首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T Kallas  F W Dahlquist 《Biochemistry》1981,20(20):5900-5907
Phosphorus-31 nuclear magnetic resonance (31P NMR) spectra were obtained from actively photosynthesizing and darkened suspensions of the unicellular cyanobacterium Synechococcus. These spectra show intracellular resonances belonging to inorganic phosphate (Pi), a sugar phosphate (sugar-P), nucleotide di- and triphosphates, and poly-phosphates. The pH-dependent chemical shifts of Pi and sugar-P allowed the estimation of intracellular pH. When irradiated with high-intensity tungsten-halogen light (100 x 10(4) ergs . cm-2 . s-1, measured in the visible range), concentrated cell suspensions in the NMR spectrometer incorporated NaH14CO3 at approximately two-thirds the rate shown by a dilute suspension of cells at saturating light intensity. On the basis of NaH14CO3 incorporation, the effective light intensity obtained under NMR conditions would support growth at approximately one-fourth the maximum rate in dilute suspensions of cells. Irradiated cells maintained a cytoplasmic pH of 7.1--7.3 when exposed to an external pH from 6.4 to 8.3. At an external pH of 6.7, a darkness to light shift caused a 0.4 pH unit alkalinization of the cytoplasm. Treatment of cell suspensions with the uncoupler, carbonyl cyanide m-chlorophenylhydrazone (CCCP), in light or darkness, collapsed the internal pH to the level of the external pH. The results suggest a strong light- or energy-dependent buffering of the cytoplasm over a range of external pH. The study demonstrates that 31P NMR can be used to investigate intracellular events in an actively photosynthesizing microorganism.  相似文献   

2.
The 31P nuclear magnetic resonance (NMR) spectrum of the digestive gland-gonad complex (DGG) of the schistosome vector Biomphalaria glabrata was characterized and the effects of infection by Schistosoma mansoni noted. The in vivo spectrum was comprised of 11 peaks, 5 downfield and 6 upfield of an external 85% phosphoric acid standard. Based on a variety of analytical procedures, the upfield peaks from the standard were demonstrated to be composed of carbamoyl phosphate + a mixture of 3 phosphatides and sphingomyelin, the gamma + beta phosphorus resonances of nucleotide triphosphate (NTP) and nucleotide diphosphate (NDP), respectively, the alpha phosphorus resonances of NTP + NDP, NAD(H) + the phosphorus resonance of uridine phosphate from uridine diphosphoglucose (UDPG), the phosphorus resonance of glucose phosphate from UDPG and, last, the beta phosphorus resonance of NTP. The downfield peaks were assigned as glycerophosphoryl choline, intracellular inorganic phosphate (Pi), sugar phosphates + phosphoryl choline, aminoethyl phosphonate (AEP), and ceramide AEP. T1 values for the in vivo NMR components were determined by inversion recovery. Infection produced distinct alterations in the levels of nonnucleotide components of the in vivo 31P NMR spectrum and the spectra of tissue extracts. Specifically, the levels of phosphonate, phospholipids, and carbamoyl phosphate were markedly reduced, and the relative level of Pi was increased. The potential significance of these changes to the parasite-host relationship was discussed. In contrast, starvation resulted in a decreased level of phosphonate only. The pH of the intact DGG was estimated by titrating the inorganic phosphate component of tissue extracts. The mean pH was 6.9 for both control and infected material.  相似文献   

3.
The exchange of anions across the erythrocyte membrane has been studied using 31P nuclear magnetic resonance (NMR) to monitor inorganic phosphate influx and 35Cl NMR to monitor chloride ion efflux. The 31P NMR resonances for intracellular Pi and extracellular Pi could be observed separately by adjusting the initial extracellular pH to 6.4, while the intracellular pH was 7.3. The 35Cl NMR resonance for intracellular Cl- was so broad as to be virtually undetectable (line width greater than 200 Hz), while that of extracellular Cl-is relatively narrow (line width of about 30 Hz). The transports of Pi and Cl-were both totally inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonate, a potent inhibitor of the band 3 protein. Since the 31P resonance of Pi varies with pH, intra- and extracellular pH changes could also be determined during anion transport. The extracellular pH rose and intracellular pH fell during anion transport, consistent with the protonated monoanionic H2PO4-form of Pi being transported into the erythrocyte rather than the deprotonated dianionic HPO24-form. The rates of Cl-efflux and Pi influx were determined quantitatively and were found to be in close agreement with values determined by isotope measurements. The Cl-efflux was found to coincide with the influx of the monoanionic H2PO4-form of Pi.  相似文献   

