首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CTLA-4 appears to be a negative regulator of T cell activation and is implicated in T cell-mediated autoimmune diseases. Experimental autoimmune myasthenia gravis (EAMG), induced by immunization of C57BL/6 mice with acetylcholine receptor (AChR) in adjuvant, is an autoantibody-mediated disease model for human myasthenia gravis (MG). The production of anti-AChR Abs in MG and EAMG is T cell dependent. In the present study, we demonstrate that anti-CTLA-4 Ab treatment enhances T cell responses to AChR, increases anti-AChR Ab production, and provokes a rapid onset and severe EAMG. To address possible mechanisms underlying the enhanced autoreactive T cell responses after anti-CTLA-4 Ab treatment, mice were immunized with the immunodominant peptide alpha(146-162) representing an extracellular sequence of the ACHR: Anti-CTLA-4 Ab, but not control Ab, treatment subsequent to peptide immunization results in clinical EAMG with diversification of the autoantibody repertoire as well as enhanced T cell proliferation against not only the immunizing alpha(146-162) peptide, but also against other subdominant epitopes. Thus, treatment with anti-CTLA-4 Ab appears to induce determinant spreading, diversify the autoantibody repertoire, and enhance B cell-mediated autoimmune disease in this murine model of MG.  相似文献   

2.
C57BL/6 (B6) mice respond to immunization with acetylcholine receptor (AChR) from Torpedo californica as measured by T cell proliferation, antibody production, and the development of muscle weakness resembling human myasthenia gravis. The congenic strain B6.C-H-2bm12 (bm12), which differs from B6 by three amino acid substitutions in the beta-chain of the MHC class II molecule I-A, develops a T cell proliferative response but does not produce antibody or develop muscle weakness. By examining the fine specificity of the B6 and bm12 T cell responses to AChR by using T cell clones and synthetic AChR peptides, we found key differences between the two strains in T cell epitope recognition. B6 T cells responded predominantly to the peptide representing alpha-subunit residues 146-162; this response was cross-reactive at the clonal level to peptide 111-126. Based on the sequence homology between these peptides and the T cell response to a set of truncated peptides, the major B6 T cell epitope was determined to be residues 148-152. The cross-reactivity of peptides 146-162 and 111-126 could also be demonstrated in vivo. Immunization of B6 mice with either peptide primed for T cell responses to both peptides. In contrast, immunization of bm12 mice with peptide 111-126 primed for an anti-peptide response, which did not cross-react with 146-162. Peptide-reactive T cells were not elicited after immunization of bm12 mice with 146-162. These results define a major T cell fine specificity in experimental autoimmune myasthenia gravis-susceptible B6 mice to be directed at alpha-subunit residues 148-152. T cells from disease-resistant bm12 mice fail to recognize this epitope but do recognize other portions of AChR. We postulate that alpha-148-152 is a disease-related epitope in murine experimental autoimmune myasthenia gravis. In this informative strain combination, MHC class II-associated determinant selection, rather than Ag responsiveness per se, may play a major role in determining disease susceptibility.  相似文献   

3.
Autoantigen administration via nasal mucosal tissue can induce systemic tolerance more effectively than oral administration in a number of experimental autoimmune diseases, including Ab-mediated experimental autoimmune myasthenia gravis, a murine model of myasthenia gravis. The mechanisms underlying nasal tolerance induction are not clear. In this study, we show that nasal administration of acetylcholine receptor (AChR) in C57BL/6 mice, before immunizations with AChR in adjuvant, results in delayed onset and reduced muscle weakness compared with control mice. The delayed onset and reduced muscle weakness were associated with decreased AChR-specific lymphocyte proliferation and decreased levels of anti-AChR Abs of the IgG2a and IgG2b isotypes in serum. The clinical and immunological changes in the AChR-pretreated C57BL/6 wild-type (wt) mice were comparable with those observed in AChR-pretreated CD8-/- mice, indicating that CD8+ T cells were not required for the generation of nasal tolerance. AChR-pretreated wt and CD8-/- mice showed augmented TGF-beta and reduced IFN-gamma responses, whereas levels of IL-4 were unaltered. Splenocytes from AChR-pretreated wt and CD8-/- mice, but not from CD4-/- mice, suppressed AChR-specific lymphocyte proliferation. This suppression could be blocked by Abs against TGF-beta. Thus, our results demonstrate that the suppression induced in the present model is independent of CD8+ T cells and suggest the involvement of Ag-specific CD4+ Th3 cells producing TGF-beta.  相似文献   

