首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Treatment of chickens, hamsters and guinea-pigs with large doses of the long-acting antisecretory agent omeprazole for 10 weeks resulted in elevated serum gastrin levels and in increased stomach weight and mass of oxyntic mucosa. Also the antral gastrin cell density was increased. Another striking effect was the hyperplasia of the histamine-producing enterochromaffin-like (ECL) cells — a prominent endocrine cell population with unknown function — in the oxyntic mucosa. Accordingly, the gastric mucosal histamine concentration and rate of histamine formation were increased in all three species. The results suggest that marked and long-lasting suppression of acid secretion leads to elevated serum gastrin levels and diffuse ECL cell hyperplasia not only in the rat, as previously seen, but also in the chicken, hamster and guinea-pig; this hyperplasia is associated with accelerated histamine formation in all three species. The following sequence of events is suggested to occur in mammalian as well as submammalian vertebrates: suppression of acid secretion — hypergastrinaemia — ECL cell hyperplasia.  相似文献   

2.
The enterochromaffin-like (ECL) cells play an important role in the regulation of gastric acid secretion. They respond to gastrin by a prompt increase in histamine secretion, an effect which is mediated by the CCK-(B)/gastrin receptor acting through the IP(3)/DAG pathway. In the rat, long-term treatment with acid secretion inhibitors induces hypergastrinaemia which, in turn, results in ECL cell hypertrophy and hyperplasia. The aim of the present study was to evaluate various functional parameters in acutely isolated rat ECL cells, following long-term hypergastrinaemia in vivo. Rats were treated with vehicle or a supramaximal daily dose of omeprazole for more than 10 weeks to ensure ECL cell hyperplasia. ECL cells were isolated from vehicle-treated animals and 24, 72 and 120 h after the last dose of omeprazole. The functional activity of the acutely isolated ECL cells was determined by measuring gastrin-and forskolin-induced histamine secretion. Changes in cytosolic free calcium upon gastrin stimulation were monitored by digital video imaging. ECL cells successively regained their ability to respond to gastrin following long-term hypergastrinaemia, reaching close to vehicle-treated levels 120 h after the last dose of omeprazole. In the rat, the response pattern of the ECL cells appears to normalise in parallel with the normalisation of plasma gastrin levels.  相似文献   

3.
Gastrin is both stimulatory and trophic to the cells of the gastric fundus--parietal and peptic cells, and enterochromaffin-like (ECL) cells which are major intermediaries of the gastrin effect. Gastrin (from the antrum) and acid (from the fundus) represent the interactive positive and negative limbs of a feedback loop. The nature and extent of sub-loops, perhaps involving the vagus, acetylcholine, histamine, and other peptides and cell products are at present unclear or unknown. Loss of either gastrin or acid has predictable consequences. Absent acid, as in pernicious anemia or as a result of omeprazole, leads to hypergastrinemia. In rats, such hypergastrinemia (gastrin > 1,000 pg/ml) causes fundic ECL hyperplasia and, eventually, carcinoids; in humans with pernicious anemia, hypergastrinemia causes ECL-cell hyperplasia, which may progress to carcinoids that are reversible upon withdrawal of gastrin, illustrated by three cases described here. Loss of gastrin by antrectomy for duodenal ulcer leads to fundic involution and marked reduction in basal acid output, maximal acid output, and fundic histamine. An uncontrolled excess of gastrin, as from a gastrinoma outside the negative feedback loop, causes acid and pepsin hypersecretion with upper GI mucosal damage, the Zollinger-Ellison syndrome. This paper summarizes the abnormal regulation of gastrin and the biology, natural history, diagnosis, and management of ZE syndrome by medical and surgical means.  相似文献   

