首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims Understanding the drivers of grassland structure and function following livestock removal will inform grassland restoration and management. Here, we investigated the effects of fire and nutrient addition on structure and function in a subtropical semi-native grassland recently released from grazing in south-central Florida. We examined responses of soil nutrients, plant tissue nutrients, biomass of live, standing dead and litter, and plant species composition to experimental annual prescribed fire applied during different seasons (wet season vs. dry season), and nutrient additions (N, P and N + P) over 9 years.Methods Experimental plots were set up in a randomized block split-plot design, with season of prescribed fire as the main treatment and nutrient addition as the subplot treatment. Species cover data were collected annually from 2002 to 2011 and plant tissue and plant biomass data were collected in 2002–2006 and 2011. Soil nutrients were analyzed in 2004, 2006 and 2011.Important findings Soil total phosphorus (P) levels increased substantially with P addition but were not influenced by prescribed fire. Addition of P and N led to increased P and N concentrations in live plant tissues, but prescribed fire reduced N in live tissue. Levels of tissue N were higher in all plots at the beginning of the experiment, an effect that was likely due to grazing activity prior to removal of livestock. Plant tissue N steadily declined over time in all plots, with annually burned plots declining faster than unburned plots. Prescribed fire was an important driver of standing dead and litter biomass and was important for maintaining grass biomass and percent cover. Nutrient addition was also important: the addition of both N and P was associated with greater live biomass and woody forbs. Removal of grazing, lack of prescribed fire, and addition of N + P led to a reduction of grass biomass and a large increase in biomass of a woody forb. Annual prescribed fire promoted N loss from the system by reducing standing dead and litter, but maintained desirable biomass of grasses.  相似文献   

2.

Earth’s tropical savannas typically support high biomass of diverse grazing herbivores that depend on a highly fluctuating resource: high-quality forage. An annual wet–dry cycle, fire and herbivory combine to influence forage quality and availability throughout the year. In the savannas of northern Australia, a depauperate suite of large native (marsupial) herbivores (wallaroos [Osphranter spp.] and the agile wallaby [Notamacropus agilis]) compete for resources with non-native large herbivores introduced in the late nineteenth century, particularly bovines (feral and managed cattle [Bos spp.] and feral water buffalo [Bubalus bubalis]) that now dominate the landscape. Anecdotal reports of recent population declines of large macropods and negative impacts of bovines highlight the need to better understand the complex relationship between forage, fire and abundance of native and introduced large herbivores. The pyric herbivory conceptual model, which posits complex feedbacks between fire and herbivory and was developed outside Australia, predicts that native and introduced large herbivores will both respond positively to post-fire forage production in Australian savannas where they co-occur. We used grazing exclosures, forage biomass and nutrient analyses and motion-sensor camera-trapping to evaluate the overall robustness of the pyric herbivory model in the Australian context, specifically whether forage quantity and quality are impacted by herbivory, season and fire activity, and which forage attributes most influence large grazing herbivore abundance. Forage quantity, as measured by live, dead and total herbaceous biomass and proportion of biomass alive, was higher inside herbivore exclosures, even at relatively low densities of herbivores. Forage quality, as measured by fibre content, was not affected by herbivory, however, crude protein content of live herbaceous biomass was greater outside herbivore exclosures. Recent fire was an important predictor of all measures of forage quantity and quality. Recent fire occurrence decreased overall quantity (biomass) but increased quality (decreased fibre content and increased crude protein content); late dry season fires resulted in forage with the highest crude protein content. The predictions of the pyric herbivory conceptual model are consistent with observations of the feeding behaviour of introduced bovines and some large macropods in northern Australian savannas, lending support to the global generality of pyric herbivory in fire-prone grassy biomes.