4.
Following immunization with acetylcholine receptor (AChR), MHC class II-restricted, AChR-specific CD4 cell activation is critical for the development of experimental autoimmune myasthenia gravis (EAMG) in C57BL/6 mice. To study the contributions of B7-1 and B7-2 costimulatory molecules in EAMG, B7-1, B7-2, and B7-1/B7-2 gene knockout (KO) mice were immunized with Torpedo AChR in CFA. Compared with wild-type C57BL6 mice, B7-1 and B7-1/2 KO mice were resistant to EAMG development. B7-1 KO mice had reduced anti-AChR Ab compared with C57BL/6 mice. However, neither B7-1 nor B7-2 gene disruption impaired AChR-induced or dominant alpha(146-162) peptide-induced in vitro lymphoproliferative responses. Blocking of the B7-1 or B7-2 molecule by specific mAbs in vivo led to a reduction in the AChR-specific lymphocyte response, and the reduction was more pronounced in mice treated with anti-B7-2 Ab. The findings implicate B7-1 molecules as having a critical role in the induction of EAMG, and the resistance of B7-1 KO mice is associated with suppressed humoral, rather than suppressed AChR-specific, T cell responses. The data also point to B7-2 molecules as being the dominant costimulatory molecules required for AChR-induced lymphocyte proliferation.  相似文献   

5.
Mice expressing the Torpedo acetylcholine receptor alpha-chain as a neo-self-Ag exhibit a reduced frequency of T cells responding to the immunodominant epitope Talpha146-162 indicating a degree of tolerance. We characterized tolerance induction in these animals by analyzing the residual Talpha146-162-responsive T cell population and comparing it to that of nontransgenic littermates. Using CD4(high) sorting, we isolated the vast majority of Ag-reactive T cells from both strains of mice. Quantitative studies of the CD4(high) populations in transgenic mice following immunization with Talpha146-162 revealed a diminished expansion of cells expressing the canonical TCRBV6 but not other TCRBV gene segments when compared with nontransgenic littermates. In addition, CD4(high) cells from transgenic mice were functionally hyporesponsive to Talpha146-162 in terms of proliferation and cytokine secretion regardless of TCRBV gene segment use. TCR sequence analysis of transgenic Vbeta6(+)CD4(high) cells revealed a reduced frequency of cells expressing a conserved motif within the TCRbeta CDR3. Thus, the canonical Talpha146-162 responsive, Vbeta6(+) population demonstrates both quantitative and qualitative deficits that correlate with an altered TCR repertoire whereas the non-Vbeta6 population in transgenic mice exhibits only a reduction in peptide responsiveness, a qualitative defect. These data demonstrate that discrete autoreactive T cell populations with identical peptide/MHC specificity in Torpedo acetylcholine receptor-alpha-transgenic animals bear distinct tolerance imprints.  相似文献   

6.
Autoimmune T cell lines specific for muscle nicotinic acetylcholine receptor (AChR) were propagated from the blood of three myasthenia gravis patients by the use of a pool of synthetic peptides (delta-pool) corresponding to the complete sequence of the delta-subunit of human muscle AChR. Propagation of AChR-specific T cell lines was attempted unsuccessfully from four other myasthenia gravis patients and from four healthy controls. The lines had CD3+, CD4+, CD8- phenotype, strongly recognized the delta-pool, and cross-reacted vigorously with non-denatured AChR purified from mammalian muscle. They did not cross-react detectably with pools of similar overlapping synthetic peptides corresponding to the complete sequences of the alpha- and gamma-subunits of human muscle AChR. The sequence segments of the delta-subunit that contain T epitopes were identified by investigating the response of the three CD4+ T cell lines to the individual synthetic peptides forming the delta-pool. Each line had an individual pattern of peptide recognition. Although no immunodominant region, recognized in association with different DR haplotypes, could be identified, the sequence segments most strongly recognized by the CD4+ T cell lines were clustered within residues 121-290. One of the peptides more strongly recognized by the T cells corresponded to a sequence segment with high predicted propensity to form an amphipathic alpha-helix, a structural motif proposed to be typical of T epitopes.  相似文献   