4.
The enterochromaffin-like (ECL) cells represent the predominant endocrine cell population in the acid-producing part of the stomach of both experimental animals and man. These cells actively produce and store histamine in addition to an anticipated but as yet unidentified peptide hormone and are under the control of gastrin. An acute gastrin stimulus causes exocytosis of the cytoplasmic granules/vesicles (and release of histamine and activation of the histamine-forming enzyme, histidine decarboxylase), while a more sustained gastrin stimulus causes first hypertrophy and then hyperplasia of the ECL cells in the rat (at most, a fivefold increase in the cell number). These effects can be demonstrated following infusion of gastrin or following an increase in the concentration of circulating gastrin of endogenous origin. The growth of the ECL cells reflects an accelerated self-replication rate. As studied in the rat, the self-replication rate is accelerated quite soon after induction of hypergastrinemia (blockade of acid secretion), the rate is maximally elevated within two weeks and then declines to control values at ten and 20 weeks despite the sustained hypergastrinemia. Lifelong hypergastrinemia in rats is associated not only with ECL-cell hyperplasia but also with an increased incidence of ECL-cell carcinoids. Recently, we could show that alpha-fluoromethylhistidine, which is a suicide inhibitor of histidine decarboxylase, effectively depletes the ECL cells of histamine and that the histamine-depleted ECL cells respond to gastrin with hyperplasia in a manner identical to normal ECL cells. Other factors beside gastrin seem to participate in the control of ECL-cell function and proliferation. Although exogenous somatostatin is known to suppress the activity of the ECL cells, we have failed to obtain evidence that the somatostatin cells in the oxyntic mucosa play a role in the physiological control of the ECL cells. The vagus, however, is important for the ability of the ECL cells to respond to gastrin. This conclusion is based on the observation that vagal denervation suppresses the hyperplastic response of the ECL cells to gastrin. Porta-cava shunting, on the other hand, greatly enhances the responsiveness of the ECL cells to gastrin. The mechanism behind this effect is unknown.  相似文献   

5.
The significance of the enterochromaffin-like (ECL) cell as a critical endocrine regulator of gastric fundic mucosal function has only recently been recognized. Although the percentage of these cells present in the human fundic mucosa is less than that in rodents, the observation that they secrete histamine and are probably important modulators of parietal cell function has resulted in their attaining some considerable biological significance. The further identification of gastrin and somatostatin receptors on the surface of the ECL cells has suggested that other neurohormonal influences may be significant in the regulation of parietal cell function, utilizing the ECL cell as an intermediate modifier. While abnormalities of ECL cells in the human stomach (hyperplasia/neoplasia) have been mostly confined to observations in patients with pernicious anemia and atrophic gastritis, the recent recognition of hyperplasia in pharmacotherapeutically induced achlorhydric or hypochlorhydric states has excited considerable interest. It has been proposed that the generation of luminal hypo- or achlorhydria by powerful acid inhibitory pharmacotherapy may result in hypergastrinemia. This condition is responsible initially for the development of hyperplasia and, subsequently, possibly even neoplasia of the ECL system of the fundic mucosa. This phenomenon seems to be prevalent in rodents but has so far been only rarely observed in humans, e.g., pernicious anemia, atrophic gastritis. In particular, patients with the gastrinoma component of the multiple endocrine neoplasia type I syndrome exhibit ECL-cell hyperplasia and neoplasia after exposure to acid inhibitory pharmacotherapy. It is therefore likely that an underlying genomic phenomenon is necessary prior to the induction of hyperplasia and subsequent neoplastic transformation. The scientific evaluation of the relationship between gastrin, ECL-cell function, and the development of hyperplasia and neoplasia may provide some important information in regard to the molecular evolution of gastrointestinal neuroendocrine disease states. It is possible that the future pharmacotherapy of acid secretory disease may require regulation not only of parietal cell but of ECL-cell function.  相似文献   