  相似文献   

3.
Aim s: The long-term effects of changing fire regimes on the herbaceous component of savannas are poorly understood but essential for understanding savanna dynamics. We present results from one of the longest running (>44 years) fire experiments in savannas, the experimental burn plots (EBPs), which is located in the Kruger National Park (South Africa) and encompasses four major savanna vegetation types that span broad spatial gradients of rainfall (450–700 mm) and soil fertility.Methods: Herbaceous vegetation was sampled twice in the EBPs using a modified step-point method, once prior to initiation of the experiment (1954) and again after 44–47 years. Different combinations of three fire frequency (1-, 2- and 3-year return intervals) and five season (before the first spring rains, after the first spring rains, mid-summer, late summer and autumn) treatments, as well as a fire exclusion treatment, were applied at the plot level (~7 ha each), with each treatment (n = 12 total) replicated four times at each of the four sites (n = 192 plots total). The effects of long-term alterations to the fire regime on grass community structure and composition were analyzed separately for each site.Important Findings: Over the 44+ years duration of the experiment, fires were consistently more intense on sites with higher mean annual rainfall (>570 mm), whereas fires were not as intense or consistent for sites with lower and more variable rainfall (<510 mm) and potentially higher herbivory due to greater soil fertility. Because the plots were open to grazing, the impacts of herbivory along with more variable rainfall regimes likely minimized the effects of fire for the more arid sites. As a consequence, fire effects on grass community structure and composition were most marked for the higher rainfall sites and generally not significant for the more arid sites. For the high-rainfall sites, frequent dry season fires (1- to 3-year return intervals) resulted in high grass richness, evenness and diversity, whereas fire exclusion and growing season fires had the lowest of these measures and diverged the most in composition as the result of increased abundance of a few key grasses. Overall, the long-term cumulative impacts of altered fire regimes varied across broad climatic and fertility gradients, with fire effects on the grass community decreasing in importance and herbivory and climatic variability likely having a greater influence on community structure and composition with increasing aridity and soil fertility.  相似文献   

4.
Perennial, polycarpic herbs can respond to herbivory either by (1) regrowth in the same season in order to compensate for lost reproductive structures or by (2) postponing reproduction until the following growing season. We tested these response patterns with the perennial umbellifer Pimpinella saxifraga by simulating flower herbivory and shoot grazing both in the field and in a common garden experiment. In the field, both simulated flower herbivory and grazing effectively suppressed current reproduction, whereas no statistically significant effects of previous-year treatments on growth or reproduction were found in the following year. In the common garden, in the first year the species fully compensated for simulated flower herbivory in vegetative parameters but seed set was reduced by 26%. After 2 years of flower removal, the plants overcompensated in shoot and root biomass by 47 and 46%, respectively, and compensated fully in reproductive performance. Simulated grazing resulted in 21% lower shoot biomass in the first season, but the root biomass was not affected. In the second season the root biomass increased by 43% as compared to the control plants. However, regrowth following simulated grazing resulted in a significant delay in flowering with the consequence that the seed yield of fertile plants was reduced by 55% as compared to the control plants. These results suggest that in resource-rich garden conditions P. saxifraga may immediately repair injuries caused by flower herbivory, but repairs more extensive shoot injury less successfully. Delayed phenology decreases the benefits of immediate repair. In resource-poor conditions, the benefits of regrowth can be negligible. Accordingly, in our field population, the plants postponed their reproduction until the following year in response to simulated grazing and frequently in response to flower removal. When the plants gain very little from regrowth, the costs of reproduction would select for postponed reproduction in response to injury.  相似文献   

5.
Multivariate methods of classification and ordination were used to examine changes in plant composition over a three year period on a calcareous shrubby grassland grazed by rabbits and cattle in central Australia. In a site-time ordination of the data for all years, the season and amount of rainfall was the most important influence, followed by several soil factors and rabbit density. In a site ordination of each year, rabbit density was a minor influence for the pretreatment data but increased in importance over the three years until it was highly correlated with vector one in the final year. This was a result of the exclosure treatments diverging from the controls with extremely high rabbit populations at two of the eighteen plots. When site-time trajectories were plotted through species space, most sites tended to move with season over the three year period towards a common domain. The two heavily grazed sites exhibited a different trajectory; this was due to the behaviour of seven plant species under grazing. In multiple regression analysis, rabbit density, cattle presence and yearly rainfall explained 66% of the variation in total standing biomass. In general, total cover was not affected by grazing treatment, although short term utilisation effects were usually visible in the late dry season. Given its present degraded state, this arid vegetation type is seen as reasonably resilient, requiring extremely heavy rabbit grazing to prevent the plant community responding to the dominating influence of season.Nomenclature follows J. Jessop (ed.), 1981. Flora of Central Australia. The Australian Systematic Botany Society. Reed Press, Sydney.I thank G. Pearce and K. Jones for their diligent data collection, preparation and analysis.  相似文献   

