首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human cytomegalovirus DNA polymerase consists of a catalytic subunit, UL54, and a presumed processivity factor, UL44. We have solved the crystal structure of residues 1-290 of UL44 to 1.85 A resolution by multiwavelength anomalous dispersion. The structure reveals a dimer of UL44 in the shape of a C clamp. Each monomer of UL44 shares its overall fold with other processivity factors, including herpes simplex virus UL42, which is a monomer that binds DNA directly, and the sliding clamp, PCNA, which is a trimer that surrounds DNA, although these proteins share no obvious sequence homology. Analytical ultracentrifugation and gel filtration measurements demonstrated that UL44 also forms a dimer in solution, and substitution of large hydrophobic residues along the homodimer interface with alanine disrupted dimerization and decreased DNA binding. UL44 represents a hybrid processivity factor as it binds DNA directly like UL42, but forms a C clamp that may surround DNA like PCNA.  相似文献   

2.
The way that UL42, the processivity subunit of the herpes simplex virus DNA polymerase, interacts with DNA and promotes processivity remains unclear. A positively charged face of UL42 has been proposed to participate in electrostatic interactions with DNA that would tether the polymerase to a template without preventing its translocation via DNA sliding. An alternative model proposes that DNA binding by UL42 is not important for processivity. To investigate these issues, we substituted alanine for each of four conserved arginine residues on the positively charged surface. Each single substitution decreased the DNA binding affinity of UL42, with 14- to 30-fold increases in apparent dissociation constants. The mutant proteins exhibited no meaningful change in affinity for binding to the C terminus of the catalytic subunit of the polymerase, indicating that the substitutions exert a specific effect on DNA binding. The substitutions decreased UL42-mediated long-chain DNA synthesis by the polymerase in the same rank order in which they affected DNA binding, consistent with a role for DNA binding in polymerase processivity. Combining these substitutions decreased DNA binding further and impaired the complementation of a UL42 null virus in transfected cells. Additionally, using a revised mathematical model to analyze rates of dissociation of UL42 from DNAs of various lengths, we found that dissociation from internal sites, which would be the most important for tethering the polymerase, was relatively slow, even at ionic strengths that permit processive DNA synthesis by the holoenzyme. These data provide evidence that the basic surface of UL42 interacts with DNA and support a model in which DNA binding by UL42 is important for processive DNA synthesis.  相似文献   

3.
Herpes simplex virus DNA polymerase is a heterodimer composed of a catalytic subunit, Pol, and an unusual processivity subunit, UL42, which, unlike processivity factors such as PCNA, directly binds DNA. The crystal structure of a complex of the C-terminal 36 residues of Pol bound to residues 1-319 of UL42 reveals remarkable similarities between UL42 and PCNA despite contrasting biochemical properties and lack of sequence homology. Moreover, the Pol-UL42 interaction resembles the interaction between the cell cycle regulator p21 and PCNA. The structure and previous data suggest that the UL42 monomer interacts with DNA quite differently than does multimeric toroidal PCNA. The details of the structure lead to a model for the mechanism of UL42, provide the basis for drug design, and allow modeling of other proteins that lack sequence homology with UL42 or PCNA.  相似文献   

4.
The processivity subunit of the herpes simplex virus DNA polymerase, UL42, is a monomer in solution. However, UL42 is structurally similar to sliding clamp processivity factors, such as PCNA, which encircle DNA as a multimeric ring. We used chemical crosslinking and electrophoretic mobility-shift assays to investigate whether UL42 oligomerizes upon DNA binding. UL42 did not form intermolecular crosslinks upon treatment with glutaraldehyde in the presence of DNA, whereas proteins that are known to be multimers in solution were successfully crosslinked by this treatment. This result suggests that UL42 does not form multimers on DNA. We next analyzed the composition of UL42:DNA complexes using electrophoretic mobility-shift assays. UL42 was mixed with a maltose-binding protein-UL42 fusion protein before being added to DNA. The patterns of electrophoretic mobility of the resultant protein:DNA complexes were those predicted if each isoform of UL42 binds to DNA as a monomer. From this result and the failure of UL42 to form crosslinks, we infer that UL42 binds DNA as a monomer.  相似文献   