6.
The ECL cells constitute the predominant endocrine cell population in the mucosa of the acid-secreting part of the stomach (fundus). They are rich in chromogranin A (CGA), histamine and histidine decarboxylase (HDC). They secrete CGA-derived peptides and histamine in response to gastrin. The objective of this investigation was to examine the expression of pancreastatin (rat CGA266-314) and WE14 (rat CGA343-356) in rat stomach ECL cells. The distribution and cellular localisation of pancreastatin- and WE14-like immunoreactivities (LI) were analysed by radioimmunoassay and immunohistochemistry with antibodies against pancreastatin, WE14 and HDC. The effect of food deprivation on circulating pancreastatin-LI was examined in intact rats and after gastrectomy or fundectomy. Rats received gastrin-17 (5 nmol/kg/h) by continuous intravenous infusion or omeprazole (400 μmol/kg) once daily by the oral route, to induce hypergastrinemia. CGA-derived peptides in the ECL cells were characterised by gel permeation chromatography. The expression of CGA mRNA was examined by Northern blot analysis. Among all of the endocrine cells in the body, the ECL cell population was the richest in pancreastatin-LI, containing 20–25% of the total body content. Food deprivation and/or surgical removal of the ECL cells lowered the level of pancreastatin-LI in serum by about 80%. Activation of the ECL cells by gastrin infusion or omeprazole treatment raised the serum level of pancreastatin-LI, lowered the concentrations of pancreastatin- and WE14-LI in the ECL cells and increased the CGA mRNA concentration. Chromatographic analysis of the various CGA immunoreactive components in the ECL cells of normal and hypergastrinemic rats suggested that these cells respond to gastrin with a preferential release of the low-molecular-mass forms.  相似文献   

7.
Female rats were treated for 28 days with high doses of the gastric acid secretion inhibitors omeprazole and ranitidine. Omeprazole, which is long-acting, was given orally once daily. Ranitidine, which is short-acting, was given by continuous infusion (via osmotic minipumps, implanted subcutaneously). The aim was to produce a similar degree of acid inhibition with the two drugs. The inhibition of acid secretion over the day and night was more pronounced in the omeprazole-treated rats (maximal inhibition 100%, minimum 85%) than in those receiving ranitidine (mean 70%). In both groups, there was a great increase in plasma gastrin, somewhat greater after omeprazole than after ranitidine. The gastrin concentration in the antrum was almost doubled by both treatments and there was a moderate increase in the number of antral gastrin cells in the omeprazole-treated rats. The number of enterochromaffin-like (ECL) cells (per visual field) increased in the oxyntic mucosa to the same extent (greater than 100%) in the ranitidine- and omeprazole-treated rats. Apart from the gastrin cells in the antrum and the ECL cells in the corpus no other gastric endocrine cell type seemed to respond to treatments with antisecretagogues. We conclude that, regardless of the type of antisecretagogue used, effective and long-term suppression of gastric acid secretion results in sustained hypergastrinemia and increased number of ECL cells. Conceivably therefore, the ECL cell hyperplasia reflects the trophic effect of gastrin.  相似文献   

8.
Histamine in the rat stomach resides in enterochromaffin-like (ECL) cells and mast cells. The ECL cells are peptide-hormone-producing endocrine cells known to release histamine and chromogranin-A-derived peptides (such as pancreastatin) in response to gastrin. Ischemia (induced by clamping of the celiac artery or by gastric submucosal microinfusion of the vasoconstrictor endothelin) mobilizes large amounts of ECL-cell histamine in a burst-like manner. This report examines the ECL-cell response to ischemia and compares it with that induced by gastrin in rats. Arterial clamping (30 min) and gastric submucosal microinfusion (3 h) of endothelin, vasopressin, or adrenaline caused ischemia, manifested as a raised lactate/pyruvate ratio and mucosal damage. Whereas microinfusion of gastrin released both histamine and pancreastatin, ischemia mobilized histamine only. The mucosal concentrations of histamine and pancreastatin, the number and immunostaining intensity of the ECL cells, and the ultrastructure of the ECL cells were unchanged following ischemia. The long-term effects of ischemia and reperfusion (60-90 min) on gastric mucosa were examined in rats treated with the proton pump inhibitor omeprazole for 4 days. The activity of the ECL cells was suppressed (reflected in low histamine-forming capacity) but returned to normal within 1 week, illustrating the ability of the ECL cells to recover. We suggest that ischemia mobilizes cytosolic ECL-cell histamine without affecting the storage of histamine (and pancreastatin) in the secretory organelles and without causing lasting ECL-cell impairment.  相似文献   