6.
Abstract. The hypothesis that season of defoliation and herbivore selectivity may be as important as level of use in determining plant community response to grazing was tested in a monsoon grassland in northern Australia. Plots, dominated by the tussock grasses Themeda triandra and Chrysopogon fallax, were grazed by cattle at low, medium and high rates of utilization in either the early wet, late wet or dry seasons. Effects of grazing on species composition were greatest in the early wet season when high rates of utilization significantly reduced the proportion and occurrence of Themeda and increased the proportion of forbs. Grazing in the dry season had no significant effect on composition. At medium and high levels of utilization in the early wet season, the pasture responded negatively to defoliation, only partially compensating for plant tissue lost to herbivory. The negative response to defoliation carried over to the next wet season when these same medium and high-grazing treatments produced only 80 % and 60 % growth, respectively, of that in treatments grazed at low levels of utilization or those grazed during the dry season. The frequency of Themeda was still lower, and that of annual grasses and non-leguminous forbs higher, in plots that had been grazed at a high rate of utilization for just eight weeks in the early wet season two years previously. Species richness and diversity were also significantly affected by this grazing disturbance. If species composition is to be maintained in these grasslands then stocking rates must be set at low levels to cope with the combined effect of undercompensation in response to defoliation in the wet season and strong dietary preferences for grazing sensitive species.  相似文献   

7.
Livestock grazing can be used as a key management tool for maintaining healthy ecosystems. However, the effectiveness of using grazing to modify habitat for species of conservation concern depends on how the grazing regime is implemented. Timing of grazing is one grazing regime component that is less understood than grazing intensity and grazer identity, but is predicted to have important implications for plant and higher trophic level responses. We experimentally assessed how timing of cattle grazing affected plant and arthropod communities in high-elevation grasslands of southwest Montana to better evaluate its use as a tool for multi-trophic level management. We manipulated timing of grazing, with one grazing treatment beginning in mid-June and the other in mid-July, in two experiments conducted in different grassland habitat types (i.e., wet meadow and upland) in 2011 and 2012. In the upland grassland experiment, we found that both early and late grazing treatments reduced forb biomass, whereas graminoid biomass was only reduced with late grazing. Grazing earlier in the growing season versus later did not result in greater recovery of graminoid or forb biomass as expected. In addition, the density of the most ubiquitous grassland arthropod order (Hemiptera) was reduced by both grazing treatments in upland grasslands. A comparison of end-of-season plant responses to grazing in upland versus wet meadow grasslands revealed that grazing reduced graminoid biomass in the wet meadow and forb biomass in the upland, irrespective of timing of grazing. Both grazing treatments also reduced end-of-season total arthropod and Hemiptera densities and Hemiptera biomass in both grassland habitat types. Our results indicate that both early and late season herbivory affect many plant and arthropod characteristics in a similar manner, but grazing earlier may negatively impact species of conservation concern requiring forage earlier in the growing season.  相似文献   

8.
Abstract. Time and mode of herbivory on savanna trees and their subsequent responses are dependent on, among other things, earlier herbivory and fire. We used clipping (simulated browsing) and stem cutting (simulated heavy browsing and to some extent simulated fire) to evaluate such interactions. Study organisms were a deciduous, broad‐leaved tree species, Combretum apiculatum (Combretaceae), browsing large herbivores and leaf‐eating insects. The treatments were done in the late dry season before bud break. Late in the following wet season, we recorded plant responses to treatment and browsing. The treated trees, especially the cut ones, responded by producing larger and fewer annual shoots. Compared to control trees, there was a slight increase in shoot biomass of clipped trees and a strong reduction of cut ones. Leaf area increased in clipped trees, but decreased in cut ones. A marked increase in the number of browsed trees was recorded amongst treated trees. Number of bites, consumption and utilization also increased with severity of treatment. In contrast, insect herbivory was reduced on both clipped and cut trees. The observed patterns are discussed in relation to current ideas on plant ‐ herbivore interactions.  相似文献   