4.
Intracellular pH control in Dictyostelium discoideum: a 31P-NMR analysis   总被引:2,自引:0,他引:2  
M Satre  G Klein  J B Martin 《Biochimie》1986,68(12):1253-1261
Phosphorus metabolites and intracellular pH have been examined in the slime mold Dictyostelium discoideum by non-destructive 31P-NMR measurements. In a spectrum from a suspension of aerobic amoebae, the major peaks are inorganic phosphate, nucleotide di- and triphosphates. In the corresponding perchloric acid extract, resonances originating from purine and pyrimidine nucleotides are resolved. Adenine nucleotides are the most abundant components, but the other nucleotides are present in significant amounts. In a spectrum from intact spores in a dormant state, only inorganic phosphate and polyphosphates are detected and nucleotides are no longer present in large amounts. Of particular importance is the ability to observe separately in aerobic amoebae the resonance of inorganic phosphate localized in two different cell compartments: the cytosol and the mitochondria. The cytosolic pH and mitochondrial pH have been measured as 6.7 and 7.7, respectively, on the basis of intracellular inorganic phosphate chemical shifts. They are essentially unaffected over a large range of external pH and they are not modified transiently or permanently during the initiation of the developmental program of the organism. A weak acid, such as propionate, which modifies the progression of differentiation by favoring prestalk cells, perturbs intracellular pH gradients by selectively decreasing mitochondrial pH without any effect on cytosolic pH.  相似文献   

5.
Phosphorus metabolites and intracellular pH have been examined in the slime mold Dictyostelium discoideum by non-destructive 31P-NMR measurements. In a spectrum from a suspension of aerobic amoebae, the major peaks are inorganic phosphate, nucleotide di- and triphosphates. In the corresponding perchloric acid extract, resonances originating from purine and pyrimidine nucleotides are resolved. Adenine nucleotides are the most abundant components, but the other nucleotides are present in significant amounts. In a spectrum from intact spores in a dormant state, only inorganic phosphate and polyphosphates are detected and nucleotides are no longer present in large amounts.Of particular importance is the ability to observe separately in aerobic amoebae the resonance of inorganic phosphate localized in two different cell compartments: the cytosol and the mitochondria. The cytosolic pH and mitochondrial pH have been measured as 6.7 and 7.7, respectively, on the basis of intracellular inorganic phosphate chemical shifts. They are essentially unaffected over a large range of external pH and they are not modified transiently or permanently during the initiation of the developmental program of the organism. A weak acid, such as propionate, which modifies the progression of differentiation by favoring prestalk cells, perturbs intracellular pH gradients by selectively decreasing mitochondrial pH without any effect on cytosolic pH.  相似文献   

6.
A 31P NMR study of the fungal pathogen Candida albicans was carried out. Yeast-form cells at different phases of growth, as well as germ tubes and hyphae were examined. In all cases, the NMR spectra showed well separated resonance peaks arising from phosphorus-containing metabolites, the most prominent being attributable to inorganic phosphate (Pi) polyphosphates, sugar phosphates and mononucleotides, NAD, ADP and ATP. Relevant signals were also detected in the phosphodiester region. The intensity of most signals, as measured relative to that of Pi, was clearly modulated both at the different phases of growth and during yeast-to-mycelium conversion, suggesting significant changes in the intracellular concentration of the corresponding metabolites. In particular, the intensity of the polyphosphate signal was high in exponentially growing, yeast-form cells, then progressively declined in the stationary phase, was very low in germ tubes and, finally, undetectable in hyphae. NMR spectral analysis of the Pi region showed that from early-stationary phase, Pi was present in two different cellular compartments, probably corresponding to the cytoplasm and the vacuole. From the chemical shift of Pi, the pH values of these two compartments could be evaluated. The cytoplasmic pH was generally slightly lower than neutrality (6.7-6.8), whereas the vacuolar pH was always markedly more acidic.  相似文献   