9.
Previous studies have shown that pituitary adenylate cyclase-activating peptide (PACAP) stimulates enterochromaffin-like (ECL) cell histamine release, but its role in the regulation of gastric acid secretion is disputed. This work examines the effect of PACAP-38 on aminopyrine uptake in enriched rat parietal cells and on histamine release and acid secretion in the isolated vascularly perfused rat stomach and the role of PACAP in vagally (2-deoxyglucose) stimulated acid secretion in the awake rat. PACAP has no direct effect on the isolated parietal cell as assessed by aminopyrine uptake. PACAP induces a concentration-dependent histamine release and acid secretion in the isolated stomach, and its effect on histamine release is additive to gastrin. The histamine H2 antagonist ranitidine potently inhibits PACAP-stimulated acid secretion without affecting histamine release. Vagally stimulated acid secretion is partially inhibited by a PACAP antagonist. The results from the present study strongly suggest that PACAP plays an important role in the neurohumoral regulation of gastric acid secretion. Its effect seems to be mediated by the release of ECL cell histamine.  相似文献   

10.
11.
Pharmacological inhibition of gastric acid secretion and subsequent hypergastrinemia in Mastomys natalensis is an experimental model well suited for the study of gastric carcinoid formation. The genetic susceptibility of Mastomys to develop such tumors is a feature reminiscent of the situation in patients with the MEN-1 Zollinger Ellison syndrome, in whom tumor-induced hypergastrinemia, promotes the development of gastric carcinoids. Chronic hypergastrinemia, induced by the irreversible H2-receptor antagonist loxtidine will cause carcinoid formation in Mastomys already after four to six months. As in humans, gastric carcinoids in Mastomys are mainly composed of enterochromaffinlike (ECL) cells and have low malignant potential. Administration of exogenous gastrin to normal young animals increases the expression of histidine decarboxylase (HDC) mRNA in the oxyntic mucosa within 30 minutes. Endogenous hypergastrinemia, induced by short-time loxtidine treatment (three to 29 days) enhances the expression of HDC mRNA, histamine contents and ECL cell numbers in the oxyntic mucosa. Long-term loxtidine treatment (seven to 21 months) results in sustained hypergastrinemia and tumor formation. Tumor-bearing animals exhibited an increase in HDC mRNA and histamine content in the oxyntic mucosa as well as increased urinary excretion of the main histamine metabolite, tele-methylimidazole acetic acid (MeImAA). Subsequent to cessation of loxtidine treatment for two weeks, all parameters of histamine metabolism were normalized in tumor-bearing animals. These results indicate that gastric carcinoids developing during hypergastrinemia are well-differentiated neoplasms whose histamine synthesis and metabolism is regulated by plasma gastrin.  相似文献   

12.
Gastrin is one of the main factors controlling enterochromaffin-like (ECL) cell endocrine function and growth. Long-standing hypergastrinemia may give rise to ECL cell carcinoids in the gastric corpus in man and in experimental models. We have analysed the expression and function of CCK-B/gastrin receptors in normal ECL cells and in ECL cell tumours (gastric carcinoids) of the African rodent Mastomys natalensis. Hypergastrinemia induced by short-term (5 days) histamine2-receptor blockade (loxtidine) resulted in increased histidine decarboxylase (HDC) mRNA expression in the gastric oxyntic mucosa. This increase was significantly and dose-dependently reversed by selective CCK-B/gastrin receptor blockade (YM022). Long-term (12 months) hypergastrinemia, induced by histamine2-receptor blockade, gave rise to ECL cell carcinoids in the gastric oxyntic mucosa. CCK-B/gastrin receptor mRNA was only slightly elevated while HDC mRNA expression was eight-fold elevated in ECL cell carcinoids and was not influenced by CCK-B/gastrin receptor blockade. Thus CCK-B/gastrin receptor blockade of hypergastrinemic animals reduces the HDC mRNA expression in normal mucosa but not in ECL cell carcinoids. These results demonstrate that HDC mRNA expression in neoplastic ECL cells is not controlled by CCK-B/gastrin receptors.  相似文献   

