首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The desert seed-harvester ant Messor pergandei shows sharp regional differences in social structure: in central Arizona, queens initially form group nests but become aggressive following worker emergence and reduce to a single queen (secondary monogyny). In much of the rest of the species range, however, co-founding queens do not display aggression and retain multiple queens throughout the colony lifecycle (primary polygyny). One hypothesis to explain why queen behavior differs between regions is that relatedness among co-foundresses and, therefore, the potential for kin-selected cooperation, varies geographically. To test whether primary polygyny is associated with greater kin association, we used highly polymorphic microsatellites to estimate within-group relatedness for co-foundress associations in the field at two secondarily monogynous sites and five primarily polygynous sites. To determine whether queens can potentially use nestmate identity as a proxy for genetic relatedness, we compared these values to similarly sized samples of worker nestmates from adult colonies at the same sites. We found that foundresses do not preferentially form groups with relatives regardless of the ultimate fate of foundress groups. Mean relatedness values for co-foundresses did not differ significantly from zero irrespective of social structure. In contrast, adult colony worker nestmates were significantly positively related at all sites. These results indicate that kin-selected benefits are not likely to be responsible for the absence of fatal competition in the polygynous region; instead, the cause of geographic variation in queen cooperation must lie in ecological factors that alter the costs and benefits of retaining additional queens into colony maturity.  相似文献   

2.
Kin selection is a powerful tool for understanding cooperation among individuals, yet its role as the sole explanation of cooperative societies has recently been challenged on empirical grounds. These studies suggest that direct benefits of cooperation are often overlooked, and that partner choice may be a widespread mechanism of cooperation. Female eider ducks (Somateria mollissima) may rear broods alone, or they may pool their broods and share brood-rearing. Females are philopatric, and it has been suggested that colonies may largely consist of related females, which could promote interactions among relatives. Alternatively, shared brood care could be random with respect to relatedness, either because brood amalgamations are accidental and nonadaptive, or through group augmentation, assuming that the fitness of all group members increases with group size. We tested these alternatives by measuring the relatedness of co-tending eider females in enduring coalitions with microsatellite markers. Females formed enduring brood-rearing coalitions with each other at random with respect to relatedness. However, based on previous data, partner choice is nonrandom and dependent on female body condition. We discuss potential mechanisms underlying eider communal brood-rearing decisions, which may be driven by the specific ecological conditions under which sociality has evolved in this species.  相似文献   

3.
Several genetic and nongenetic benefits have been proposed toexplain multiple mating (polyandry) in animals, to compensatefor costs associated with obtaining additional mates. The mostprominent hypotheses stress the benefits of increased geneticdiversity. In social insects, queens of most species mate onlyonce or have effective mating frequencies close to one. Yet,in a few species of ants, bees, and wasps, polyandry is therule. In these species, colonies are usually headed by a singlequeen, whereas multiple queening adds diversity in several ofthe remaining species, especially in ants. Here we investigatedmating frequency, inbreeding and relatedness between the queensand their mates in the polygynous ant Plagiolepis pygmaea, andthe effect of polyandry on the genetic diversity as a functionof the effective population size of individual colonies. Ourresults show that polyandry occurs frequently in the species.However, queens are frequently inseminated by close relatives,and additional sires add little genetic diversity among offspringof individual queens. In addition, the increase in diversityat the colony level is only marginal. Hence, contrary to establishednotions, polyandry in P. pygmaea seems not to be driven by substantialbenefits of genetic diversity. Nonetheless, very small or asyet unidentified genetic benefits to one party (males, workers,queens) in conjunction with low costs of mating may favor polyandry.Alternatively, nongenetic factors, such as convenience polyandry,may be more important than genetic factors in promoting polyandryin P. pygmaea.  相似文献   

4.
New theoretical work on kin selection and inclusive fitness benefits predicts that individuals will sometimes choose close or intermediate relatives as mates to maximize their fitness. However, empirical examples supporting such predictions are rare. In this study, we look for such evidence in a natural population of Drosophila melanogaster. We compared mating and nonmating individuals to test whether mating was nonrandom with respect to relatedness. Consistent with optimal inbreeding, males were more closely related to their mate than to randomly sampled females. However, all individuals collected mating showed higher relatedness and males were not significantly more related to their mate than to other mating females. We also found a negative relationship between relatedness and fecundity. Our results are consistent with the hypothesis that inclusive fitness benefits may drive inbreeding tolerance despite direct costs to fitness; however, an experimental approach is needed to investigate the link between mate preference and relatedness.  相似文献   