7.
31P NMR was applied to an examination of the freeze-tolerant larvae of the gall fly, Eurosta solidaginis. Resonances from sugar phosphates, inorganic phosphate, adenylates and arginine phosphate were identified. Two peaks of Pi were identified corresponding to intracellular and extracellular Pi. Anoxia produced an expected decrease in peak intensities of ATP and arginine phosphate while the peak of intracellular Pi was enhanced and shifted to indicate intracellular acidification during anoxia. Spectra of whole larvae were monitored over a temperature range from -30 degrees to +25 degrees C. No abrupt alterations in the spectra were seen at the point of extracellular freezing which occurs at about -8 degrees C but temperature had dramatic effects upon the peak intensities of ATP and arginine phosphate. A reversible increase/decrease in peak intensities, relative to Pi, was observed as temperature was raised/lowered. At 15 degrees and -20 degrees C, the beta peak of ATP was 64% and 2% of the peak intensity of Pi while that of arginine phosphate was 78% and 11%, respectively. This temperature effect was not an artifact of instrumentation (as model solutions containing Pi, ATP and arginine phosphate did not show this effect) or a result of changes in the total amounts of these compounds in the cell with temperature. Rather it is apparent that these molecules become restricted in their rotational movement as temperature is lowered perhaps via binding to subcellular components. Changes in the amounts of freely soluble ATP and arginine phosphate with temperature could have important implications for metabolism and its control. Analysis of the effect of temperature on the chemical shift of Pi was also used to determine pH in the intracellular and extracellular compartments. Temperature change had no effect on extracellular (hemolymph) pH which remained constant at 6.1-6.3. Intracellular pH varied with temperature, however, from pH 6.8 at 15 degrees C to pH 7.3 at -12 degrees C with a change, delta pH/delta 0, of -0.0185 degrees C consistent with alphastat regulation.  相似文献   

8.
The relationships between pHi (intracellular pH) and phosphate compounds were evaluated by nuclear magnetic resonance (NMR) in normo-, hypo-, and hypercapnia, obtained by changing fractional inspired concentration of CO2 in dogs anesthetized with 0.75% isoflurane and 66% N2O. Phosphocreatine (PCr) fell by 2.02 mM and Pi (inorganic phosphate) rose by 1.92 mM due to pHi shift from 7.10 to 6.83 during hypercapnia. The stoichiometric coefficient was 1.05 (r2 = 0.78) on log PCr/Cr against pHi, showing minimum change of ADP/ATP and equilibrium of creatine kinase in the pH range of 6.7 to 7.25. [ADP] varied from 21.6 +/- 4.1 microM in control (pHi = 7.10) to 26.8 +/- 6.3 microM in hypercapnia (pHi = 6.83) and 24.0 +/- 6.8 microM in hypocapnia (pHi = 7.17). ATP/ADP X Pi decreased from 66.4 +/- 17.1 mM-1 during normocapnia to 25.8 +/- 6.3 mM-1 in hypercapnia. The ADP values are near the in vitro Km; thus ADP is the main controller. The velocity of oxidative metabolism (V) in relation to its maximum (Vmax) as calculated by a steady-state Michaelis-Menten formulation is approximately 50% in normocapnia. In acidosis (pH 6.7) and alkalosis (pH 7.25), V/Vmax is 10% higher than the normocapnic brain. This increase of V/Vmax is required to maintain cellular homeostasis of energy metabolism in the face of either inhibition at extremes of pH or higher ATPase activity.  相似文献   

9.
High resolution 31P NMR spectra (103.2 MHz) of oxygenated Catharanthus roseus and Daucus carota cells grown in suspension cultures were obtained using a solenoidal perfusion probe. The spectra showed resonances for various phosphorylated metabolites such as ATP, ADP, NAD(P)(H), nucleoside diphosphoglucose, and sugar phosphates. The relative levels of the phosphorylated metabolites remained constant throughout the growth curve. No resonances for storage compounds such as polyphosphates, pyrophosphate, or phytates were observed. Two resolved resonances for Pi indicated an intracellular pH of 7.3 and 5.7 (or below) for the cytoplasm and vacuoles, respectively. The time course of Pi uptake and storage during growth in fresh culture medium was followed by studying the level of vacuolar Pi with 31P NMR (145.7 MHz). Simultaneously, the level of Pi in the culture medium was followed with radioactive 32P. C. roseus quickly takes up all the Pi from the culture medium (maximum rate 1.7 mumol min-1 g-1 (dry weight of cells]. The Pi is first stored in the vacuoles; subsequently, one part of this pool is used to keep a constant cytoplasmic Pi level while another part is apparently accumulated as an NMR invisible Pi store, probably in another cell organelle. In contrast, D. carota does not accumulate Pi in the vacuoles and consequently it takes up Pi from the medium at a much slower rate (0.05 mumol min-1 g-1 (dry weight of cells].  相似文献   