5.
The human cytomegalovirus DNA polymerase is composed of a catalytic subunit, UL54, and an accessory protein, UL44, which has a structural fold similar to that of other processivity factors, including herpes simplex virus UL42 and homotrimeric sliding clamps such as proliferating cell nuclear antigen. Several specific residues in the C-terminal region of UL54 and in the "connector loop" of UL44 are required for the association of these proteins. Here, we describe the crystal structure of residues 1-290 of UL44 in complex with a peptide from the extreme C terminus of UL54, which explains this interaction at a molecular level. The UL54 peptide binds to structural elements similar to those used by UL42 and the sliding clamps to associate with their respective binding partners. However, the details of the interaction differ from those of other processivity factor-peptide complexes. Crucial residues include a three-residue hydrophobic "plug" from the UL54 peptide and Ile(135) of UL44, which forms a critical intramolecular hydrophobic anchor for interactions between the connector loop and the peptide. As was the case for the unliganded UL44 structure, the UL44-peptide complex forms a head-to-head dimer that could potentially form a C-shaped clamp on DNA. However, the peptide-bound structure displays subtle differences in the relative orientation of the two subdomains of the protein, resulting in a more open clamp, which we predicted would affect its association with DNA. Indeed, filter binding assays revealed that peptide-bound UL44 binds DNA with higher affinity. Thus, interaction with the catalytic subunit appears to affect both the structure and function of UL44.  相似文献   

6.
Genetic and biochemical studies have shown that the products of the herpes simplex virus type 1 (HSV-1) DNA polymerase (UL30) and UL42 genes are both required for viral DNA replication. A number of studies have previously suggested that these two proteins specifically interact, and more recent studies have confirmed that the viral DNA polymerase from HSV-1-infected cells consists of a heterodimer of the UL30 (Pol; the catalytic subunit) and UL42 polypeptides. A comparison of the catalytic properties of the Pol-UL42 complex with those of the isolated subunits of the enzyme purified from recombinant baculovirus-infected insect cells indicated that the Pol-UL42 complex is more highly processive than Pol alone on singly primed M13 single-stranded substrates. The results of these studies are consistent with the idea that the UL42 polypeptide is an accessory subunit of the HSV-1 DNA polymerase that acts to increase the processivity of polymerization. Preliminary experiments suggested that the increase in processivity was accompanied by an increase in the affinity of the polymerase for the ends of linear duplex DNA. We have further characterized the effect of the UL42 polypeptide on a defined hairpin primer template substrate. Gel shift and filter binding studies show that the affinity of the Pol catalytic subunit for the 3' terminus of the primer template increases 10-fold in the presence of UL42. DNase I footprinting experiments indicate that the Pol catalytic subunit binds to the primer template at a position that protects 14 bp of the 3' duplex region and an adjacent 18 bases of the single-stranded template. The presence of the UL42 polypeptide results in the additional protection of a contiguous 5 to 14 bp in the duplex region but does not affect the 5' position of the Pol subunit. Free UL42 protects the entire duplex region of the substrate but does not bind to the single-stranded region. Taken together, these results suggest that the increase in processivity in the presence of UL42 is related to the double-stranded DNA-binding activity of free UL42 and that the role of UL42 in the DNA polymerase complex is to act as a clamp, decreasing the probability that the polymerase will dissociate from the template after each cycle of catalysis.  相似文献   

7.
Herpes simplex virus DNA polymerase consists of a catalytic subunit, Pol, and a processivity subunit, UL42, that, unlike other established processivity factors, binds DNA directly. We used gel retardation and filter-binding assays to investigate how UL42 affects the polymerase-DNA interaction. The Pol/UL42 heterodimer bound more tightly to DNA in a primer-template configuration than to single-stranded DNA (ssDNA), while Pol alone bound more tightly to ssDNA than to DNA in a primer-template configuration. The affinity of Pol/UL42 for ssDNA was reduced severalfold relative to that of Pol, while the affinity of Pol/UL42 for primer-template DNA was increased ~15-fold relative to that of Pol. The affinity of Pol/UL42 for circular double-stranded DNA (dsDNA) was reduced drastically relative to that of UL42, but the affinity of Pol/UL42 for short primer-templates was increased modestly relative to that of UL42. Pol/UL42 associated with primer-template DNA ~2-fold faster than did Pol and dissociated ~10-fold more slowly, resulting in a half-life of 2 h and a subnanomolar Kd. Despite such stable binding, rapid-quench analysis revealed that the rates of elongation of Pol/UL42 and Pol were essentially the same, ~30 nucleotides/s. Taken together, these studies indicate that (i) Pol/UL42 is more likely than its subunits to associate with DNA in a primer-template configuration rather than nonspecifically to either ssDNA or dsDNA, and (ii) UL42 reduces the rate of dissociation from primer-template DNA but not the rate of elongation. Two models of polymerase-DNA interactions during replication that may explain these findings are presented.  相似文献   