5.
Conspecific brood parasitism (CBP) is a reproductive tactic in which parasitic females lay eggs in nests of other females of the same species that then raise the joint brood. Parasites benefit by increased reproduction, without costs of parental care for the parasitic eggs. CBP occurs in many egg‐laying animals, among birds most often in species with large clutches and self‐feeding young: two major factors facilitating successful parasitism. CBP is particularly common in waterfowl (Anatidae), a group with female‐biased natal philopatry and locally related females. Theory suggests that relatedness between host and parasite can lead to inclusive fitness benefits for both, but if host costs are high, parasites should instead target unrelated females. Pairwise relatedness (r) in host–parasite (h‐p) pairs of females has been estimated using molecular genetic methods in seven waterfowl (10 studies). In many h‐p pairs, the two females were unrelated (with low r, near the local population mean). However, close relatives (r = 0.5) were over‐represented in h‐p pairs, which in all 10 studies had higher mean relatedness than other females. In one species where this was studied, h‐p relatedness was higher than between nesting close neighbours, and hosts parasitized by non‐relatives aggressively rejected other females. In another species, birth nest‐mates (mother–daughters, sisters) associated in the breeding area as adults, and became h‐p pairs more often than expected by chance. These and other results point to recognition of birth nest‐mates and perhaps other close relatives. For small to medium host clutch sizes, addition of a few parasitic eggs need not reduce host offspring success. Estimates in two species suggest that hosts can then gain inclusive fitness if parasitized by relatives. Other evidence of female cooperation is incubation by old eider Somateria mollissima females of clutches laid by their relatives, and merging and joint care of broods of young. Merging females tended to be more closely related. Eiders associate with kin in many situations, and in some geese and swans, related females may associate over many years. Recent genetic evidence shows that also New World quails (Odontophoridae) have female‐biased natal philopatry, CBP and brood merging, inviting further study and comparison with waterfowl. Kin‐related parasitism also occurs in some insects, with revealing parallels and differences compared to birds. In hemipteran bugs, receiving extra eggs is beneficial for hosts by diluting offspring predation. In eggplant lace bugs Gargaphia solani, host and parasite are closely related, and kin selection favours egg donation to related females. Further studies of kinship in CBP, brood merging and other contexts can test if some of these species are socially more advanced than presently known.  相似文献   

6.
As breeding between relatives often results in inbreeding depression, inbreeding avoidance is widespread in the animal kingdom. However, inbreeding avoidance may entail fitness costs. For example, dispersal away from relatives may reduce survival. How these conflicting selection pressures are resolved is challenging to investigate, but theoretical models predict that inbreeding should occur frequently in some systems. Despite this, few studies have found evidence of regular incest in mammals, even in social species where relatives are spatio-temporally clustered and opportunities for inbreeding frequently arise. We used genetic parentage assignments together with relatedness data to quantify inbreeding rates in a wild population of banded mongooses, a cooperatively breeding carnivore. We show that females regularly conceive to close relatives, including fathers and brothers. We suggest that the costs of inbreeding avoidance may sometimes outweigh the benefits, even in cooperatively breeding species where strong within-group incest avoidance is considered to be the norm.  相似文献   

7.
Eusociality is one of the most complex forms of social organization, characterized by cooperative and reproductive units termed colonies. Altruistic behavior of workers within colonies is explained by inclusive fitness, with indirect fitness benefits accrued by helping kin. Members of a social insect colony are expected to be more closely related to one another than they are to other conspecifics. In many social insects, the colony can extend to multiple socially connected but spatially separate nests (polydomy). Social connections, such as trails between nests, promote cooperation and resource exchange, and we predict that workers from socially connected nests will have higher internest relatedness than those from socially unconnected, and noncooperating, nests. We measure social connections, resource exchange, and internest genetic relatedness in the polydomous wood ant Formica lugubris to test whether (1) socially connected but spatially separate nests cooperate, and (2) high internest relatedness is the underlying driver of this cooperation. Our results show that socially connected nests exhibit movement of workers and resources, which suggests they do cooperate, whereas unconnected nests do not. However, we find no difference in internest genetic relatedness between socially connected and unconnected nest pairs, both show high kinship. Our results suggest that neighboring pairs of connected nests show a social and cooperative distinction, but no genetic distinction. We hypothesize that the loss of a social connection may initiate ecological divergence within colonies. Genetic divergence between neighboring nests may build up only later, as a consequence rather than a cause of colony separation.  相似文献   

