共查询到20条相似文献,搜索用时 0 毫秒
1.
The upwelling of deep waters from the oxygen minimum zone in the Northeast Pacific from the continental slope to the shelf and into the Salish Sea during spring and summer offers a unique opportunity to study ecosystem functioning in the form of benthic fluxes along natural gradients. Using the ROV ROPOS we collected sediment cores from 10 sites in May and July 2011, and September 2013 to perform shipboard incubations and flux measurements. Specifically, we measured benthic fluxes of oxygen and nutrients to evaluate potential environmental drivers of benthic flux variation and ecosystem functioning along natural gradients of temperature and bottom water dissolved oxygen concentrations. The range of temperature and dissolved oxygen encountered across our study sites allowed us to apply a suite of multivariate analyses rarely used in flux studies to identify bottom water temperature as the primary environmental driver of benthic flux variation and organic matter remineralization. Redundancy analysis revealed that bottom water characteristics (temperature and dissolved oxygen), quality of organic matter (chl a:phaeo and C:N ratios) and sediment characteristics (mean grain size and porosity) explained 51.5% of benthic flux variation. Multivariate analyses identified significant spatial and temporal variation in benthic fluxes, demonstrating key differences between the Northeast Pacific and Salish Sea. Moreover, Northeast Pacific slope fluxes were generally lower than shelf fluxes. Spatial and temporal variation in benthic fluxes in the Salish Sea were driven primarily by differences in temperature and quality of organic matter on the seafloor following phytoplankton blooms. These results demonstrate the utility of multivariate approaches in differentiating among potential drivers of seafloor ecosystem functioning, and indicate that current and future predictive models of organic matter remineralization and ecosystem functioning of soft-muddy shelf and slope seafloor habitats should consider bottom water temperature variation. Bottom temperature has important implications for estimates of seasonal and spatial benthic flux variation, benthic–pelagic coupling, and impacts of predicted ocean warming at high latitudes. 相似文献
2.
Disturbance-mediated species loss has prompted research considering how ecosystem functions are changed when biota is impaired. However, there is still limited empirical evidence from natural environments evaluating the direct and indirect (i.e. via biota) effects of disturbance on ecosystem functioning. Oxygen deficiency is a widespread threat to coastal and estuarine communities. While the negative impacts of hypoxia on benthic communities are well known, few studies have assessed in situ how benthic communities subjected to different degrees of hypoxic stress alter their contribution to ecosystem functioning. We studied changes in sediment ecosystem function (i.e. oxygen and nutrient fluxes across the sediment water-interface) by artificially inducing hypoxia of different durations (0, 3, 7 and 48 days) in a subtidal sandy habitat. Benthic chamber incubations were used for measuring responses in sediment oxygen and nutrient fluxes. Changes in benthic species richness, structure and traits were quantified, while stress-induced behavioral changes were documented by observing bivalve reburial rates. The initial change in faunal behavior was followed by non-linear degradation in benthic parameters (abundance, biomass, bioturbation potential), gradually impairing the structural and functional composition of the benthic community. In terms of ecosystem function, the increasing duration of hypoxia altered sediment oxygen consumption and enhanced sediment effluxes of NH4
+ and dissolved Si. Although effluxes of PO4
3− were not altered significantly, changes were observed in sediment PO4
3− sorption capability. The duration of hypoxia (i.e. number of days of stress) explained a minor part of the changes in ecosystem function. Instead, the benthic community and disturbance-driven changes within the benthos explained a larger proportion of the variability in sediment oxygen- and nutrient fluxes. Our results emphasize that the level of stress to the benthic habitat matters, and that the link between biodiversity and ecosystem function is likely to be affected by a range of factors in complex, natural environments. 相似文献
3.
Wing Stephen R. Wing Lucy C. O’Connell-Milne Sorrel A. Barr David Stokes Dale Genovese Sal Leichter James J. 《Ecosystems》2021,24(5):1203-1221
Ecosystems - Large animals such as sea birds and marine mammals can transport limiting nutrients between different regions of the ocean, thereby stimulating and enhancing productivity. In... 相似文献
4.
