首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism behind enhanced salt tolerance conferred by the overexpression of glyoxalase pathway enzymes was studied in transgenic vis-à-vis wild-type (WT) plants. We have recently documented that salinity stress induces higher level accumulation of methylglyoxal (MG), a potent cytotoxin and primary substrate for glyoxalase pathway, in various plant species [Yadav, S.K., Singla-Pareek, S.L., Ray, M., Reddy, M.K. and Sopory, S.K. (2005) MG levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem. Biophys. Res. Commun. 337, 61-67]. The transgenic tobacco plants overexpressing glyoxalase pathway enzymes, resist an increase in the level of MG that increased to over 70% in WT plants under salinity stress. These plants showed enhanced basal activity of various glutathione related antioxidative enzymes that increased further upon salinity stress. These plants suffered minimal salinity stress induced oxidative damage measured in terms of the lipid peroxidation. The reduced glutathione (GSH) content was high in these transgenic plants and also maintained a higher reduced to oxidized glutathione (GSH:GSSG) ratio under salinity. Manipulation of glutathione ratio by exogenous application of GSSG retarded the growth of non-transgenic plants whereas transgenic plants sustained their growth. These results suggest that resisting an increase in MG together with maintaining higher reduced glutathione levels can be efficiently achieved by the overexpression of glyoxalase pathway enzymes towards developing salinity stress tolerant plants.  相似文献   

2.
In kinetoplastids such as Trypanosoma cruzi, glycolysis is compartmentalized in peroxisome-like organelles called glycosomes. Pyruvate phosphate dikinase (PPDK), an auxiliary enzyme of glycolysis, is also located in the glycosomes. We have detected that this protein is post-translationally modified by phosphorylation and proteolytic cleavage. On western blots of T. cruzi epimastigotes, two PPDK forms were found with apparent MW of 100 kDa and 75 kDa, the latter one being phosphorylated at Thr481, a residue present in a highly conserved region. In subcellular localization assays the 75 kDa PPDK was located peripherally at the glycosomal membrane. Both PPDK forms were found in all life-cycle stages of the parasite. When probing for both PPDK forms during a growth of epimastigotes in batch culture, an increase in the level of the 75 kDa form and a decrease of the 100 kDa one were observed by western blot analysis, signifying that glucose starvation and the concomitant switch of the metabolism to amino acid catabolism may play a role in the post-translational processing of the PPDK. Either one or both of the processes, phosphorylation and proteolytic cleavage of PPDK, result in inactivation of the enzyme. It remains to be established whether the phenomenon exerts a regulatory function.  相似文献   

3.
The kinetic mechanism of pyruvate phosphate dikinase (PPDK) from Bacteroides symbiosus was investigated with several different kinetic diagnostics. Initial velocity patterns were intersecting for AMP/PPi and ATP/Pi substrate pairs and parallel for all other substrate pairs. PPDK was shown to catalyze [14C]pyruvate in equilibrium phosphoenolpyruvate (PEP) exchange in the absence of cosubstrates, [14C]AMP in equilibrium ATP exchange in the presence of Pi/PPi but not in their absence, and [32P]Pi in equilibrium PPi exchange in the presence of ATP/AMP but not in their absence. The enzyme was also shown, by using [alpha beta-18O, beta, beta-18O2]ATP and [beta gamma-18O, gamma, gamma, gamma-18O3]ATP and 31P NMR techniques, to catalyze exchange in ATP between the alpha beta-bridge oxygen and the alpha-P nonbridge oxygen and also between the beta gamma-bridge oxygen and the beta-P nonbridge oxygen. The exchanges were catalyzed by PPDK in the presence of Pi but not in its absence. These results were interpreted to support a bi(ATP,Pi) bi(AMP,PPi) uni(pyruvate) uni(PEP) mechanism. AMP and Pi binding order was examined by carrying out dead-end inhibition studies. The dead-end inhibitor adenosine 5'-monophosphorothioate (AMPS) was found to be competitive vs AMP, noncompetitive vs PPi, and uncompetitive vs PEP. The dead-end inhibitor imidodiphosphate (PNP) was found to be competitive vs PPi, uncompetitive vs AMP, and uncompetitive vs PEP. These results showed that AMP binds before PPi. The ATP and Pi binding order was studied by carrying out inhibition, positional isotope exchange, and alternate substrate studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The nature and quantity of low-molecular organic acids (LOAs) exuded by the roots of nine species of calcifuge and nine species of acidifuge wild plants from northern Europe were determined by ion chromatography. Particular attention was paid to differences between the calcifuge and the acidifuge species in the proportions of different LOAs in their root exudates. Great differences in mol% root exudation between the calcifuge and the acidifuge species were found in some acids. The calcifuge species exuded more acetic acid, the acidifuge species more oxalic acid and much more citric acid. In three calcifuge species, however, root exudation of oxalic acid was appreciable, whereas acetic acid exudation was low in these species. The phosphate- and Fe-solubilizing ability of eight LOAs in a rhizosphere limestone soil was also tested. Oxalic acid was the most efficient phosphate solubilizer and citric acid, by far, the most efficient Fe-solubilizer at the concentration (10 mM) tested. It might be hypothesized that acidifuge species use oxalate to solubilize phosphate and citrate to solubilize Fe, in limestone soil. The inability of calcifuge species to grow in limestone soil might, therefore, be due to low root exudation of these acids and, as a result, inability to solubilize phosphate and Fe in limestone soil.  相似文献   