8.
Cooperative nest initiation in social insects is most easily explained when cooperating females are relatives, as is common in polistine wasps. However, recent research has revealed that unrelated ant queens also initiate colonies together. Reproductive dominance hierarchies are absent among unrelated foundresses, which contrasts with the rigid dominance hierarchies found among related foundresses. New field studies of joint nest founding among non-relatives show that cooperation is favored where colonies are clumped and brood raiding is common, so that attaining a large worker force quickly is critical to colony survival. These studies enrich our understanding of the role of relatedness in social groups.  相似文献   

9.
Relatedness concepts have dominated the discussion on the evolutionand maintenance of eusociality in social insects. In the diploidtermites, explanations based on relatedness asymmetries havebeen less relevant than in the Hymenoptera; ecological factorshave been claimed to be paramount. Yet, relevant quantitativestudies investigating the role of ecological factors are lacking.We examined the influence of ecological factors on reproductivetactics in the drywood termite, Cryptotermes secundus. In thisspecies, caste development is very flexible, with individualshaving the option to remain at the natal nest as helpers/workersor to develop into dispersing reproductives (sexuals). An importantecological factor expected to influence this "decision" is foodavailability; C. secundus nests in a piece of wood that servesas food and shelter, with individuals never leaving the nestto forage. Thus, a reduction in the amount of food parallelsa reduction in the nests' longevity. Therefore, we tested theinfluence of food availability on caste-developmental decisionsin natural colonies, as well as in two experiments in whichwe simulated a gradual and a sudden decline in the amount ofavailable food. In all trials dispersing sexuals occurred moreoften in colonies with diminished food resources than in colonieswith abundant suitable food. Thus, regardless of how food declines,individuals seem to switch their tactic from being a helperto becoming a dispersing reproductive if nest conditions deteriorateand the nests's longevity decline.  相似文献   

10.
The biological costs of inbreeding are expected to have shaped human incest aversion. These costs depend on biological sex, relatedness, and age. Whereas previous studies have focused on investigating how these factors modulate incest aversion in siblings and cousins—family members of the same generation— we examined relatives of different generations. In a population-based sample, 2499 respondents reported reactions to imagined sexual behaviors with either a biological child or parent, a niece/nephew or aunt/uncle, or a stepchild or stepparent; these responses were compared to reactions to imagined sexual behaviors involving a friend's child or parent. Replicating prior results, women report stronger incest aversions than do men. We extend previous findings by showing that incest aversions tended to be stronger between close (vs. more distant) intergenerational relatives. Indeed, for biological relatives, decreased degree of relatedness was associated with decreased incest aversion, and for biological relatives, the certainty in relatedness was also positively associated with incest aversion. As expected, age modulated sexual aversion for unrelated, but not related, target individuals. Sexual aversions towards step-relatives did not differ from sexual aversions to biological relatives.  相似文献   

11.
The evolution of stable social groups can be promoted by both indirect and direct fitness benefits. Sperm whales (Physeter macrocephalus) are highly social, with a hierarchical social structure based around core groups of adult females and subadults, a rare level of complexity among mammals. We combined long-term satellite tracking (ranging from 11 to 607 days) of 51 individual sperm whales with genetic kinship analysis to assess the pattern of kin associations within and among coherent social units. Unlike findings for other species with similar social structure, we find no consistent correlation between kinship and association apart from close associations between two pairs of first-order relatives. A third pair of first-order relatives did not associate, and overall, the mean relatedness was the same within as among social groups. However, social behaviour can also be promoted by ecological factors such as resource dispersion. We assessed putative foraging behaviour during travel from the satellite-tracking data, which suggested that prey resources were dispersed and unpredictable, a condition that could promote living in groups.  相似文献   

12.
An inclusive fitness analysis of altruism on a cyclical network   总被引:3,自引:0,他引:3  
A recent model studies the evolution of cooperation on a network, and concludes with a result connecting the benefits and costs of interactions and the number of neighbours. Here, an inclusive fitness analysis is conducted of the only case solved analytically, of a cycle, and the identical result is obtained. This brings the result within a biologically familiar framework. It is notable that the benefits and costs in the inclusive fitness framework need to be derived, and are not the benefits and costs that are the parameters in the original model. The relatedness is a quadratic function of position in a cycle of size N: an individual is related by 1 to itself, by (N - 5)/(N + 1) to an immediate neighbour, and by very close to -1/2 to the most distant individuals. The inclusive fitness analysis explains hitherto puzzling features of the results.  相似文献   

13.