In species-poor communities, genetic diversity potentially plays an important role for ecosystem functioning, though this is still largely unexplored in marine and estuarine ecosystems. We studied how genetic diversity (sensu genotypic diversity and/or allelic richness) affects ecosystem functioning in marine habitat-forming plant communities. First, we conducted a 15-month field experiment in the highly seasonal Baltic Sea and established mono- and polycultures of different genotypes and genotype combinations of Zostera marina. Second, we reviewed existing literature and performed a meta-analysis of 12 studies including this study. We found no evidence of positive genetic diversity effects on shoot production in the field experiment, but diversity enhanced community stability over time. The literature review revealed that a majority of the included studies observed positive effects of genetic diversity on ecosystem functions such as primary production and nutrient uptake. The results from the meta-analysis support the hypothesis that genetic diversity effects on productivity are stronger during or after periods of stress. These diversity effects were also more positive in the field compared to mesocosm studies. Our results indicate that genetic diversity has positive effects on ecosystem functioning, particularly during increased environmental stress. Thus, local genetic diversity should be preserved especially in species-poor ecosystems, where it potentially provides insurance against environmental change. 相似文献
5.
Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions) and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions) but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive) or antagonistic (negative) depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed. 相似文献
6.
The Mediterranean Sea has been strongly influenced by human activities for millennia. Although the environmental history of
its surrounding terrestrial ecosystems has received considerable study, historical changes in its marine realm are less known.
We used a multidisciplinary approach combining paleontological, archeological, historical, fisheries, and ecological data
to reconstruct past changes in marine populations, habitats, and water quality in the Adriatic Sea. Then, we constructed binary
food webs for different historical periods to analyze possible changes in food-web structure and functioning over time. Our
results indicate that human activities have influenced marine resource abundance since at least Roman times and accelerated
in the nineteenth and twentieth centuries. Today, 98% of traditional marine resources are depleted to less than 50% of former
abundance, with large (>1 m) predators and consumers being most affected. With 37% of investigated species rare and 11% extirpated,
diversity has shifted towards smaller, lower trophic-level species, further aggravated by more than 40 species invasions.
Species providing habitat and filter functions have been reduced by 75%, contributing to the degradation of water quality
and increased eutrophication. Increased exploitation and functional extinctions have altered and simplified food-web structure
over time, especially by changing the proportions of top predators, intermediate consumers, and basal species. Moreover, simulations
of species losses indicate that today’s ecosystems may be less robust to species extinctions than in the past. Our results
illustrate the long-term and far-reaching consequences human activities can have on marine food webs and ecosystems. 相似文献
7.
Bacterial Standing Stock, Activity, and Carbon Production during Formation and Growth of Sea Ice in the Weddell Sea, Antarctica 总被引:7,自引:0,他引:7
下载免费PDF全文

Bacterial response to formation and growth of sea ice was investigated during autumn in the northeastern Weddell Sea. Changes in standing stock, activity, and carbon production of bacteria were determined in successive stages of ice development. During initial ice formation, concentrations of bacterial cells, in the order of 1 × 108 to 3 × 108 liter-1, were not enhanced within the ice matrix. This suggests that physical enrichment of bacteria by ice crystals is not effective. Due to low concentrations of phytoplankton in the water column during freezing, incorporation of bacteria into newly formed ice via attachment to algal cells or aggregates was not recorded in this study. As soon as the ice had formed, the general metabolic activity of bacterial populations was strongly suppressed. Furthermore, the ratio of [3H]leucine incorporation into proteins to [3H]thymidine incorporation into DNA changed during ice growth. In thick pack ice, bacterial activity recovered and growth rates up to 0.6 day-1 indicated actively dividing populations. However, biomass-specific utilization of organic compounds remained lower than in open water. Bacterial concentrations of up to 2.8 × 109 cells liter-1 along with considerably enlarged cell volumes accumulated within thick pack ice, suggesting reduced mortality rates of bacteria within the small brine pores. In the course of ice development, bacterial carbon production increased from about 0.01 to 0.4 μg of C liter-1 h-1. In thick ice, bacterial secondary production exceeded primary production of microalgae. 相似文献
8.
Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula) and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor). Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only), tide (Cape Evans and New Harbor), and water mass properties (temperature and salinity) during spring and early summer 2011. These collective observations showed that (1) pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007) and range of pH (Cape Evans: 0.090; Hut Point: 0.036), and (2) pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes – in this case algal photosynthesis – to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities) to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound. 相似文献
9.