7.
Split tolerance in a novel transgenic model of autoimmune myasthenia gravis   总被引:3,自引:0,他引:3  
Because it is one of the few autoimmune disorders in which the target autoantigen has been definitively identified, myasthenia gravis (MG) provides a unique opportunity for testing basic concepts of immune tolerance. In most MG patients, Abs against the acetylcholine receptors (AChR) at the neuromuscular junction can be readily identified and have been directly shown to cause muscle weakness. T cells have also been implicated and appear to play a role in regulating the pathogenic B cells. A murine MG model, generated by immunizing mice with heterologous AChR from the electric fish Torpedo californica, has been used extensively. In these animals, Abs cross-react with murine AChR; however, the T cells do not. Thus, to study tolerance to AChR, a transgenic mouse model was generated in which the immunodominant Torpedo AChR (T-AChR) alpha subunit is expressed in appropriate tissues. Upon immunization, these mice showed greatly reduced T cell responses to T-AChR and the immunodominant alpha-chain peptide. Limiting dilution assays suggest the likely mechanism of tolerance is deletion or anergy. Despite this tolerance, immunization with intact T-AChR induced anti-AChR Abs, including Abs against the alpha subunit, and the incidence of MG-like symptoms was similar to that of wild-type animals. Furthermore, evidence suggests that this B cell response to the alpha-chain receives help from T cells directed against the other AChR polypeptides (beta, gamma, or delta). This model offers a novel opportunity to elucidate mechanisms of tolerance regulation to muscle AChR and to clarify the role of T cells in MG.  相似文献   

8.
This study reports the synthesis of a disulfide-looped peptide corresponding to residues 125-147 (Cys 128-Cys 142) of the nicotinic acetylcholine receptor (AChR) of human skeletal muscle, H alpha 125-147 (Lys-Ser-Tyr-Cys-Glu-Ile-Ile-Val-Thr-His-Phe-Pro-Phe-Asp-Glu-Gln- Asn-Cys-Ser-Nle-Lys Leu-Gly), and a nondisulfide-looped analogue, H alpha 125-147(S) (Lys-Ser-Tyr-Ser-Glu-Ile-Ile-Val-Thr-His-Phe-Pro-Phe-Asp-Glu- Gln-Asn-Cys-Ser-Nle-Lys-Leu-Gly), in which the amino acid Cys 128 was replaced with serine. Both peptides induced antigen-specific helper T cell responses, as evidenced in vitro by lymph node cell proliferation and in vivo by production of anti-AChR antibodies. Rats immunized with 100 micrograms of either synthetic peptide, without conjugation to a carrier, produced anti-peptide antibodies which bound to native AChR in immunoprecipitation assays and induced modulation of membrane-bound AChR from cultured human myotubes. Both peptides also induced electrophysiologic and biochemical signs of experimental autoimmune myasthenia gravis. Thus, region 125-147 of the AChR alpha-subunit is at least partly exposed extracellularly in human muscle and contains one or more autoantigenic sites capable of stimulating T cells and B cells. Disulfide-linkage between residues Cys 128 and Cys 142 is not essential for myasthenogenicity.  相似文献   

9.
Cytokines play a crucial role in the maintenance of polyclonal naive and memory T cell populations. It has previously been shown that ex vivo, the IL-7 cytokine induces the proliferation of naive recent thymic emigrants (RTE) isolated from umbilical cord blood but not mature adult-derived naive and memory human CD4(+) T cells. We find that the combination of IL-2 and IL-7 strongly promotes the proliferation of RTE, whereas adult CD4(+) T cells remain relatively unresponsive. Immunological activity is controlled by a balance between proliferation and apoptotic cell death. However, the relative contributions of IL-2 and IL-7 in regulating these processes in the absence of MHC/peptide signals are not known. Following exposure to either IL-2 or IL-7 alone, RTE, as well as mature naive and memory CD4(+) T cells, are rendered only minimally sensitive to Fas-mediated cell death. However, in the presence of the two cytokines, Fas engagement results in a high level of caspase-dependent apoptosis in both RTE as well as naive adult CD4(+) T cells. In contrast, equivalently treated memory CD4(+) T cells are significantly less sensitive to Fas-induced cell death. The increased susceptibility of RTE and naive CD4(+) T cells to Fas-induced apoptosis correlates with a significantly higher IL-2/IL-7-induced Fas expression on these T cell subsets than on memory CD4(+) T cells. Thus, IL-2 and IL-7 regulate homeostasis by modulating the equilibrium between proliferation and apoptotic cell death in RTE and mature naive and memory T cell subsets.  相似文献   