9.
Experiments investigating plant-herbivore interactions have primarily focused on above-ground herbivory, with occasional studies evaluating the effect of below-ground herbivores on plant performance. This study investigated the growth of the wetland perennial Lythrum salicaria (purple loosestrife) under three levels of root herbivory by the weevil Hylobiustransversovittatus and three levels of plant competition by the grass Phleumpratense in a common garden. Plant growth, flowering phenology, and biomass allocation patterns of purple loosestrife were recorded for two growing seasons. During the first year, root herbivory reduced plant height; plant competition delayed flowering; and the interaction of root herbivory and plant competition resulted in reductions in plant height, shoot weight and total dry biomass. Plant competition or larval feeding did not affect the biomass allocation pattern in the first year. These results indicate the importance of interactions of plant competition and herbivory in reducing plant performance – at least during the establishment period of purple loosestrife. In the second growing season, root herbivory reduced plant height, biomass of all plant parts, delayed and shortened the flowering period, and changed the biomass allocation patterns. Plant competition delayed flowering and reduced the dry weight of fine roots. The interaction of root herbivory and plant competition delayed flowering. Root herbivory was more important than plant competition in reducing the performance of established purple loosestrife plants. This was due, in part, to intense intraspecific competition among the grass individuals effectively preventing shoot elongation of P. pratense and resulting in a carpet like growth. Received: 3 April 1997 / Accepted: 27 July 1997  相似文献   

10.
1. Manipulative experiments were carried out in four Hong Kong streams (two shaded, two unshaded) to investigate the impact of grazing by an algivorous fish, Pseudogastromyzon myersi, on benthic algal biomass and assemblage composition. Experiments were conducted and repeated during both the dry and wet seasons to determine whether spate‐induced disturbance modified any grazing effect. Treatments comprised fish exclusion and inclusion via closed and open cages, with a no‐cage treatment used as a control for the cage effect. Treatments were maintained for 4 weeks in each experimental run. 2. Grazing by P. myersi reduced benthic algal biomass and the organic matter content of periphyton in open cages and the no‐cage treatment relative to closed cages. The similarity between open‐cage and no‐cage treatments was evidence that the overall difference among treatments was caused by limiting fish access to closed cages and not merely an artifact of caging. Grazing effects were broadly similar in all streams, but there was a significant statistical interaction between treatments and seasons. 3. Analysis of dry‐season data matched the overall trend in inter‐treatment differences, confirming the effects of grazing by P. myersi on algal biomass and periphyton organic matter. Significant differences in algal assemblage composition between closed‐cage and no‐cage treatments during the dry season reflected reductions in the abundance of erect, stalked diatoms (Gomphonema) and filamentous cyanobacteria (Homeothrix). Removal of these vulnerable overstorey algae by P. myersi resulted in greater abundance of understorey diatoms (Achnanthes and Cocconeis) in the no‐cage treatment in all streams during the dry season. The composition of algal assemblages in open cages was intermediate between the other two treatments. 4. Although fish densities were greater in all streams during the wet season, spate‐induced disturbance obscured grazing effects and there were no significant differences among treatments attributable to fish grazing. Seasonal variation in impacts of P. myersi grazing provides support for the harsh‐benign hypothesis, and confirms that biotic factors are less important controls of stream algal biomass and assemblage structure during periods (i.e. the wet season in Hong Kong) when abiotic disturbances are frequent or intense.  相似文献   

11.
Theory and empirical evidence for the impacts of fire and herbivory in savannahs is well established – they are top‐down disturbances that maintain savannahs in disequilibrium states away from potential tree cover. In African savannahs, the demand for fuelwood is extremely high, so tree harvest likely also has an impact, both directly and indirectly, on tree cover, density and biomass. Many savannah trees resprout vigorously from the base after harvest. However, harvested trees regenerate as saplings susceptible to fire and browsing, so harvest may have important demographic consequences. Here, we report the effects of tree harvest, and its interaction with fire and herbivory, on savannah dynamics by analysing woody regrowth following a harvest in arid Sahelian and mesic Guinean savannahs in Mali, West Africa. Tree harvest resulted in an overall reduction in wood production per tree compared to growth in nonharvested trees. Regrowth, either biomass or height, did not differ among fire and herbivory treatments. Our results suggest that the resprouting abilities that savannah trees have evolved to cope with frequent fire are essential for surviving tree harvest and subsequent disturbance. In these savannahs, regrowth is rapid enough in the first growing season to escape the impact of dry season fires.  相似文献   