Distribution of Clostridium perfringens and Fecal Sterols in a Benthic Coastal Marine Environment Influenced by the Sewage Outfall from McMurdo Station, Antarctica 总被引:1,自引:0,他引:1
下载免费PDF全文

The spatial distribution, movement, and impact of the untreated wastewater outfall from McMurdo Station, Antarctica, were investigated under early austral summer conditions. The benthic environment was examined to determine the distribution of Clostridium perfringens in sediment cores and the intestinal contents of native invertebrates and fish along a transect of stations. These stations extended ca. 411 m south of the outfall. The findings revealed that the concentration of C. perfringens decreased with depth in the sediment and distance from the outfall. High percentages of tunicates and sea urchins were colonized with this bacterium along the transect. Coprostanol concentrations were also measured in sediment samples taken from each of the transect stations, and a similar trend was observed. These results are in agreement with the findings of previous studies performed with the water column and collectively provide evidence that the disposal of domestic wastes deserves special consideration in polar marine environments. 相似文献
10.
Mobile Link Organisms and Ecosystem Functioning: Implications for Ecosystem Resilience and Management 总被引:4,自引:0,他引:4
Current natural resource management seldom takes the ecosystem functions performed by organisms that move between systems into consideration. Organisms that actively move in the landscape and connect habitats in space and time are here termed “mobile links.” They are essential components in the dynamics of ecosystem development and ecosystem resilience (that is, buffer capacity and opportunity for reorganization) that provide ecological memory (that is, sources for reorganization after disturbance). We investigated the effects of such mobile links on ecosystem functions in aquatic as well as terrestrial environments. We identify three main functional categories: resource, genetic, and process linkers and suggest that the diversity within functional groups of mobile links is a central component of ecosystem resilience. As the planet becomes increasingly dominated by humans, the magnitude, frequency, timing, spatial extent, rate, and quality of such organism-mediated linkages are being altered. We argue that global environmental change can lead to (a) the decline of essential links in functional groups providing pollination, seed dispersal, and pest control; (b) the linking of previously disconnected areas, for example, the spread of vector-borne diseases and invasive species; and (c) the potential for existing links to become carriers of toxic substances, such as persistent organic compounds. We conclude that knowledge of interspatial exchange via mobile links needs to be incorporated into management and policy-making decisions in order to maintain ecosystem resilience and hence secure the capacity of ecosystems to supply the goods and services essential to society. Received 23 April 2001; accepted 17 June 2002. 相似文献
11.
Coherent assemblages of marine benthic species have been recognized from the early twentieth century, and the classical papers
of Petersen (1914, 1918) were based on studies of limited areas in the North Sea. In 1986, a synoptic survey of the North
Sea north to 57°N was undertaken by a group of ten laboratories from seven North Sea countries. The results of this survey
have recently been published (Heip et al., 1992a, b; Künitzer et al., 1992; Huys et al., 1992), and some of the results are
summarized in this paper. The analysis of the macrofauna is based on slightly more than 700 taxa. In general, the North Sea
macrofauna consists of northern species extending south to the northern margins of the Dogger Bank, and southern species extending
north to the 100 m depth line. The central North Sea is an area of overlap of southern and northern species, especially around
the 70 m depth contour. Consistent groupings of species are recognized that were summarized in seven faunal groupings. Macrofaunal
body weight, density and diversity increase linearly towards the north. Macrofaunal biomass for the whole area averages 7
g adwt. m−2 and decreases from south to north. Distribution patterns and trends within the meiofauna were very different. Nematodes,
which are the dominant taxon overall, are least abundant in the sandy sediments of the Southern Bight, then increase to a
maximum around 53° 30′ N and slowly decrease again towards the north. Copepod density and diversity are highest in the Southern
Bight, due to the presence of many interstitial species. A large number of species new to science were recorded by the North
Sea Benthos Survey and about 1500 species are expected to occur. Copepods show very distinct assemblages according to water
depth and sediment type. The contrasting patterns in latitudinal gradients of body weight and number of species of macro-
and meiofauna can be only partially explained. Latitude and sediment characteristics, such as grain size and content in plant
pigments, and water depth, determine part of the variance in species composition, density and biomass of the benthic fauna,
but the patterns that are observed are different for different benthic groups, requiring careful consideration as to their
use in biological monitoring procedures. Distributions are related to current patterns in the North Sea, annual temperature
variations and availability of food. However, large parts of the variance in many parameters remain unexplained. 相似文献
12.