10.
Experimental autoimmune myasthenia gravis (EAMG), a model for human myasthenia (MG), is routinely induced in susceptible rat strains by a single immunization with Torpedo acetylcholine receptor (TAChR). TAChR immunization induces anti-AChR Abs that cross-react with self AChR, activate the complement cascade, and promote degradation of the postsynaptic membrane of the neuromuscular junction. In parallel, TAChR-specific T cells are induced, and their specific immunodominant epitope has been mapped to the sequence 97-116 of the AChR alpha subunit. A proliferative T cell response against the corresponding rat sequence (R97-116) was also found in TAChR-immunized rats. To test whether the rat (self) sequence can be pathogenic, we immunized Lewis rats with R97-116 or T97-116 peptides and evaluated clinical, neurophysiological, and immunological parameters. Clinical signs of the disease were noted only in R97-116-immunized animals and were confirmed by electrophysiological signs of impaired neuromuscular transmission. All animals produced Abs against the immunizing peptide, but anti-rat AChR Abs were observed only in animals immunized with the rat peptide. These findings suggested that EAMG in rats can be induced by a single peptide of the self AChR, that this sequence is recognized by T cells and Abs, and that breakdown of tolerance to a self epitope might be an initiating event in the pathogenesis of rat EAMG and MG.  相似文献   

11.
The mechanisms that underlie the development and maintenance of autoimmunity in myasthenia gravis are poorly understood. In this investigation, we evaluate the role of survivin, a member of the inhibitor of apoptosis protein family, in humans and in two animal models. We identified survivin expression in cells with B lymphocyte and plasma cells markers, and in the thymuses of patients with myasthenia gravis. A portion of survivin-expressing cells specifically bound a peptide derived from the alpha subunit of acetylcholine receptor indicating that they recognize the peptide. Thymuses of patients with myasthenia gravis had large numbers of survivin-positive cells with fewer cells in the thymuses of corticosteroid-treated patients. Application of a survivin vaccination strategy in mouse and rat models of myasthenia gravis demonstrated improved motor assessment, a reduction in acetylcholine receptor specific autoantibodies, and a retention of acetylcholine receptor at the neuromuscular junction, associated with marked reduction of survivin-expressing circulating CD20+ cells. These data strongly suggest that survivin expression in cells with lymphocyte and plasma cell markers occurs in patients with myasthenia gravis and in two animal models of myasthenia gravis. Survivin expression may be part of a mechanism that inhibits the apoptosis of autoreactive B cells in myasthenia gravis and other autoimmune disorders.  相似文献   

12.
Because presentation of acetylcholine receptor (AChR) peptides to T cells is critical to the development of myasthenia gravis, we examined the role of cathepsin S (Cat S) in experimental autoimmune myasthenia gravis (EAMG) induced by AChR immunization. Compared with wild type, Cat S null mice were markedly resistant to the development of EAMG, and showed reduced T and B cell responses to AChR. Cat S null mice immunized with immunodominant AChR peptides showed weak responses, indicating failed peptide presentation accounted for autoimmune resistance. A Cat S inhibitor suppressed in vitro IFN-gamma production by lymph node cells from AChR-immunized, DR3-bearing transgenic mice. Because Cat S null mice are not severely immunocompromised, Cat S inhibitors could be tested for their therapeutic potential in EAMG.  相似文献   

13.
In myasthenia gravis (MG), TNF and IL-1beta polymorphisms and high serum levels of these proinflammatory cytokines have been observed. Likewise, TNF and IL-1beta are critical for the activation of acetylcholine receptor (AChR)-specific T and B cells and for the development of experimental autoimmune myasthenia gravis (EAMG) induced by AChR immunization. We tested the therapeutic effect of human recombinant IL-1 receptor antagonist (IL-1ra) in C57BL/6 mice with EAMG. Multiple daily injections of 0.01 mg of IL-1ra administered for 2 wk following two AChR immunizations decreased the incidence and severity of clinical EAMG. Furthermore, IL-1ra treatment of mice with ongoing clinical EAMG reduced the clinical symptoms of disease. The IL-1ra-mediated suppression of clinical disease was associated with suppressed serum IFN-gamma, TNF-alpha, IL-1beta, IL-2, IL-6, C3, and anti-AChR IgG1 without influencing total serum IgG. Therefore, IL-1ra could be used as a nonsteroidal drug for the treatment of MG.  相似文献   