Background  

Mutual policing is an important mechanism for reducing conflict in cooperative groups. In societies of ants, bees, and wasps, mutual policing of worker reproduction can evolve when workers are more closely related to the queen's sons than to the sons of workers or when the costs of worker reproduction lower the inclusive fitness of workers. During colony growth, relatedness within the colony remains the same, but the costs of worker reproduction may change. The costs of worker reproduction are predicted to be greatest in incipient colonies. If the costs associated with worker reproduction outweigh the individual direct benefits to workers, policing mechanisms as found in larger colonies may be absent in incipient colonies.  相似文献   

14.
A central question of evolutionary ecology is: why do animals live in groups? Answering this question requires that the costs and benefits of group living are measured from the perspective of each individual in the group. This, in turn, requires that the group's genetic structure is elucidated, because genetic relatedness can modulate the individuals’ costs and benefits. The clown anemonefish, Amphiprion percula, lives in groups composed of a breeding pair and zero to four nonbreeders. Both breeders and nonbreeders stand to gain by associating with relatives: breeders might prefer to tolerate nonbreeders that are relatives because there is little chance that relatives will survive to breed elsewhere; nonbreeders might prefer to associate with breeders that are relatives because of the potential to accrue indirect genetic benefits by enhancing anemone and, consequently, breeder fitness. Given the potential benefits of associating with relatives, we use microsatellite loci to investigate whether or not individuals within groups of A. percula are related. We develop seven polymorphic microsatellite loci, with a number of alleles (range 2–24) and an observed level of heterozygosity (mean = 0.5936) sufficient to assess fine‐scale genetic structure. The mean coefficient of relatedness among group members is 0.00 ± 0.10 (n = 9 groups), and there are no surprising patterns in the distribution of pairwise relatedness. We conclude that A. percula live in groups of unrelated individuals. This study lays the foundation for further investigations of behavioural, population and community ecology of anemonefishes which are emerging as model systems for evolutionary ecology in the marine environment.  相似文献   

15.
Social behaviour of group-living animals is often influenced by the relatedness of individuals, thus understanding the genetic structure of groups is important for the interpretation of costs and benefits of social interactions. In this study, we investigated genetic relatedness in feeding aggregations of free-living house sparrows ( Passer domesticus ) during the nonbreeding season. This species is a frequent model system for studies of social behaviour (e.g. aggression, social foraging), but we lack adequate information on the kin structure of sparrow flocks. During two winters, we ringed and observed sparrows at feeding stations, and used resightings to identify stable flock-members and to calculate association indices between birds. We genotyped the birds using seven highly polymorphic microsatellite loci, and estimated pairwise relatedness coefficients and relatedness categories (close kin vs. unrelated) by maximum likelihood method. We found that most birds were unrelated to each other in the flocks (mean ± SE relatedness coefficient: 0.06 ± 0.002), although most individuals had at least a few close relatives in their home flock (14.3 ± 0.6% of flock-mates). Pairwise association between individuals was not significantly related to their genetic relatedness. Furthermore, there was no difference between within-flock vs. between-flock relatedness, and birds had similar proportions of close kin within and outside their home flock. Finally, relatedness among members of different flocks was unrelated to the distance between their flocks. Thus, sparrow flocks were not characterized by association of relatives, nevertheless the presence of some close kin may provide opportunity for kin-biased behaviours to evolve.  相似文献   

16.
Intraspecific brood parasitism (IBP) is a remarkable phenomenon by which parasitic females can increase their reproductive output by laying eggs in conspecific females' nests in addition to incubating eggs in their own nest. Kin selection could explain the tolerance, or even the selective advantage, of IBP, but different models of IBP based on game theory yield contradicting predictions. Our analyses of seven polymorphic autosomal microsatellites in two eider duck colonies indicate that relatedness between host and parasitizing females is significantly higher than the background relatedness within the colony. This result is unlikely to be a by-product of relatives nesting in close vicinity, as nest distance and genetic identity are not correlated. For eider females that had been ring-marked during the decades prior to our study, our analyses indicate that (i) the average age of parasitized females is higher than the age of nonparasitized females, (ii) the percentage of nests with alien eggs increases with the age of nesting females, (iii) the level of IBP increases with the host females' age, and (iv) the number of own eggs in the nest of parasitized females significantly decreases with age. IBP may allow those older females unable to produce as many eggs as they can incubate to gain indirect fitness without impairing their direct fitness: genetically related females specialize in their energy allocation, with young females producing more eggs than they can incubate and entrusting these to their older relatives. Intraspecific brood parasitism in ducks may constitute cooperation among generations of closely related females.  相似文献   