12.
Abstract. The study of vegetation dynamics in tallgrass prairie in response to fire has focused on dormant season fire in late successional prairies. Our objective was to determine if late season fire of varying frequency results in divergent successional patterns in an early successional tallgrass prairie disturbed by grazing and cultivation. Specifically, we evaluated the influence of late‐summer fires of varying frequency on community composition and species richness. We collected vegetation and environmental data on two sites burned in the late growing‐season at varying frequencies. These communities differed in composition depending primarily on edaphic factors, time since the last burn, and year‐to‐year variation. We interpret the time effect as related to changes in species composition accompanying plant succession that followed disturbance either from cropping and heavy grazing on the loamy site or heavy grazing on the shallow site. Other unidentified factors also have a role in vegetation dynamics on this prairie. Community composition and species richness were not consistently responsive to frequency of growing‐season fires.  相似文献   

13.
Grazing by domestic herbivores is generally recognized as a major ecological factor and an important evolutionary force in grasslands. Grazing has both extensive and profound effects on individual plants and communities. We investigated the response patterns of Polygonum viviparum species and the species diversity of an alpine shrub meadow in response to long-term livestock grazing by a field manipulative experiment controlling livestock numbers on the Qinghai-Tibet Plateau in China. Here, we hypothesize that within a range of grazing pressure, grazing can alter relative allocation to different plant parts without changing total biomass for some plant species if there is life history trade-offs between plant traits. The same type of communities exposed to different grazing pressures may only alter relative species' abundances or species composition and not vary species diversity because plant species differ in resistant capability to herbivory. The results show that plant height and biomass of different organs differed among grazing treatments but total biomass remained constant. Biomass allocation and absolute investments to both reproduction and growth decreased and to belowground storage increased with increased grazing pressure, indicating the increasing in storage function was attained at a cost of reducing reproduction of bulbils and represented an optimal allocation and an adaptive response of the species to long-term aboveground damage. Moreover, our results showed multiform response types for either species groups or single species along the gradient of grazing Intensity. Heavy grazing caused a 13.2% increase in species richness. There was difference in species composition of about 18%--20% among grazing treatment. Shannon-Wiener (H') diversity index and species evenness (E) index did not differ among grazing treatments. These results support our hypothesis.  相似文献   

14.
Prescribed burning is an important management tool in many parts of the world. While natural fires generally occur during the driest and warmest period of the year, prescribed burning is often timed out‐of‐season, when there is higher soil moisture and lower biomass combustibility. However, fire season may influence seedling recruitment after fire, e.g. through the effect of seed hydration status on fire tolerance. In non‐fire‐prone temperate regions, anthropogenic fire may occur exclusively in periods outside the growing season with higher soil moisture, which may have negative consequences on seedling recruitment. Fire tolerance of moist and dry seeds of 16 temperate European herbaceous species belonging to four families was assessed using heat treatment of 100 °C for 5 min and subsequent germination trials. Moist seeds of Asteraceae, Poaceae and Brassicaceae had a predominantly negative reaction to the heat treatment, while those of Fabaceae tolerated it or germination was even enhanced. The reaction of dry seeds was completely different, with positive responses in three species of the Fabaceae and fire tolerance in species of other families. Our results point out that hydration status may significantly influence the post‐fire germination of seeds. Dry seeds were found to tolerate high heat, while moist seeds were harmed in more than half of the species. This implies that if prescribed burning is applied in temperate grasslands of Europe, it should be timed to dry periods of the dormant season in order to protect seeds from negative effects of fire.  相似文献   

15.
Heterogeneous disturbance patterns are fundamental to rangeland conservation and management because heterogeneity creates patchy vegetation, broadens niche availability, increases compositional dissimilarity, and enhances temporal stability of aboveground biomass production. Pyrodiversity is a popular concept for how variability in fire as an ecological disturbance can enhance heterogeneity, but mechanistic understanding of factors that drive heterogeneity is lacking. Mesic grasslands are examples of ecosystems in which pyrodiversity is linked strongly to broad ecological processes such as trophic interactions because grazers are attracted to recently burned areas, creating a unique ecological disturbance referred to as the fire–grazing interaction, or pyric herbivory. But several questions about the application of pyric herbivory remain: What proportion of a grazed landscape must burn, or how many patches are required, to create sufficient spatial heterogeneity and reduce temporal variability? How frequently should patches burn? Does season of fire matter? To bring theory into applied practice, we studied a gradient of grazed tallgrass prairie landscapes created by different sizes, seasons, and frequencies of fire, and used analyses sensitive to nonlinear trends. The greatest spatial heterogeneity and lowest temporal variability in aboveground plant biomass, and greatest plant functional group beta diversity, occurred in landscapes with three to four patches (25%–33% of area burned) and three‐ to four‐year fire return intervals. Beta diversity had a positive association with spatial heterogeneity and negative relationship with temporal variability. Rather than prescribing that these results constitute best management practices, we emphasize the flexibility offered by interactions between patch number and fire frequency for matching rangeland productivity and offtake to specific management goals. As we observed no differences across season of fire, we recommend future research focus on fire frequency within a moderate proportion of the landscape burned, and consider a wider seasonal burn window.  相似文献   