8.
C S Chow  D M Coen 《Journal of virology》1995,69(11):6965-6971
The herpes simplex virus DNA polymerase is a heterodimer consisting of a catalytic subunit and the protein UL42, which functions as a processivity factor. It has been hypothesized that UL42 tethers the catalytic subunit to the DNA template by virtue of DNA binding activity (J. Gottlieb, A. I. Marcy, D. M. Coen, and M. D. Challberg, J. Virol. 64:5976-5987, 1990). Relevant to this hypothesis, we identified two linker insertion mutants of UL42 that were unable to bind to a double-stranded-DNA-cellulose column but retained their ability to bind the catalytic subunit. These mutants were severely impaired in the stimulation of long-chain-DNA synthesis by the catalytic subunit in vitro. In transfected cells, the expressed mutant proteins localized to the nucleus but were nonetheless deficient in complementing the growth of a UL42 null virus. Thus, unlike many other processivity factors, UL42 appears to require an intrinsic DNA binding activity for its function both in vitro and in infected cells. Possible mechanisms for the activity of UL42 and its potential as a drug target are discussed.  相似文献   

9.
Processivity factors tether the catalytic subunits of DNA polymerases to DNA so that continuous synthesis of long DNA strands is possible. The human cytomegalovirus DNA polymerase subunit UL44 forms a C clamp-shaped dimer intermediate in structure between monomeric herpes simplex virus UL42, which binds DNA directly via a basic surface, and the trimeric sliding clamp PCNA, which encircles DNA. To investigate how UL44 interacts with DNA, calculations were performed in which a 12 bp DNA oligonucleotide was docked to UL44. The calculations suggested that UL44 encircles DNA, which interacts with basic residues both within the cavity of the C clamp and in flexible loops of UL44 that complete the "circle." The results of mutational and crosslinking studies were consistent with this model. Thus, UL44 is a "hybrid" of UL42 and PCNA: its structure is intermediate between the two and its mode of interaction with DNA has elements of both.  相似文献   

10.
单纯疱疹病毒1型(Herpes simplex virus type 1, HSV-1) UL42作为病毒编码的DNA聚合酶辅助亚基之一,是一种多功能蛋白,其在催化和调节病毒在细胞核内的有效复制发挥了重要的作用。已知UL42能提高DNA聚合酶催化亚基UL30的持续合成能力,激活病毒DNA聚合酶活性;介导DNA聚合酶的入核;与DNA模板链结合,提高病毒复制的保真度,以及含有抑制DNA聚合酶活性的肽段,提示其在病毒复制过程中也可能具有负调控作用。近期亦有报道显示,UL42能够阻断肿瘤坏死因子α(tumor necrosis factor-α, TNF-α)激活的核转录因子(nuclear factor kappa-B,NF-κB)信号通路以及干扰素调控因子3(interferon regulatory factor 3, IRF-3)的功能,提示其在病毒逃逸宿主天然免疫反应中发挥了一定的功能,但具体的作用机制尚不明确。本文对目前国内外HSV-1 UL42的结构特点、主要功能、作用机制及其在抗病毒药物研发中的研究进展进行综述,为后续揭示病毒致病机制和抗病毒药物的研发提供参考。  相似文献   

11.
The DNA polymerase processivity factor of the Epstein-Barr virus, BMRF1, associates with the polymerase catalytic subunit, BALF5, to enhance the polymerase processivity and exonuclease activities of the holoenzyme. In this study, the crystal structure of C-terminally truncated BMRF1 (BMRF1-ΔC) was solved in an oligomeric state. The molecular structure of BMRF1-ΔC shares structural similarity with other processivity factors, such as herpes simplex virus UL42, cytomegalovirus UL44, and human proliferating cell nuclear antigen. However, the oligomerization architectures of these proteins range from a monomer to a trimer. PAGE and mutational analyses indicated that BMRF1-ΔC, like UL44, forms a C-shaped head-to-head dimer. DNA binding assays suggested that basic amino acid residues on the concave surface of the C-shaped dimer play an important role in interactions with DNA. The C95E mutant, which disrupts dimer formation, lacked DNA binding activity, indicating that dimer formation is required for DNA binding. These characteristics are similar to those of another dimeric viral processivity factor, UL44. Although the R87E and H141F mutants of BMRF1-ΔC exhibited dramatically reduced polymerase processivity, they were still able to bind DNA and to dimerize. These amino acid residues are located near the dimer interface, suggesting that BMRF1-ΔC associates with the catalytic subunit BALF5 around the dimer interface. Consequently, the monomeric form of BMRF1-ΔC probably binds to BALF5, because the steric consequences would prevent the maintenance of the dimeric form. A distinctive feature of BMRF1-ΔC is that the dimeric and monomeric forms might be utilized for the DNA binding and replication processes, respectively.  相似文献   