10.
Fructose metabolism has been studied with 31P n.m.r. in perfused livers from rats starved for 48h. The time course of changes in liver ATP, Pi and sugar phosphate (fructose l-phosphate) concentrations, and intracellular pH were followed in each perfusion after infusion of fructose to give an initial concentration of either 5mM or 10mM. Rapid falls in the concentrations of ATP and Pi and intracellular pH occurred after infusion of fructose, reaching a minimum after 4-5 min, which was lower in the 10mM group than in the 5mM group. These changes were accompanied by a rapid rise in fructose 1-phosphate, reaching a plateau also after 4-5 min. At both concentrations of fructose, after the early falls, some recovery of ATP, Pi and intracellular pH occurred; this was complete for Pi and intracellular pH in the 5mM-fructose experiments (within 12-30 min). Complete restoration of ATP to the pre-fructose value was not achieved in either the 5mM of 10mM groups. Measurements of the uptake of lactate by the liver indicated that the fall in intracellular pH was caused primarily by production of protons accompanying the formation of lactate from fructose with possibly a transient contribution generated during the rise in fructose 1-phosphate.  相似文献   

11.
Inorganic phosphate (Pi) is accumulated by Yarrowia lipolytica cells grown at acidic pH conditions by two kinetically discrete H+/Pi-cotransport systems with apparent K(m) values for Pi of 12-18 microM and 2-3 mM Pi at pH 5.5, respectively. One of these is derepressible and operates at low external Pi concentrations; the other is most likely constitutively expressed and comes into play at high Pi concentrations. The derepression of the high-affinity Pi transport system is under the control of available extracellular Pi as well as the amount of intracellular polyphosphates stores. Characteristics of the Pi transport behavior in Yarrowia lipolytica are discussed.  相似文献   

12.
31P-NMR has been used to monitor changes in intracellular pH following the sequential release of the block at first-meiotic prophase by hormones and the block at second-meiotic metaphase by fertilization in Rana eggs and oocytes. The broad phosphoprotein signal was eliminated by a combination of spin-echo and deconvolution techniques. pHi was determined from the pH-dependent separation of intracellular Pi and phosphocreatine resonances. Agents that release the prophase block (progesterone, insulin, D-600, La3+) increased pHi from 7.38 to 7.7-7.8 within 1-3 h. Noninducers such as 17 beta-estradiol were without effect. By second-metaphase arrest (ovulated, unfertilized) the pHi had fallen to 7.1-7.2. pHi underwent a transient increase to about 7.7 within the first 30 min at fertilization, with a slow 0.1-0.2 pH unit oscillation during early cleavage. The progesterone-induced elevation of intracellular pH is not blocked by amiloride and occurs in Na+-free medium. A transient rise in pHi occurs when the prophase-arrested oocyte is transferred to Ca2+-free medium or when ionophore A23187 is added to the Ca2+-containing medium. Agents that inhibit the resumption of the first meiotic division either block the rise in pHi (procaine, PMSF) or shorten the time-course of the rise in pHi (ionophore A23187). Conditions that elevate intracellular Ca2+ levels and/or increase Ca2+ exchange produce an increase in pHi, whereas those conditions that decrease intracellular Ca2+ levels and/or exchange produce a fall in pHi within 1 h. The time-course of the increase in pHi both following release of the prophase block and at fertilization coincide with a fall in intracellular cAMP and release of surface and/or intracellular Ca2+. These results suggest that: (1) pHi is a function of cytosolic free Ca2+ levels and/or Ca2+ exchange across the oocyte plasma membrane, and (2) meiotic agonists (progesterone, insulin, D-600) and mitogens (sperm, ionophore A23187) modulate intracellular and/or membrane Ca2+ with the resulting changes in pHi and cAMP and resumption of the meiotic divisions.  相似文献   

13.
The metabolism of glucose and xylose was studied as a function of oxygenation in suspensions of Candida tropicalis by 31P and 13C nuclear magnetic resonance spectroscopy. Both the rate of carbohydrate metabolism and the cytoplasmic pH were independent of the rate of oxygenation in cells metabolizing glucose. However, these two parameters were markedly dependent on the rate of oxygenation in C. tropicalis cells metabolizing xylose. For example, the cytoplasmic pH in fully oxygenated xylose-metabolizing cells was 7.8 but decreased to 6.3 in anoxic cells. In general, suspensions of cells consuming xylose had a lower rate of sugar uptake, a more acidic cytoplasmic pH, lower levels of sugarphosphomonoesters (SP) and ATP, higher levels of intracellular Pi, a more alkaline vacuolar pH, and a lower rate of extracellular Pi assimilation and polyphosphate synthesis than cells consuming glucose. These observations indicate that C. tropicalis metabolizing xylose is less energized than glucose-metabolizing cells. On both carbon sources, however, an inverse correlation between intracellular levels of SP and Pi was observed. Also, uptake of extracellular Pi correlated with the synthesis of polyphosphates within the cells. During anoxia, Pi was not taken up, and polyphosphates were hydrolyzed instead to fulfill the cells' requirements for phosphate.  相似文献   

