in stream biofilms and stream litter, respectively. Acute P additions reduced AP activity and increased BG activity and these effects were also most pronounced in the streams. The stoichiometry of enzyme activity was constrained across ecosystem compartments with regression slopes for lnBG:lnNAG, lnBG:lnAP, and lnNAG:lnAP close to 1, ranging 1.142–1.241. We found that microbial enzyme response to shifting N and P availability varied among watershed compartments, typically with stronger effects in aquatic habitats. This suggests that understanding the response of ecosystem function to disturbance at the watershed scale requires simultaneous consideration of all compartments.  相似文献   

20.
Plant zonation patterns across New England salt marshes have been investigated for years, but how nutrient availability differs between zones has received little attention. We investigated how N availability, P availability, and plant N status varied across Juncus gerardii, Spartina patens, and mixed forb zones of a Northern New England high salt marsh. We also investigated relationships between several edaphic factors and community production and diversity across the high marsh. P availability, soil salinity, and soil moisture were higher in the mixed forb zone than in the two graminoid zones. NH+ 4-N availability was highest in the J. gerardii zone, but NO 3-N availability and mid season net N mineralization rates did not vary among zones. Plant tissue N concentrations were highest in the mixed forb zone and lowest in the S. patens zone, reflecting plant physiologies more so than soil N availability. Community production was highest in the J. gerardii zone and was positively correlated with N availability and negatively correlated with soil moisture. Plant species diversity was highest in the mixed forb zone and was positively correlated with P availability and soil salinity. Thus, nutrient availability, plant N status, and plant species diversity varied across zones of this high marsh. Further investigation is needed to ascertain if soil nutrient availability influences or is a result of the production and diversity differences that exist between vegetation zones of New England high salt marshes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号