5.
6.
1. Sugar-cane leaf pyruvate,P(i) dikinase was prepared free of enzymes that would interfere with studies on the stoicheiometry and mechanism of the reaction it catalyses. The reaction was unequivocally shown to involve the conversion of equimolar amounts of pyruvate, ATP and P(i) into phosphoenolpyruvate, AMP and PP(i). 2. The purified enzyme was stable at pH8.3 only if stored at about 20 degrees in the presence of Mg(2+) and a thiol-reducing reagent, care being taken to prevent the oxidation of the thiol. 3. The apparent Michaelis constants for phosphoenolpyruvate and PP(i) were 0.11mm and 0.04mm respectively and that for AMP was less than 4mum. 4. At pH8.3 the initial velocity of the reaction was about 6 times as fast in the direction towards phosphoenolpyruvate synthesis as in the reverse direction. 5. With the exception of ATP, all the products of the reaction in both directions were inhibitory. 6. The phosphate groups of PP(i) were derived from P(i) and from the terminal phosphate of ATP. 7. Isotope-exchange studies indicated that the reaction proceeds in the following steps:Enzyme+ATP+P(i) right harpoon over left harpoon Enzyme-P+AMP+PP(i)Enzyme-P+pyruvate right harpoon over left harpoon Enzyme+phosphoenolpyruvate  相似文献   

7.
The kinetic mechanism and the metabolic role of pyruvate phosphate dikinase from Entamoeba histolytica were investigated. The initial velocity patterns in double reciprocal plots were parallel for the phosphoenolpyruvate/AMP and phosphoenolpyruvate/pyrophosphate substrate pairs and intersecting for the AMP/pyrophosphate pair. This suggests a kinetic mechanism with two independent reactions. The rate of ATP synthesis at saturating and equimolar concentrations of phosphoenolpyruvate, AMP, and pyrophosphate was inhibited by phosphate, which is consistent with an ordered steady-state mechanism. Enzyme phosphorylation by [(32)P(i)]pyrophosphate depends on the formation of a ternary complex between AMP, pyrophosphate, and pyruvate phosphate dikinase. In consequence, the reaction that involves the AMP/pyrophosphate pair follows a sequential steady-state mechanism. The product inhibition patterns of ATP and phosphate versus phosphoenolpyruvate were noncompetitive and uncompetitive, respectively, suggesting that these products were released in an ordered process (phosphate before ATP). The ordered release of phosphate and ATP and the noncompetitive inhibition patterns of pyruvate versus AMP and versus pyrophosphate also supported the sequential kinetic mechanism between AMP and pyrophosphate. Taken together, our data provide evidence for a uni uni bi bi pingpong mechanism for recombinant pyruvate phosphate dikinase from E. histolytica. The Delta G value for the reaction catalyzed by pyruvate phosphate dikinase (+2.7 kcal/mol) determined under near physiological conditions indicates that the synthesis of ATP is not thermodynamically favorable in trophozoites of E. histolytica.  相似文献   