13.
14.
ECL cells in the oxyntic mucosa of stomach control gastric acid secretion by mobilizing histamine in response to gastrin. They respond to gastrin also with hypertrophy and hyperplasia. ECL cells exhibit functional impairment upon long-term gastrin stimulation. The impairment is manifested in a gradual decline of the activity of the histamine-forming enzyme per individual ECL cell and in a failure of gastrin to mobilize histamine. The mechanism behind this impairment is unknown. In the present study, rats were treated with the proton pump inhibitor pantoprazole for 45 days to induce sustained hypergastrinemia. The ECL cells were isolated from normogastrinemic and hypergastrinemic rats and size-separated from other mucosal cells by the elutriation technique. The total ECL cell number was twofold higher in hypergastrinemic rats than in normogastrinemic rats, and most of the cells appeared in elutriation fractions where large cells predominate. The ECL cells of the different fractions were analyzed by quantitative electron microscopy. Normal-sized ECL cells from hypergastrinemic rats displayed a reduced number of secretory vesicles (probably because of degranulation) compared with normal-sized ECL cells from normogastrinemic rats. Hypertrophic ECL cells from hypergastrinemic rats had an unchanged number of secretory vesicles, supporting the view that such cells fail to respond to gastrin with degranulation. Although both normal-sized and hypertrophic ECL cells from hypergastrinemic rats contained vacuoles, those in the hypertrophic ECL cells were larger and more numerous. In addition, hypertrophic ECL cells were found to contain numerous, prominent lipofuscin bodies which are the presumed end product of crinophagia. Conceivably therefore, large vacuoles and lipofuscin bodies cause functional impairment of the hypertrophic ECL cells.  相似文献   

15.
The oxyntic mucosa of the rat stomach is rich in ECL cells which produce and secrete histamine in response to gastrin. Histamine and the histamine-forming enzyme histidine decarboxylase (HDC) have been claimed to occur also in the gastrin-secreting G cells in the antrum. In the present study, we used a panel of five HDC antisera and one histamine antiserum to investigate whether histamine and HDC are exclusive to the ECL cells. By immunocytochemistry, we could show that the ECL cells were stained with the histamine antiserum and all five HDC antisera. The G cells, however, were not stained with the histamine antiserum, but with three of the five HDC antisera. Thus, histamine and HDC coexist in the ECL cells (oxyntic mucosa) but not in G cells (antral mucosa). Western blot analysis revealed a typical pattern of HDC-immunoreactive bands (74, 63 and 54 kDa) in oxyntic mucosa extracts with all five antisera. In antral extracts, immunoreactive bands were detected with three of the five HDC antisera (same as above); the pattern of immunoreactivity differed from that in oxyntic mucosa. Food intake of fasted rats or treatment with the proton pump inhibitor omeprazole raised the HDC activity and the HDC protein content of the oxyntic mucosa but not of the antral mucosa; the HDC activity in the antrum was barely detectable. We suggest that the HDC-like immunoreactivity in the antrum represents a cross-reaction with non-HDC proteins and conclude that histamine and HDC are hallmark features of ECL cells but not of G cells.  相似文献   