Marine benthic communities living in shallow-water habitats(<100 m depth) in Antarctica possess characteristics reminiscentof Paleozoic marine communities and modern deep-sea communities.The absence of crabs and sharks, the limited diversity of teleostsand skates, the dominance of slow-moving invertebrates at highertrophic levels, and the occurrence of dense ophiuroid and crinoidpopulations indicate that skeleton-breaking predation is limitedin Antarctica today, as it was worldwide during the Paleozoicand as it is in the deep sea today. The community structureof the antarctic benthos has its evolutionary roots in the Eocene.Data from fossil assemblages at Seymour Island, Antarctic Peninsulasuggest that shallow-water communities were similar to communitiesat lower latitudes until they were affected by global cooling,which accelerated in the late Eocene to early Oligocene. Thatlong-term cooling trend ultimately resulted in the polar climateand peculiar community structure found in Antarctica today.Declining temperatures beginning late in the Eocene are associatedwith the disappearance of crabs, sharks, and most teleosts.The sudden drop in predation pressure allowed dense ophiuroidand crinoid populations to appear and flourish. These late Eoceneechinoderm populations exhibit low frequencies of sublethaldamage (regenerating arms), demonstrating that there was littleor no predation from skeleton-breaking fish and decapods. Currentscenarios of global climate change include predictions of increasedupwelling and consequent cooling in temperate and subtropicalupwelling zones. Limited ecological evidence suggests that suchcooling could disrupt trophic relationships and favor retrogradecommunity structures in those local areas. 相似文献
13.
14.
15.
In this study isopod species of the Ross Sea were investigated. Literature until May 2008 was checked to provide an overview of all known and described species in the Ross Sea. This species checklist was then enlarged through material of the 19th Italica expedition in 2004. During this expedition for the first time a small mesh net (500 μm) was used. Nine thousand four hundred and eighty one isopod specimens were collected during this expedition. Through this material the number of isopod species in the Ross Sea increased from 42 to 117 species, which belong to 20 families and 49 genera. Fifty-six percentage of the isopods species collected during the Italica expedition are new to science. The zoogeography of the 117 species was investigated. A non-transformed binary presence-absence data matrix was constructed using the Bray–Curtis coefficient. The results were displayed in a cluster analysis and by nonmetric multidimensional scaling (MDS). This paper gives a first insight into the occurrence and distribution of the isopod species of the Ross Sea. 相似文献
16.
Species diversity is important for a range of ecosystem processes and properties, including the resistance to single and multiple stressors. It has been suggested that genetic diversity may play a similar role, but empirical evidence is still relatively scarce. Here, we report the results of a microcosm experiment where four strains of the marine diatom Skeletonema marinoi were grown in monoculture and in mixture under a factorial combination of temperature and salinity stress. The strains differed in their susceptibility to the two stressors and no strain was able to survive both stressors simultaneously. Strong competition between the genotypes resulted in the dominance of one strain under both control and salinity stress conditions. The overall productivity of the mixture, however, was not related to the dominance of this strain, but was instead dependent on the treatment; under control conditions we observed a positive effect of genetic richness, whereas a negative effect was observed in the stress treatments. This suggests that interactions among the strains can be both positive and negative, depending on the abiotic environment. Our results provide additional evidence that the biodiversity-ecosystem functioning relationship is also relevant at the level of genetic diversity. 相似文献
17.
Luis Cardona 《Biological invasions》2006,8(4):835-842
The Mediterranean population of the exotic eastern mosquitofish Gambusia holbrooki (Agassiz 1859) (Osteichthyes, Poeciliidae) has been held responsible for causing eutrophication due to zooplankton removal and phytoplankton enhancement, however no experimental evidence exists of this. To test this allegation, an enclosure experiment was conducted in spring in an oligohaline coastal marsh. The manipulation of fish density had profound effects on zooplankton, whose density greatly decreased when the occurrence of mosquitofish increased. Cladocerans and ostracods were more affected by mosquitofish than cyclopoid copepods, whilst rotifer density was not modified. Changes in zooplankton density did not cascade to lower trophic levels as no differences were observed between the chlorophyll concentration in fish and fish-less enclosures. This is because zooplankton was dominated by species with low filter-feeding rates, such as small cladocerans. In consequence, the total macrophyte standing crop was not affected. The only benthic macroinvertebrate species whose density increased in the absence of eastern mosquitofish was the mud snail P. acuta. Higher numbers of snails explain why the standing crop of the filamentous green algae Oedogonium sp. decreased in fish-less enclosures. The density of chironomid midge larvae did not increase in fish-less enclosures, because eastern mosquitofish forage on them mainly during summer, when zooplankton has already been depleted; nor were damselflies, probably because they are too large. Nitrogen concentration decreased after fish exclusion, but phosphorus concentration remain unchanged. In conclusion, it was found that the eastern mosquitofish affect zooplankton of the Mediterranean oligohaline lagoons considerably, but they do not enhance phytoplankton growth, because the system is bottom-controlled by submerged macrophytes. 相似文献
18.