8.
Guo J  Wang MH 《BMB reports》2008,41(7):542-547
D-type cyclins control the onset of cell division and the response to extracellular signals during the G1 phase. In this study, we transformed a D-type cyclin gene, Nicta;CycD3;4, from Nicotiana tabacum using an Agrobacterium-mediated method. A predicted 1.1 kb cyclin gene was present in all of the transgenic plants, but not in wild-type. Northern analyses showed that the expression level of the Nicta;CycD3;4 gene in all of the transgenic plants was strong when compared to the wild-type plants, suggesting that Nicta;CycD3;4 gene driven by the CaMV 35S promoter was being overexpressed. Our results revealed that transgenic plants overexpressing Nicta;CycD3;4 had an accelerated growth rate when compared to wild-type plants, and that the transgenic plants exhibited a smaller cell size and a decreased cell population in young leaves when compared to wild-type plants.  相似文献   

9.
Role of organic acids in detoxification of aluminum in higher plants   总被引:21,自引:0,他引:21  
Phytotoxicity of aluminum ion (Al3+) is a serious problem limiting crop production on acid soils. Organic acids with Al-chelating ability play an important role in the detoxification of Al both externally and internally. Al is detoxified externally by the secretion of organic acids such as citric, oxalic, and/or malic acids from the roots. The secretion of organic acids is highly specific to Al and the site of secretion is localized to the root apex. The kind of organic acids secreted as well as secretion pattern differ among plant species. There are two patterns of Al-induced secretion of organic acids: In pattern I, there is no discernible delay between the addition of Al and the onset of the release of organic acids. Activation of the anion channel seems to be involved in this pattern; In pattern II, there is a marked lag phase between the addition of Al and the onset of organic acid release. The action of genes related to the metabolism and secretion of organic acids seems to be involved in this pattern. Internal detoxification of Al in Al-accumulating plants is achieved by the formation of Al-organic acid complex. For instance, the complex of Al-citrate (1:1) in hydrangea and Al-oxalate (1:3) in buckwheat has been identified.  相似文献   

10.
Phylloquinone (Vitamin K(1)) is an essential component of the photosynthetic electron transfer. As isochorismate is required for the biosynthesis of Vitamin K(1), isochorismate synthase (ICS) activity is expected to be present in all green plants. In bacteria salicylic acid (SA) is synthesized via a two step pathway involving ICS and isochorismate pyruvate lyase (IPL). The effect of the introduction in tobacco plants of the bacterial ICS and IPL genes on the endogenous isochorismate pathway was investigated. Transgenic tobacco plants in which IPL was targeted to the chloroplast suffered severe growth retardation and had low Vitamin K(1) content. Probably because isochorismate was channeled towards SA production, the plants were no longer able to produce normal levels of Vitamin K(1). Transgenic tobacco plants in which the bacterial ICS was present in the chloroplast showed higher Vitamin K(1) contents than wild type plants.  相似文献   

11.
Light activation of pyruvate, phosphate dikinase was investigatedusing leaf discs of dark pretreated maize (Zea mays L. var.Golden Gross Bantam) leaves. The action spectrum resembled theabsorption spectrum of the leaf, having two peaks at 436 and671 nm and a minimum at 503 nm. This similarity suggests involvementof chlorophyll in the light activation as a photoreceptor. Lightactivation was markedly inhibited by 3-(p-chlorophenyl)-1,1-dimethyl urea. We thus inferred that activation of the enzymewas closely correlated to the photosynthetic electron transportsystem. (Received July 3, 1974; )  相似文献   

12.
Genes encoding defense-related proteins have been used to alter the resistance of plants to pathogens and other environmental challenges, but no single fungal gene overexpression has produced broad-spectrum stress resistance in transgenic lines. We have generated transgenic tobacco (Nicotiana tabacum) lines that overexpress the endochitinases CHIT33 and CHIT42 from the mycoparasitic fungus Trichoderma harzianum and have evaluated their tolerance to biotic and abiotic stress. Both CHIT33 and CHIT42, individually, conferred broad resistance to fungal and bacterial pathogens, salinity, and heavy metals. Such broad-range protective effects came off with no obvious detrimental effect on the growth of tobacco plants.  相似文献   