17.
The evolution of cooperation requires benefits of group living to exceed costs. Hence, some components of fitness are expected to increase with increasing group size, whereas others may decrease because of competition among group members. The social spiders provide an excellent system to investigate the costs and benefits of group living: they occur in groups of various sizes and individuals are relatively short-lived, therefore life history traits and Lifetime Reproductive Success (LRS) can be estimated as a function of group size. Sociality in spiders has originated repeatedly in phylogenetically distant families and appears to be accompanied by a transition to a system of continuous intra-colony mating and extreme inbreeding. The benefits of group living in such systems should therefore be substantial. We investigated the effect of group size on fitness components of reproduction and survival in the social spider Stegodyphus dumicola in two populations in Namibia. In both populations, the major benefit of group living was improved survival of colonies and late-instar juveniles with increasing colony size. By contrast, female fecundity, female body size and early juvenile survival decreased with increasing group size. Mean individual fitness, estimated as LRS and calculated from five components of reproduction and survival, was maximized for intermediate- to large-sized colonies. Group living in these spiders thus entails a net reproductive cost, presumably because of an increase in intra-colony competition with group size. This cost is traded off against survival benefits at the colony level, which appear to be the major factor favouring group living. In the field, many colonies occur at smaller size than expected from the fitness curve, suggesting ecological or life history constraints on colony persistence which results in a transient population of relatively small colonies.  相似文献   

18.
Cohesion of social groups requires the suppression of individual selfishness. Indeed, worker egg laying in insect societies is usually suppressed or punished through aggression and egg removal. The effectiveness of such "policing" is expected to increase with decreasing relatedness, as inclusive fitness of group members is more strongly affected by selfish worker reproduction when group members are less closely related to each other. As inclusive fitness is also influenced by the costs and benefits of helping, the effectiveness of policing should decrease with increasing colony size, because the costs for the whole colony from selfish worker reproduction are proportionally reduced in large groups. Here, we show that policing effectiveness in colonies of the ant Temnothorax unifasciatus is low in large groups and high in small groups when relatedness is high. When we experimentally decreased the relatedness in groups, the policing effectiveness reached the same high level as in small, highly related groups, irrespective of group size. Therefore, our results indicate that policing effectiveness is simultaneously shaped by relatedness and group size, that is, an ecological factor. This may have major implications for testing policing across species of animals.  相似文献   

19.
Although social groups are characterized by cooperation, they are also often the scene of conflict. In non-clonal systems, the reproductive interests of group members will differ and individuals may benefit by exploiting the cooperative efforts of other group members. However, such selfish behaviour is thought to be rare in one of the classic examples of cooperation--social insect colonies--because the colony-level costs of individual selfishness select against cues that would allow workers to recognize their closest relatives. In accord with this, previous studies of wasps and ants have found little or no kin information in recognition cues. Here, we test the hypothesis that social insects do not have kin-informative recognition cues by investigating the recognition cues and relatedness of workers from four colonies of the ant Acromyrmex octospinosus. Contrary to the theoretical prediction, we show that the cuticular hydrocarbons of ant workers in all four colonies are informative enough to allow full-sisters to be distinguished from half-sisters with a high accuracy. These results contradict the hypothesis of non-heritable recognition cues and suggest that there is more potential for within-colony conflicts in genetically diverse societies than previously thought.  相似文献   

20.
We examined the genetic and spatial structure of Leptothorax ambiguus in a Vermont site. Nests of this tiny ant species have variable queen number and comprise larger polydomous colonies, as do their closest relatives in North America. Nests are patchily distributed in the forest, and sometimes occur in local abundance. We collected 121 nests in four years from plots in which all nests were mapped; furthermore, we subjected nests collected in two separate years to starch gel electrophoresis and estimated relatedness according to the Queller—Goodnight (1989) algorithm. Queens that share a nest site also share 33% of their alleles on average, and relatedness among worker nestmates is about 0.5. The existence of diploid males and nonzero F-values demonstrate inbreeding in this species, an unusual phenomenon for social insects in general. Mapping data showed that nests with like genotypes tended to cluster in space, forming polydomous colonies. Colonies consisted of 1–6 nest subunits, and about half of all colonies were polygynous. We compare these features of L. ambiguus to its close relative L. longispinosus and a European congener L. acervorum. These comparisons allow us to conclude that an interplay between ecological and genetic factors produces the observed pattern of multiple queening and nest spatial distribution in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号