12.
The human cytomegalovirus DNA polymerase includes an accessory protein, UL44, which has been proposed to act as a processivity factor for the catalytic subunit, UL54. How UL44 interacts with UL54 has not yet been elucidated. The crystal structure of UL44 revealed the presence of a connector loop analogous to that of the processivity subunit of herpes simplex virus DNA polymerase, UL42, which is crucial for interaction with its cognate catalytic subunit, UL30. To investigate the role of the UL44 connector loop, we replaced each of its amino acids (amino acids 129 to 140) with alanine. We then tested the effect of each substitution on the UL44-UL54 interaction by glutathione S-transferase pulldown and isothermal titration calorimetry assays, on the stimulation of UL54-mediated long-chain DNA synthesis by UL44, and on the binding of UL44 to DNA-cellulose columns. Substitutions that affected residues 133 to 136 of the connector loop measurably impaired the UL44-UL54 interaction without altering the ability of UL44 to bind DNA. One substitution, I135A, completely disrupted the binding of UL44 to UL54 and inhibited the ability of UL44 to stimulate long-chain DNA synthesis by UL54. Thus, similar to the herpes simplex virus UL30-UL42 interaction, a residue of the connector loop of the accessory subunit is crucial for UL54-UL44 interaction. However, while alteration of a polar residue of the UL42 connector loop only partially reduced binding to UL30, substitution of a hydrophobic residue of UL44 completely disrupted the UL54-UL44 interaction. This information may aid the discovery of small-molecule inhibitors of the UL44-UL54 interaction.  相似文献   

13.
Herpes simplex virus DNA polymerase is a heterodimer composed of UL30, a catalytic subunit, and UL42, a processivity subunit. Mutations that decrease DNA binding by UL42 decrease long chain DNA synthesis by the polymerase. The crystal structure of UL42 bound to the C terminus of UL30 revealed an extensive positively charged surface ("back face"). We tested two hypotheses, 1) the C terminus of UL30 affects DNA binding and 2) the positively charged back face mediates DNA binding. Addressing the first hypothesis, we found that the presence of a peptide corresponding to the UL30 C terminus did not result in altered binding of UL42 to DNA. Addressing the second hypothesis, previous work showed that substitution of four conserved arginine residues on the basic face with alanines resulted in decreased DNA affinity. We tested the affinities for DNA and the stimulation of long chain DNA synthesis of mutants in which the four conserved arginine residues were substituted individually or together with lysines and also a mutant in which a conserved glutamine residue was substituted with an arginine to increase positive charge on the back face. We also engineered cysteines onto this surface to permit disulfide cross-linking studies. Last, we assayed the effects of ionic strength on DNA binding by UL42 to estimate the number of ions released upon binding. Our results taken together strongly suggest that the basic back face of UL42 contacts DNA and that positive charge on this surface is important for this interaction.  相似文献   

14.
Proliferating cell nuclear antigen (PCNA) acts as a biologically essential processivity factor that encircles DNA and provides binding sites for polymerase, flap endonuclease-1 (FEN-1) and ligase during DNA replication and repair. We have computationally characterized the interactions of human and Archaeoglobus fulgidus PCNA trimer with double-stranded DNA (ds DNA) using multi-nanosecond classical molecular dynamics simulations. The results reveal the interactions of DNA passing through the PCNA trimeric ring including the contacts formed, overall orientation and motion with respect to the sliding clamp. Notably, we observe pronounced tilting of the axis of dsDNA with respect to the PCNA ring plane reflecting interactions between the DNA phosphodiester backbone and positively charged arginine and lysine residues lining the PCNA inner surface. Covariance matrix analysis revealed a pattern of correlated motions within and between the three equivalent subunits involving the PCNA C-terminal region and linker strand associated with partner protein binding sites. Additionally, principal component analysis identified low frequency global PCNA subunit motions suitable for translocation along duplex DNA. The PCNA motions and interactions with the DNA minor groove, identified here computationally, provide an unexpected basis for PCNA to act in the coordinated handoff of intermediates from polymerase to FEN-1 to ligase during DNA replication and repair.  相似文献   