14.
31P-NMR has been applied to the study of the metabolisms of the intact parasitic helminths Ascaris suum (the intestinal roundworm) and Fasciola hepatica (the liver fluke). After calibration of the chemical shift of Pi in muscle extracts the internal pH of adult Ascaris worms and the effect of the pH of the external medium on the organism's internal pH were measured. Assignments of nearly all of the observable 31P resonances could be made. A large resonance from glycerophosphorylcholine whose function is unclear was observed but no signals from energy storage compounds such as creatine phosphate were detected. The profiles of the phosphorus-containing metabolites in both organisms were monitored as a function of time. Changes in sugar phosphate distributions but not ATP/ADP were observed. Studies of the drug closantel on Fasciola hepatica were performed. Initial effects of the drug were a decrease in glucose 6-phosphate and an increase in Pi with no substantial change in ATP levels as observed by 31P-NMR. Studies involving treatment with closantel followed by rapid freezing, extraction, and analytical determination of glycolytic intermediates confirmed NMR observations. This NMR method can serve as a simple noninvasive procedure to study parasite metabolism and drug effects on metabolism.  相似文献   

15.
Individual pools of intracellular inorganic phosphate (Pi) can be observed in the dark in intact cells, protoplasts and chloroplasts from photosynthetic tissue by using 31P nuclear magnetic resonance (n.m.r.). Estimates for the pH of vacuolar and extravacuolar compartments are reported although it is shown that intracellular pH is determined by the pH of the suspending medium. Mannose treatment of asparagus (Asparagus officinalis) cells and spinach (Spinacia oleracea) protoplasts results in the inhibition of photosynthesis. The mechanism of mannose phosphate sequestration of free Pi is supported by the 31P n.m.r. spectra of mannose-treated tissue. There is a fundamental difference in 31 P n.m.r. spectra of mannose-treated spinach protoplasts and asparagus cells, reflecting a difference in the availability of vacuolar Pi for cellular metabolism in these species. The 31P n.m.r. spectrum of intact spinach chloroplasts is reported.  相似文献   

16.
Methylphosphonate in conjunction with 31P-NMR spectroscopy was used for the measurement of transmembrane delta pH in human erythrocytes stored at 4 degrees C for up to 5 weeks in a nutrient medium. Intra- and extracellular pH was determined using calibration curves based on the pH-dependent separation between the NMR resonances of methylphosphonate and orthophosphate (Pi). A comprehensive statistical procedure is presented for the determination of the variance of NMR-based pH estimates. The entry of methylphosphonate into erythrocytes was more rapid at low pH and uptake was fully inhibited by the band 3 reagent, disodium 4,4-diisothiocyano-2,2'-disulphonic acid stilbene. The distribution ratio of methylphosphonate concentration inside and outside the cells was used to calculate the membrane potential; the analysis depends on a consideration of the Donnan equilibrium for an anion with one or two charges. Furthermore, the analysis does not depend on the pH estimates but relies solely on concentration estimates. The chemical shift of methylphosphonate was not subject to the variations associated with specific intracellular binding encountered with many other phosphorus compounds, including Pi. On the other hand, the ionic strength dependence of the chemical shift of methylphosphonate, contrary to earlier reports, is comparable in magnitude (but opposite in sign) to that of Pi.  相似文献   