16.
植物功能性状能够响应生存环境的变化并直接决定着生态系统功能。为了揭示围封与放牧管理对物种共存和驱动群落构建的影响机理,该研究以青藏高原东缘高寒草甸为对象,分析了围封与放牧处理对植物功能性状和功能多样性的影响。结果显示:(1)在群落水平,放牧显著降低了比叶面积和植物高度;在物种水平,放牧群落中多数杂类草比叶面积减小,而莎草类和禾草类的比叶面积在处理间无显著差异。(2)叶干物质含量与比叶面积在围封和放牧处理中均呈显著负相关关系,在放牧处理中,叶干物质含量与植物高度呈显著的二次函数关系,即随着叶干物质含量的增大,植物高度先减小后增大;在同等比叶面积的情况下,与围封相比,放牧降低了叶干物质含量;在相同叶干物质含量的情况下,与围封相比,放牧降低了植物高度。(3)放牧在总体上降低了种间性状的平均差异,植物性状表现出趋同响应,具体表现为放牧减小了叶干物质含量和植物高度的种间差异;与围封相比,放牧显著提高了功能均匀度,减小了功能分离度。研究表明,不同植物种对放牧的响应模式存在差异,放牧降低了种间对光资源的竞争,可能增加了对土壤养分的竞争,放牧驱动群落构建的过程中,土壤养分是非常重要的作用因子,说明放牧影响物种共存依赖于对多种资源的竞争。  相似文献   

17.
Nutrient cycling in terrestrial ecosystems is affected by various factors such as plant diversity and insect herbivory. While several studies suggest insect herbivory to depend on plant diversity, their interacting effect on nutrient cycling is unclear. In a greenhouse experiment with grassland microcosms of one to six plant species of two functional groups (grasses and legumes), we tested the influence of plant species richness (diversity) and functional composition on plant community biomass production, insect foliar herbivory, soil microbial biomass, and nutrient concentrations in throughfall. To manipulate herbivory, zero, three or six generalist grasshoppers (Chorthippus parallelus) were added to the plant communities. Increasing plant species richness increased shoot biomass and grasshopper performance, without significantly affecting root biomass or insect herbivory. Plant functional composition affected all of these parameters, e.g. legume communities showed the highest shoot biomass, the lowest grasshopper performance and suffered the least herbivory. Nutrient concentrations (dissolved mineral N, PO4‐P, SO4‐S) and pH in throughfall increased with herbivory. PO4‐P and pH increases were positively affected by plant diversity, especially under high herbivore pressure. Plant functional composition affected several throughfall variables, sometimes fully explaining diversity effects. Increasing plant diversity tended to increase soil microbial biomass, but only under high herbivore pressure. Faeces quantities strongly correlated with changes in pH and PO4‐P; frass may therefore be an important driver of throughfall pH and a main source of PO4‐P released from living plants. Our results indicate that insect herbivory may significantly influence fast nutrient cycling processes in natural communities, particularly so in managed grasslands.  相似文献   

18.
Species composition and herbage dynamics in relation to rainfall variability and cattle grazing were studied in permanently protected, grazed, and temporarily fenced treatments on three sites in a seasonally dry tropical savanna. Permanently protected sites, established between 1979 and 1984, were 55–79% similar with each other in species composition, and 14–25% similar with grazed sites during the period 1986–1988. Similarity among grazed sites was only 36–43%. Number of species was greater in the grazed treatment than in the permanently protected treatment. The percentages of annual grasses and non-leguminous forbs were greater in grazed savanna than in permanently protected savanna. Species diversity was higher in grazed savanna than in the corresponding permanently protected savanna. Species the two annual cycles studied, peak live shoot biomass was 614 g m-2 in permanently protected savanna, 109 g m-2 in grazed savanna, and 724 g m-2 in temporarily fenced savanna. Live shoot biomass in temporarily fenced savanna was 18 to 44% greater than in permanently protected savanna. Peak canopy biomass ranged from 342 to 700 g m-2 in permanently protected savanna. It was related with total rainy season rainfall, and was particularly sensitive to late rainy season rainfall. On the other hand, peak canopy biomass in grazed savanna ranged from 59 to 169 g m-2 and was related to grazing intensity rather than either total rainy season rainfall or late rainy season rainfall. Coefficient of variation of green biomass in permanently protected savanna was related with rainfall variability indicating it to be a pulsed system which responds quickly to rainfall events. Biomass of woody species ranged from 2466 to 5298 g m-2 in permanently protected savanna and from 744 to 1433 g m–2 in the grazed savanna. Green foliage biomass was 3.7 to 6.4% of the woody biomass in permanently protected and 5.6 to 5.9% in grazed savanna, and supplements substantially the fodder resource during the dry periods of the year.  相似文献   