16.
Vesicular monoamine transporters in the rat stomach.   总被引:2,自引:0,他引:2  
Cellular distribution of vesicular monoamine transporters (VMATs), known to regulate vesicular storage and release of biogenic amines (i.e., catecholamines, serotonin, histamine, etc.), have been studied in the rat stomach using in situ hybridization histochemistry (ISHH) and immunohistochemical (IHC) techniques. 35S-UTP labeled riboprobes showed that mRNAs of both VMATs are expressed in the gastric mucosa. A combination of ISHH and IHC verified that most of the parietal cells (among other epithelial cells) express mRNA of the peripheral type transporter (VMAT1) while enterochromaffin-like cells (ECL) of the fundic mucosa express mRNA of the central type (VMAT2). In addition, with double fluorescent IHC we detected VMAT1 protein in serotoninergic enterochromaffin cells (EC) of the stomach and in gastrin producing G cells of the antral mucosa. Similarly to the fundus, VMAT2 protein was present in ECL cells and in the enteric plexus. Surprisingly, serotonin- and/or histamine-containing cells in the connective tissue compartments of the stomach (i.e., lamina propria and submucosa), immunoreactive for a mast cell specific antigen, displayed neither VMATI nor VMAT2 immunoreactivity. Distribution of VMATs in the rat stomach support our previous observations on aminergic properties of two important gastrointestinal (GI) epithelial cell populations primarily known for other specific secretory products, i.e. dopaminergic properties of acid producing parietal cells and histaminergic properties of gastrin producing G cells. These data emphasize the existence of a non-neuronal, intrinsic aminergic system in the GI tract.  相似文献   

17.
ECL cells produce histamine and chromogranin A, and are restricted to the oxyntic mucosa of the stomach. ECL cell ontogeny has been studied in some detail in the rat. Using histidine decarboxylase immunostaining, the first ECL cells can be demonstrated at embryonic day 17. Immunoreactive histamine and chromogranin A appear one day later. At embryonic day 20, the vesicular monoamine transporter type 2 is also present in the ECL cells. Neonatally the ECL cell proliferation is slow; however, one to three weeks postnatally there is a rapid growth of ECL cells to populate the basal half of the glands. Gastrin is known to be an important stimulator of ECL cell activity and growth in the adult rat. As revealed in recent mouse gene knock out models gastrin does not seem to play a role in the early ECL cell differentiation and development.  相似文献   

18.
Ageing cells, especially post-mitotic cells, are known to accumulate pigments, i.e. highly electron-dense material, referred to as ceroid or lipofuscin. This material is formed as a consequence of autophagocytosis and peroxidation of the products undergoing degradation. The present study describes the development of lipofuscin in the ECL cells of the rat stomach. These cells produce and secrete histamine in response to gastrin. They are rich in secretory vesicles, which fuse to form vacuoles in hypergastrinaemic rats. Hypergastrinaemia was induced by continuous infusion of human Leu15-gastrin-17 for 6 days or by daily treatment with omeprazole for 10 weeks. Either treatment caused both vacuoles and lipofuscin bodies to appear in large numbers; the vacuoles disappeared promptly after interruption of the hypergastrinaemia, whereas the lipofuscin bodies remained. Antrectomy-evoked hypogastrinaemia was associated with a reduced number and volume density of lipofuscin bodies. Treatment with α-fluoromethylhistidine, an irreversible inhibitor of the histamine-forming enzyme, resulted in depletion of ECL-cell histamine and was found to prevent the omeprazole-evoked formation of vacuoles and lipofuscin. The numbers of both vacuoles and lipofuscin bodies were well-correlated with the serum gastrin concentration, suggesting that gastrin stimulates the development not only of vacuoles but also of lipofuscin, perhaps through enhanced autophagocytosis and/or oxidative stress. Thus, lipofuscin bodies may develop from vacuoles, and both vacuoles and lipofuscin bodies may reflect the efforts of overstimulated ECL cells to cope with the excessive formation of secretory products.  相似文献   