Invasive ecosystem engineers can physically and chemically alter the receiving environment, thereby affecting biodiversity and ecosystem functioning. The Pacific oyster, Crassostrea gigas, invasive throughout much of the world, can establish dense populations monopolising shorelines and possibly altering ecosystem processes including decomposition and nutrient cycling. The effects of increasing cover of invasive C. gigas on ecosystem processes and associated microbial assemblages in mud-flats were tested experimentally in the field. Pore-water nutrients (NH4+ and total oxidised nitrogen), sediment chlorophyll content, microbial activity, total carbon and nitrogen, and community respiration (CO2 and CH4) were measured to assess changes in ecosystem functioning. Assemblages of bacteria and functionally important microbes, including methanogens, methylotrophs and ammonia-oxidisers were assessed in the oxic and anoxic layers of sediment using terminal restriction length polymorphism of the bacterial 16S rRNA, mxaF, amoA and archaeal mcrA genes respectively. At higher covers (40 and 80%) of oysters there was significantly greater microbial activity, increased chlorophyll content, CO2 (13 fold greater) and CH4 (6 fold greater) emission from the sediment compared to mud-flats without C. gigas. At 10% cover, C. gigas increased the concentration of total oxidised nitrogen and altered the assemblage structure of ammonia-oxidisers and methanogens. Concentrations of pore-water NH4+ were increased by C. gigas regardless of cover. Invasive species can alter ecosystem functioning not only directly, but also indirectly, by affecting microbial communities vital for the maintenance of ecosystem processes, but the nature and magnitude of these effects can be non-linear, depending on invader abundance. 相似文献
19.
Gibberellins (GAs) are plant hormones with diverse roles in plant growth and development. SPINDLY (SPY) is one of several genes identified in Arabidopsis that are involved in GA response and it is thought to encode an O-GlcNAc transferase. Genetic analysis suggests that SPY negatively regulates GA response. To test the hypothesis that SPY acts specifically as a negatively acting component of GA signal transduction, spy mutants and plants containing a 35S:SPY construct have been examined. A detailed investigation of the spy mutant phenotype suggests that SPY may play a role in plant development beyond its role in GA signaling. Consistent with this suggestion, the analysis of spy er plants suggests that the ERECTA (ER) gene, which has not been implicated as having a role in GA signaling, appears to enhance the non-GA spy mutant phenotypes. Arabidopsis plants containing a 35S:SPY construct possess reduced GA response at seed germination, but also possess phenotypes consistent with increased GA response, although not identical to spy mutants, during later vegetative and reproductive development. Based on these results, the hypothesis that SPY is specific for GA signaling is rejected. Instead, it is proposed that SPY is a negative regulator of GA response that has additional roles in plant development. 相似文献
20.
Daphne van der Wal Annette Wielemaker-van den Dool Peter M. J. Herman 《Ecosystems》2010,13(2):338-351
Microphytobenthos plays a vital role in estuarine and coastal carbon cycling and food webs. Yet, the role of exogenous factors,
and thus the effects of climate change, in regulating microphytobenthic biomass is poorly understood. We aimed to unravel
the mechanisms structuring microphytobenthic biomass both within and across ecosystems. The spatiotemporal distribution of
the biomass of intertidal benthic algae (dominated by diatoms) was estimated with an unprecedented spatial extent from time-series
of Normalized Differential Vegetation Index (NDVI) derived from a 6-year period of daily Aqua MODIS 250-m images of seven
temperate, mostly turbid, estuarine and coastal ecosystems. These NDVI time-series were related to meteorological and environmental
conditions. Intertidal benthic algal biomass varied seasonally in all ecosystems, in parallel with meteorology and water quality.
Seasonal variation was more pronounced in mud than in sand. Interannual variation in biomass was small, but synchronized year-to-year
biomass fluctuations occurred in a number of disjointed ecosystems. Air temperature explained interannual fluctuations in
biomass in a number of sites, but the synchrony was mainly driven by the wind/wave climate: high wind velocities reduced microphytobenthic
biomass, either through increased resuspension or reduced emersion duration. Spatial variation in biomass was largely explained
by emersion duration and mud content, both within and across ecosystems. The results imply that effects on microphytobenthic
standing stock can be anticipated when the position in the tidal frame is altered, for example due to sea level rise. Increased
storminess will also result in a large-scale decrease of biomass. 相似文献