13.
14.
Pyruvate phosphate dikinase (PPDK) catalyzes the interconversion of ATP, P(i), and pyruvate with AMP, PP(i), and phosphoenolpyruvate (PEP) in three partial reactions as follows: 1) E-His + ATP --> E-His-PP.AMP; 2) E-His-PP.AMP + P(i) --> E-His-P.AMP.PP(i); and 3) E-His-P + pyruvate --> E.PEP using His-455 as the carrier of the transferred phosphoryl groups. The crystal structure of the Clostridium symbiosum PPDK (in the unbound state) reveals a three-domain structure consisting of consecutive N-terminal, central His-455, and C-terminal domains. The N-terminal and central His-455 domains catalyze partial reactions 1 and 2, whereas the C-terminal and central His-455 domains catalyze partial reaction 3. Attempts to obtain a crystal structure of the enzyme with substrate ligands bound at the nucleotide binding domain have been unsuccessful. The object of the present study is to demonstrate Mg(II) activation of catalysis at the ATP/P(i) active site, to identify the residues at the ATP/P(i) active site that contribute to catalysis, and to identify roles for these residues based on their positions within the active site scaffold. First, Mg(II) activation studies of catalysis of E + ATP + P(i) --> E-P + AMP + PP(i) partial reaction were carried out using a truncation mutant (Tem533) in which the C-terminal domain is absent. The kinetics show that a minimum of 2 Mg(II) per active site is required for the reaction. The active site residues used for substrate/cofactor binding/activation were identified by site-directed mutagenesis. Lys-22, Arg-92, Asp-321, Glu-323, and Gln-335 mutants were found to be inactive; Arg-337, Glu-279, Asp-280, and Arg-135 mutants were partially active; and Thr-253 and Gln-240 mutants were almost fully active. The participation of the nucleotide ribose 2'-OH and alpha-P in enzyme binding is indicated by the loss of productive binding seen with substrate analogs modified at these positions. The ATP, P(i), and Mg(II) ions were docked into the PPDK N-terminal domain crevice, in an orientation consistent with substrate/cofactor binding modes observed for other members of the ATP-Grasp fold enzyme superfamily and consistent with the structure-function data. On the basis of this docking model, the ATP polyphosphate moiety is oriented/activated for pyrophosphoryl transfer through interaction with Lys-22 (gamma-P), Arg-92 (alpha-P), and the Gly-101 to Met-103 loop (gamma-P) as well as with the Mg(II) cofactors. The P(i) is oriented/activated for partial reaction 2 through interaction with Arg-337 and a Mg(II) cofactor. The Mg(II) ions are bound through interaction with Asp-321, Glu-323, and Gln-335 and substrate. Residues Glu-279, Asp-280, and Arg-135 are suggested to function in the closure of an active site loop, over the nucleotide ribose-binding site.  相似文献   

15.
Evidence is presented based on requirements for exchange in the partial reactions, initial velocity and exchange kinetics and product inhibition, that the pyruvate, phosphate dikinase reaction of propionibacteria occurs by a nonclassical Tri Uni Uni Ping Pong mechanism. The mechanism involves a pyrophosphoryl enzyme, a phosphoryl enzyme, and the free enzyme, and three functionally distinct and independent substrate sites. On the first site, there is pyrophosphorylation of the enzyme by ATP with subsequent release of AMP. The pyrophosphoryl moiety then reacts at the second site with Pi yielding the product PPi and the phosphoryl from of the enzyme. At the third site pyruvate is phosphorylated yielding P-enolpyruvate and the free enzyme. The three catalytic sites are proposed to be linked by a histidyl residue which functions as a pyrophosphoyrl- and phosphoryl-carrier between the three sites. This proposal is based on the following observations. (A) The patterns of the double reciprocal plots of the initial velocities were all parallel; (b) product inhibition between each pair of substrates and products of the three partial reactions were competitive, i.e. ATP against AMP, Pi against PPi, and pyruvate against P-enolpyruvate; (c) the other product inhibitions, with one exception, were noncompetitive as required by the nonclassical ping-pong mechanism; (d) ATP or P-enolpyruvate was required for the Pi in equilibrium PPi exchange reaction which is in accord with the participation of a pyrosphosphoryl or phosphoryl form of the enzyme in this exchange; (e) the ATP in equilibrium AMP exchange and pyruvate in equilibrium P-enolpyruvate exchange did not require additional substrates. In addition, the inhibition and participation in the exchange reactions of the alpha,beta and beta,gamma-methylene analogues of ATP and of the methylene analogue of inorganic pyrophosphate were investigated and the results were in accord with the proposed mechanism. The combined evidence provides a well documented example of a three site nonclassical Tri Uni Uni Ping Pong mechanism.  相似文献   