17.
The phosphate metabolites, adenosine diphosphate (ADP), inorganic phosphate (Pi), and adenosine triphosphate (ATP), are potentially important regulators of mitochondrial respiration in vivo. However, previous studies on the heart in vivo and in vitro have not consistently demonstrated an appropriate correlation between the concentration of these phosphate metabolites and moderate changes in work and respiration. Recently, mitochondrial NAD(P)H levels have been proposed as a potential regulator of cardiac respiration during alterations in work output. In order to understand better the mechanism of respiratory control under these conditions, we investigated the relationship between the phosphate metabolites, the NAD(P)H levels, and oxygen consumption (Q02) in the isovolumic perfused rat heart during alterations in work output with pacing. ATP, creatine phosphate (CrP), Pi and intracellular pH were measured using 31P NMR. Mitochondrial NAD(P)H levels were monitored using spectrofluorometric techniques. Utilizing glucose as the sole substrate, an increase in paced heart rate led to an increase in Q02 from 1.73 +/- 0.09 to 2.29 +/- 0.12 mmol Q2/h per g dry wt. No significant changes in the levels of Pi, PCr, ATP, or the calculated ADP levels were detected. Under identical conditions, an increase in heart rate was associated with a 23 + 3% increase in NAD(P)H fluorescence. Thus, under the conditions of these studies, an increase in Q02 was not associated with an increase in ADP or Pi. In contrast, increases in Q02 were associated with an increase in NAD(P)H. These data are consistent with the notion that increases in the mitochondrial NADH redox state regulate steady-state levels of respiration when myocardial work is increased.  相似文献   

18.
Cobrotoxin (Mr 6949), which binds tightly to the acetylcholine receptors, contains no phenylalanines and only two histidines, two tyrosines, and one tryptophan that result in well-resolved aromatic proton resonances in D2O at 360 MHz. His-32, Tyr-25, and the Trp are essential for toxicity and may interact with the acetylcholine receptor. We assign two titratable resonances (pKa = 5.1) at delta = 9.0 and 7.5 ppm at pH 2.5 and at 7.7 and 7.1 ppm at pH 9.5 to the C-2 and C-4 ring protons, respectively, of His-4. Two other titratable resonances (pKa = 5.7) at delta = 8.8 and 6.9 ppm at pH 2.5 and at 7.8 and 6.7 ppm at pH 9.5 are assigned to the C-2 and C-4 ring protons of His-32, respectively. The differences in delta values of the two histidines reflect chemically different microenvironments while their low pKa values could arise from nearby positive charges. A methyl resonance gradually shifts upfield to delta approximately 0.4 ppm as His-4 is deprotonated and is tentatively assigned to the methyl group of Thr-14 or Thr-15 which, from published X-ray studies of neurotoxins, are located in the vicinity of His-4. Further, we have identified the aromatic resonances of the invariant tryptophan and individual tyrosines and the methyl resonance of one of the two isoleucines in the molecule. Several broad nontitrating resonances of labile protons which disappear at pH greater than 9 may arise from amide groups of the beta sheet in cobrotoxin.  相似文献   

19.
It is generally assumed that phosphate (Pi) effluxes from proximal tubule cells by passive diffusion across the basolateral (BL) membrane. We explored the mechanism of BL Pi efflux in proximal tubule-like OK cells grown on permeable filters and then loaded with 32P. BL efflux of 32P was significantly stimulated (P < 0.05) by exposing the BL side of the monolayer to 12.5 mM Pi, to 10 mM citrate, or by acid-loading the cells, and was inhibited by exposure to 0.05 mM Pi or 25 mM HCO3; by contrast, BL exposure to high (8.4) pH, 40 mM K+, 140 mM Na gluconate (replacing NaCl), 10 mM lactate, 10 mM succinate, or 10 mM glutamate did not affect BL 32P efflux. These data are consistent with BL Pi efflux from proximal tubule-like cells occurring, in part, via an electro-neutral sodium-sensitive anion transporter capable of exchanging two moles of intracellular acidic H2PO4- for each mole of extracellular basic HPO4= or for citrate.  相似文献   

20.
The effects of pentobarbital anesthesia on the energy metabolism of FSaII and MCaIV foot tumors in mice were studied by 31P MRS. Using an 8.5 T spectrometer, in vivo spectra were obtained in 15 animals before and after pentobarbital anesthesia (0.05 mg/g ip). The average phosphocreatine/inorganic phosphate ratios (PCr/Pi) with and without pentobarbital were similar for both tumor histologies. Effects on individual tumors, however, were greater than 20% in 9/15 animals and greater than 50% in 6/15 animals. Pentobarbital anesthesia increased the variability of tumor intracellular pH, and the phosphomonoester/nucleotide triphosphate (PME/NTP) and nucleotide triphosphate/inorganic phosphate ratios (NTP/Pi). When examining the average in a cohort, pentobarbital anesthesia had no significant effect on the PCr/Pi, PME/NTP, NTP/Pi ratios or the pH. However, approximately equal to 50% of individual tumors do have significant changes in these parameters. The anesthesia-induced variability of tumor energy metabolism may explain the decrease in TCD50 observed in previous studies using multifraction radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号