14.
We have recently described an algorithm to design, among others, peptides with complementarity contour to autoimmune epitopes. Immunization with one such peptide resulted in a monoclonal antibody (mAb), termed CTCR8, that specifically recognized Vbeta15 containing TCR on acetylcholine receptor (AChR) alpha-chain residue 100-116-specific T cells. CTCR8 was found to label the cell surface of AChR100-116-specific T cell lines and clones, immunoprecipitate the TCR from such cells, and block their proliferative responses to AChRalpha100-116. In the present report, we have found that there is a marked reduction in IFN-gamma and no effect on IL-10 production in a CTCR8-treated AChRalpha100-116-specific T cell line. Interestingly, when AChR100-116-primed, primary T cells were stimulated with peptide and treated with CTCR8, there was once again inhibition of IFN-gamma but also marked stimulation of IL-10 production. The change in the Th1/Th2 cytokine profile was paralleled by a reduction in AChR-specific IgG2a and IgM with no effect on IgG1. Remarkably, the most profoundly inhibited Ab population was that which causes experimental autoimmune myasthenia gravis (EAMG) by reaction with the main immunogenic region (alpha61-76) of the AChR. Based on these results, CTCR8 was tested for prophylactic and therapeutic effects in EAMG. EAMG induced by immunization with purified native Torpedo AChR was both inhibited and reversed by CTCR8. These findings suggest a means to produce therapeutic mAb for the treatment of autoimmune diseases.  相似文献   

15.
Costimulatory Effect of Fas in Mouse T Lymphocytes   总被引:1,自引:0,他引:1  
To induce proper immune responses, T lymphocytes require two types of stimuli, antigen-specific and costimulatory signals. Among costimulatory molecules, CD28-engagement promotes the survival and proliferation of both naive and memory T cells. In addition, it is now believed that Fas may play a role in T cell activation in the human system. It is, however, controversial whether Fas can act as a costimulatory signal in the murine system. Thus, we investigated fundamental differences in the capacity to induce proliferation of T cells between Fas and CD28 in mice. Fas-mediated T cell proliferation was observed only with a full mitogenic dose of anti-CD3 antibodies, whereas CD28 engagement was able to enhance T cell proliferation in the presence of a suboptimal level of anti-CD3 antibody. Furthermore, Fas-engaged T cells showed faster response in the upregulation of CD25 and CD69 expression than CD28-engaged ones. Here, we report that Fas might play a role in mature T cell activation in the mouse system through a different mechanism from that in CD28 costimulation.  相似文献   

16.
To induce proper immune responses, T lymphocytes require two types of stimuli, antigen-specific and costimulatory signals. Among costimulatory molecules, CD28-engagement promotes the survival and proliferation of both naive and memory T cells. In addition, it is now believed that Fas may play a role in T cell activation in the human system. It is, however, controversial whether Fas can act as a costimulatory signal in the murine system. Thus, we investigated fundamental differences in the capacity to induce proliferation of T cells between Fas and CD28 in mice. Fas-mediated T cell proliferation was observed only with a full mitogenic dose of anti-CD3 antibodies, whereas CD28 engagement was able to enhance T cell proliferation in the presence of a suboptimal level of anti-CD3 antibody. Furthermore, Fas-engaged T cells showed faster response in the upregulation of CD25 and CD69 expression than CD28-engaged ones. Here, we report that Fas might play a role in mature T cell activation in the mouse system through a different mechanism from that in CD28 costimulation.  相似文献   

17.
Fas-mediated apoptosis is a key mechanism for elimination of autoreactive T cells, yet loss of function mutations in the Fas signaling pathway does not result in overt T cell-mediated autoimmunity. Furthermore, mice and humans with homozygous Fas(lpr) or Fas ligand(gld) mutations develop significant numbers of B220+ CD4- CD8- double-negative (DN) alphabeta T cells (hereafter referred to as B220+ DN T cells) of poorly understood function. In this study, we show that B220+ DN T cells, whether generated in vitro or isolated from mutant mice, can suppress the ability of activated T cells to proliferate or produce IL-2, IL-10, and IFN-gamma. B220+ DN T cells that were isolated from either lpr or gld mice were able to suppress proliferation of autologous and syngeneic CD4 T cells, showing that suppression is Fas independent. Furthermore, restoration of Fas/Fas ligand interaction did not enhance suppression. The mechanism of suppression involves inhibition of IL-2 production and its high affinity IL-2R alpha-chain (CD25). Suppression also requires cell/cell contact and TCR activation of B220+ DN T cells, but not soluble cytokines. These findings suggest that B220+ DN T cells may be involved in controlling autoreactive T cells in the absence of Fas-mediated peripheral tolerance.  相似文献   