16.
We studied photoinhibition in two cultivars of tobacco ( Nicotiana tabacum L.) expressing the bacterial gor gene in the cytosol and in four lines of poplar ( Populus tremula × P. alba ) expressing the FeSOD gene of Arabidopsis thaliana in the chloroplast. The respective total activities of glutathione reductase (EC 1.6.4.2) in leaves of gor tobaccos and superoxide dismutase (EC 1.15.1.1) in the FeSOD poplars were 5–8 times higher than in the respective untransformed control plants. Leaves of control and transformed plants were subjected to high-light stress at 20°C, and photoinhibition of photosystem II (PSII) was measured by oxygen evolution and chlorophyll fluorescence. The leaves were illuminated both in the presence and absence of lincomycin, which inhibits chloroplast protein synthesis. In both cases, the time course of loss of PSII activity was identical in plants overproducing superoxide dismutase (SOD) and in the untransformed controls, suggesting that the ability to convert superoxide to hydrogen peroxide is not a limiting factor in protection against photoinhibition, or in the repair of photoinhibitory damage or that the site of O2 production is not accessible to the transgene product. The rate constant of photoinhibition, measured in lincomycin-treated leaves, was smaller in glutathione reductase (GR) overproducing tobacco cv. Samsun than in the respective wild-type, but this difference was not seen in cv. Bel W3. The steady-state level of PSII activity measured when the PSII repair cycle was allowed to equilibrate with photoinhibitory damage under high light was not higher in the GR overproducing cv. Samsun, suggesting that the repair of photoinhibitory damage was not enhanced in plants overproducing GR in the cytosol.  相似文献   

17.
Pyruvate phosphate dikinase (PPDK) reversibly catalyzes the conversion of ATP, phosphate, and pyruvate into AMP, pyrophosphate, and phosphoenolpyruvate (PEP), respectively. Since the nucleotide binding site (in the N-terminal domain) and the pyruvate/PEP binding site (in the C-terminal domain) are separated by approximately 45 A, it has been proposed that an intermediary domain, called the central domain, swivels between these remote domains to transfer the phosphate. However, no direct structural evidence for the swiveling central domain has been found. In this study, the crystal structures of maize PPDK with and without PEP have been determined at 2.3 A resolution. These structures revealed that the central domain is located near the pyruvate/PEP binding C-terminal domain, in contrast to the PPDK from Clostridium symbiosum, wherein the central domain is located near the nucleotide-binding N-terminal domain. Structural comparisons between the maize and C. symbiosum PPDKs demonstrated that the swiveling motion of the central domain consists of a rotation of at least 92 degrees and a translation of 0.5 A. By comparing the maize PPDK structures with and without PEP, we have elucidated the mode of binding of PEP to the C-terminal domain and the induced conformational changes in the central domain.  相似文献   

18.
《Phytochemistry》1986,25(7):1537-1543
The pyruvate, phosphate dikinase activity (PPD, EC 2.7.9.1) associated with crude extracts of leaf tissue of some C3 and C4 plants was determined by phosphoenolpyruvate plus PPi-dependent phosphorylation of AMP. The PPD activity of all C4 plants examined was > 15 nmol/mg protein/min. Several factors contributed to the underestimation of PPD activity in crude extracts of at least some species. Significant PPD activity (> 0.15 nmol/mg protein/min) was not detected in the majority of C3 species but several C3 species and the two CAM species studied exhibited activity in the range 0.4–4 nmol/mg protein/min while the C3 species Avena sativa showed activity up to 8 nmol/mg protein/min. The oat leaf enzyme was partially purified; it exhibited properties similar to those of partially purified PPD from maize. Leaf extracts of the orchids Cymbidium canaliculatum and C. madidum contained high levels of PPD activity similar to the majority of C4 plants. PPD activity has also been shown in other previously unstudied species.  相似文献   

19.
Pyruvate phosphate dikinase (PPDK) is an essential enzyme of both the C4 photosynthetic pathway and cellular energy metabolism of some bacteria and unicellular protists. In C4 plants, it catalyzes the ATP‐ and Pi‐dependent formation of phosphoenolpyruvate (PEP) while in bacteria and protozoa the ATP‐forming direction is used. PPDK is composed out of three distinct domains and exhibits one of the largest single domain movements known today during its catalytic cycle. However, little information about potential intermediate steps of this movement was available. A recent study resolved a discrete intermediate step of PPDK's swiveling movement, shedding light on the details of this intriguing mechanism. Here we present an additional structural intermediate that possibly represents another crucial step in the catalytic cycle of PPDK, providing means to get a more detailed understanding of PPDK's mode of function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号