15.
16.
Chaudhuri M  Parris DS 《Journal of virology》2002,76(20):10270-10281
The DNA polymerase holoenzyme of herpes simplex virus type 1 (HSV-1) is a stable heterodimer consisting of a catalytic subunit (Pol) and a processivity factor (UL42). HSV-1 UL42 differs from most DNA polymerase processivity factors in possessing an inherent ability to bind to double-stranded DNA. It has been proposed that UL42 increases the processivity of Pol by directly tethering it to the primer and template (P/T). To test this hypothesis, we took advantage of the different sensitivities of Pol and Pol/UL42 activities to ionic strength. Although the activity of Pol is inhibited by salt concentrations in excess of 50 mM KCl, the activity of the holoenzyme is relatively refractory to changes in ionic strength from 50 to 125 mM KCl. We used nitrocellulose filter-binding assays and real-time biosensor technology to measure binding affinities and dissociation rate constants of the individual subunits and holoenzyme for a short model P/T as a function of the ionic strength of the buffer. We found that as observed for activity, the binding affinity and dissociation rate constant of the Pol/UL42 holoenzyme for P/T were not altered substantially in high- versus low-ionic-strength buffer. In 50 mM KCl, the apparent affinity with which UL42 bound the P/T did not differ by more than twofold compared to that observed for Pol or Pol/UL42 in the same low-ionic-strength buffer. However, increasing the ionic strength dramatically decreased the affinity of UL42 for P/T, such that it was reduced more than 3 orders of magnitude from that of Pol/UL42 in 125 mM KCl. Real-time binding kinetics revealed that much of the reduced affinity could be attributable to an extremely rapid dissociation of UL42 from the P/T in high-ionic-strength buffer. The resistance of the activity, binding affinity, and stability of the holoenzyme for the model P/T to increases in ionic strength, despite the low apparent affinity and poor stability with which UL42 binds the model P/T in high concentrations of salt, suggests that UL42 does not simply tether the Pol to DNA. Instead, it is likely that conformational alterations induced by interaction of UL42 with Pol allow for high-affinity and high-stability binding of the holoenzyme to the P/T even under high-ionic-strength conditions.  相似文献   

17.
Herpes simplex virus mutants with single substitutions that decrease DNA binding by the DNA polymerase processivity subunit UL42 are only modestly impaired for viral replication. In this study, recombinant viruses harboring two or four of these mutations were constructed. The more substitutions, the more severe the defects in viral replication and DNA synthesis, suggesting that DNA binding by UL42 is important for these processes.  相似文献   

18.
19.
The interaction of the catalytic subunit of herpes simplex virus DNA polymerase with the processivity subunit, UL42, is essential for viral replication and is thus a potential target for antiviral drug discovery. We have previously reported that a peptide analogous to the C-terminal 36 residues of the catalytic subunit, which are necessary and sufficient for its interaction with UL42, forms a monomeric structure with partial alpha-helical character. This peptide and one analogous to the C-terminal 18 residues specifically inhibit UL42-dependent long chain DNA synthesis. Using multidimensional (1)H nuclear magnetic resonance spectroscopy, we have found that the 36-residue peptide contains partially ordered N- and C-terminal alpha-helices separated by a less ordered region. A series of "alanine scan" peptides derived from the C-terminal 18 residues of the catalytic subunit were tested for their ability to inhibit long-chain DNA synthesis and by circular dichroism for secondary structure. The results identify structural aspects and specific side chains that appear to be crucial for interacting with UL42. These findings may aid in the rational design of new drugs for the treatment of herpesvirus infections.  相似文献   

20.
The presumed processivity subunit of human cytomegalovirus (HCMV) DNA polymerase, UL44, forms homodimers. The dimerization of UL44 is important for binding to DNA in vitro; however, whether it is also important for DNA replication in a cellular context is unknown. Here we show that UL44 point mutants that are impaired for dimerization, but not for nuclear localization or interaction with the C terminus of the polymerase catalytic subunit, are not capable of supporting HCMV oriLyt-dependent DNA replication in cells. These data suggest that the disruption of UL44 homodimers could represent a novel anti-HCMV strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号