19.
Helicobacter pylori infection is a causal factor of gastric cancer (which is associated with low gastric acid secretion) or duodenal ulcer (high acid secretion). Parietal cells and ECL cells in the stomach are controlled by gastrin, which plays a crucial role in the regulation of acid secretion. The present study was undertaken to identify a possible role of gastrin in determining the different responses of the parietal cells and ECL cells to chronic H. pylori infection. Wild-type (C57BL/6J) gastrin(+/+) mice and gastrin(-/-) knockout mice, generated through targeted gene disruption and backcrossed eight times to C57BL/6J, were infected with H. pylori for 9 months. The acid output was measured 4 h after pylorus ligation (known to cause vagal excitation). The gastric mucosa was examined by immunocytochemistry with antisera to alpha-subunit of H+/K(+)-ATPase for the parietal cells, and to histamine and vesicle monoamine transporter-2 for the ECL cells, and by quantitative electron microscopy. In infected gastrin(+/+) mice, the acid output and the percentage of secreting parietal cells (freely fed state) were 20-30% of the values in uninfected controls, while the density and ultrastructure of parietal cells were normal. The infected mice had hypergastrinemia and displayed hypertrophy and hyperplasia of ECL cells. Although uninfected gastrin(-/-) mice had lower the acid output than uninfected gastrin(+/+) mice, there was a higher acid output (approximately 3 times) in infected gastrin(-/-) mice than their uninfected homologues. The numbers of parietal cells and ECL cells remained unchanged in infected gastrin(-/-) mice. In conclusion, chronic H. pylori infection results to impaired parietal-cell function (acid hyposecretion), hypergastrinemia and hyperplasia of ECL cells in wild-type mice but leads to vagally induced hypersecretion in gastrin-deficient mice.  相似文献   

20.
Rat stomach ECL cells are rich in histamine and chromogranin A-derived peptides, such as pancreastatin. Gastrin causes the parietal cells to secrete acid by flooding them with histamine from the ECL cells. In the past, gastric histamine release has been studied using anaesthetized, surgically manipulated animals or isolated gastric mucosa, glands or ECL cells. We monitored gastric histamine mobilization in intact conscious rats by subjecting them to gastric submucosal microdialysis. A microdialysis probe was implanted into the submucosa of the acid-producing part of the stomach (day 1). The rats had access to food and water or were deprived of food (48 h), starting on day 2 after implantation of the probe. On day 4, the rats received food or gastrin (intravenous infusion), and sampling of microdialysate commenced. Samples (flow rate 1.2 microl min(-1)) were collected every 20 or 60 min, and the histamine and pancreastatin concentrations were determined. The serum gastrin concentration was determined in tail vein blood. Exogenous gastrin (4-h infusion) raised microdialysate histamine and pancreastatin dose-dependently. This effect was prevented by gastrin receptor blockade (YM022). Depletion of ECL-cell histamine by alpha-fluoromethylhistidine, an irreversible inhibitor of the histamine-forming enzyme, suppressed the gastrin-evoked release of histamine but not that of pancreastatin. Fasting lowered serum gastrin and microdialysate histamine by 50%, while refeeding raised serum gastrin and microdialysate histamine and pancreastatin 3-fold. We conclude that histamine mobilized by gastrin and food intake derives from ECL cells because: 1) Histamine and pancreastatin were released concomitantly, 2) histamine mobilization following gastrin or food intake was prevented by gastrin receptor blockade, and 3) mobilization of histamine (but not pancreastatin) was abolished by alpha-fluoromethylhistidine. Hence, gastric submucosal microdialysis allows us to monitor the mobilization of ECL-cell histamine in intact conscious rats under various experimental conditions not previously accessible to study. While gastrin receptor blockade lowered post-prandial release of ECL-cell histamine by about 80%, unilateral vagotomy reduced post-prandial mobilization of ECL-cell histamine by about 50%. Hence, both gastrin and vagal excitation contribute to the post-prandial release of ECL-cell histamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号