18.
A recurring epitope in the human acetylcholine receptor (AChR) alpha subunit (alpha146-160) is presented to specific T cells from myasthenia gravis patients by HLA-DRB3*0101-"DR52a"-or by DR4. Here we first map residues critical for DR52a in this epitope by serial Ala substitution. For two somewhat similar T cells, this confirms the recently deduced importance of hydrophobic "anchor" residues at peptide p1 and p9; also of Asp at p4, which complements this allele's distinctive Arg74 in DRbeta. Surprisingly, despite the 9 sequence differences in DRbeta between DR52a and DR3, merely reducing the bulk of the peptide's p1 anchor residue (Trp149-->Phe) allowed maximal cross-presentation to both T cells by DR3 (which has Val86 instead of Gly). The shared K71G73R74N77 motif in the alpha helices of DR52a and DR3 thus outweighs the five differences in the floor of the peptide-binding groove. A second issue is that T cells selected in vitro with synthetic AChR peptides rarely respond to longer Ag preparations, whereas those raised with recombinant subunits consistently recognize epitopes processed naturally even from whole AChR. Here we compared one T cell of each kind, which both respond to many overlapping alpha140-160 region peptides (in proliferation assays). Even though both use Vbeta2 to recognize peptides bound to the same HLA-DR52a in the same register, the peptide-selected line nevertheless proved to depend on a recurring synthetic artifact-a widely underestimated problem. Unlike these contaminant-responsive T cells, those that are truly specific for natural AChR epitopes appear less heterogeneous and therefore more suitable targets for selective immunotherapy.  相似文献   

19.
In previous studies we have shown that peripheral tolerance achieved by high dose feeding of OVA to intact OVA-TCR transgenic mice was enhanced when endogenous IL-12 was neutralized simultaneously. To generalize this phenomenon, in the present study we investigated the tolerogenic mechanisms underlying the blockade of IL-12 signaling following oral and systemic Ag delivery. We found that the numbers of Ag-specific T cells in several lymphoid organs were significantly reduced due to T cell apoptosis following oral OVA or systemic OVA administration when combined with anti-IL-12 injection, but there was no decrease in T cell numbers for OVA-fed, OVA-injected, or anti-IL-12 alone-treated mice compared with those in untreated control mice. In addition, mostly Fas+ T cells were subject to apoptotic deletion in the OVA- plus anti-IL-12-treated groups, and an enhanced cell death of T cells upon OVA restimulation in vitro could be partially reversed by blockade of the Fas/Fas ligand interaction. Finally, in a murine model of superantigen-driven T cell expansion and deletion, we observed no deletional effects of anti-IL-12 treatment on CD4+ cells in Fas-deficient (MRL/lpr) mice, but did find these effects in MRL wild-type mice. In summary, our data suggest that in the course of Ag-induced cell proliferation of Th1 cells, signaling through IL-12 is required to prevent an induction of Fas-mediated apoptosis. Thus, the use of anti-IL-12 may be potentially useful in modulating peripheral immune responses by promotion of Fas-mediated cell death.  相似文献   

20.
Splenic CD8alpha+ dendritic cells reportedly tolerize T cell responses by inducing Fas ligand-mediated apoptosis, suppressing IL-2 expression, or catabolizing T cell tryptophan reserves through expression of IDO. We report in this study that CD8alpha+, but not CD8alpha-, dendritic cells purified from the spleens of normal mice can tolerize the Th2 responses of cells from asthma phenotype mice through more than one mechanism. This tolerance could largely be reversed in vitro by anti-IL-10 or anti-TGFbeta Ab treatment. However, loss of direct dendritic cell-T cell contact also reduced tolerance, although to a lesser extent, as did adding the IDO inhibitor 1-methyltryptophan or an excess of free tryptophan to the cultures. Within 3 wk of reconstituting asthma phenotype mice with 1 x 10(5) OVA-pulsed CD8alpha+, but not CD8alpha-, dendritic cells, the mice experienced a reversal of airway hyperresponsiveness, eosinophilic airway responses, and pulmonary Th2 cytokine expression. This data indicates that CD8alpha+ dendritic cells can simultaneously use multiple mechanisms for tolerization of T cells and that, in vivo, they are capable of tolerizing a well-established disease complex such as allergic lung disease/asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号