19.
SUMMARY 1. The effects of cattle grazing on stream bank stability, biomass of riparian vegetation, instream vegetation cover, biomass of coarse particulate organic matter (CPOM) and epilithon and benthic invertebrate community structure were investigated over a 2‐year period using: (i) enclosures containing different cattle grazing treatments and (ii) by comparing streams with different grazing intensities in the Cypress Hills Provincial Park, Alberta, Canada. 2. Livestock enclosure experiments comprised four treatments of: (1) early season cattle grazing (June–August), (2) late season cattle grazing (August–September), (3) all season cattle grazing (June–September) and (4) cattle‐absent controls. All four treatments were replicated in two streams while two treatments (i.e. cattle‐absent controls, early season cattle grazing) were established in a third stream. 3. Bank stability, estimated visually based on sediment inputs to the stream channel, increased significantly in cattle‐absent treatments compared with cattle‐present enclosures over the 2‐year study period. 4. Epilithic chlorophyll a was significantly affected by time, but neither cattle nor the interaction of time and treatment were significant. 5. At the end of the experiment, total invertebrate biomass in the late and all‐season treatment exceeded that in the early and cattle‐absent treatments. However, excluding cattle from the streams, at any of the different treatments, had little clear impact on the total benthic invertebrate abundance or the abundance of the predominant functional feeding groups over the 2‐year study period. 6. In contrast, comparisons of benthic assemblages from streams with different grazing intensities showed that the non‐grazed reach of Storm Creek contained significantly higher biomass of CPOM and shredders compared with the cattle‐absent enclosures in Battle, Graburn and Nine Mile creeks. Redundancy analysis showed that benthic communities from all enclosures and Storm Creek in summer and autumn 2000 were affected primarily by CPOM biomass, pH, nitrate, turbidity and benthic chlorophyll a. Construction of a 99% probability ellipse from enclosure sites showed that invertebrate communities from livestock enclosures differed from that in the non‐grazed Storm Creek. 7. Results from stream‐scale comparisons indicate that current livestock grazing practices in the Cypress Hills significantly impact riparian zones, stream channels and benthic invertebrate community structure and that alternative practices, such as rotational grazing, need to be developed.  相似文献   

20.
Interactions between aboveground vertebrate herbivores and subterranean yellow meadow ants (Lasius flavus) can drive plant community patterns in grassland ecosystems. Here, we study the relative importance of the presence of ants (L. flavus) and ant mounds under different simulated grazing regimes for biomass production and species composition in plant communities. We set up a greenhouse experiment using intact soil cores with their associated vegetation.We found that plant biomass production in the short term was affected by an interaction between simulated grazing (clipping) and ant mound presence. Clipping homogenized production on and off mounds, while in unclipped situations production was higher off than on mounds. During the experiment, these differences in unclipped situations disappeared, because production on unclipped mounds increased. Plant species richness was on average higher in clipped treatments and patterns did not change significantly over the experimental period. Plant community composition was mainly affected by clipping, which increased the cover of grazing-tolerant plant species. The actual presence of yellow meadow ants did not affect plant community composition and production.We conclude that the interaction between ant mounds and clipping determined plant community composition and biomass production, while the actual presence of ants themselves was not important. Moreover, clipping can overrule effects of ant mounds on biomass production. Only shortly after the cessation of clipping biomass production was affected by ant mound presence, suggesting that only under low intensity clipping ant mounds may become important determining plant production. Therefore, under low intensity grazing ant mounds may drive the formation of small-scale plant patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号