首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dissociation rate constant of the angiogenin-placental ribonuclease inhibitor complex was determined by measuring the release of free angiogenin from the complex in the presence of scavenger for free placental ribonuclease inhibitor (PRI). In 0.1 M NaCl, pH 6, 25 degrees C, this value is 1.3 X 10(-7) s-1 (t1/2 congruent to 60 days). The Ki value for the binding of PRI to angiogenin, calculated from the association and dissociation rate constants, is 7.1 X 10(-16) M. The corresponding values for the interaction of RNase A with PRI, determined by similar means, are both considerably higher: the dissociation rate constant is 1.5 X 10(-5) s-1 (t1/2 = 13 h), and the Ki value is 4.4 X 10(-14) M. Thus, PRI binds about 60 times more tightly to angiogenin than to RNase A. The effect of increasing sodium chloride concentration on the binding of PRI to RNase A was explored by Henderson plots. The Ki value increases to 39 pM in 0.5 M NaCl and to 950 pM in 1 M NaCl, suggesting the importance of ionic interactions. The mode of inhibition of RNase A by PRI was determined by examining the effect of a competitive inhibitor of RNase A, cytidine 2'-phosphate, on the association rate of PRI with RNase A. Increasing concentrations of cytidine 2'-phosphate decrease the association rate in a manner consistent with a competitive mode of inhibition.  相似文献   

2.
F S Lee  B L Vallee 《Biochemistry》1990,29(28):6633-6638
Human placental ribonuclease inhibitor (PRI), a 50-kDa tight-binding inhibitor of angiogenin and pancreatic ribonuclease, consists predominantly of 7 internal repeats, each 57 residues long. Repeats 3 plus 4 (residues 144-257) or repeat 6 (residues 315-371) can be deleted to give mutant proteins, PRI delta 3-4 and PRI delta 6, respectively, that retain inhibitory activity [Lee, F. S., & Vallee, B. L. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1879-1883]. We describe here the isolation and characterization of these two active mutant proteins. Both inhibit the enzymatic activities of either angiogenin or bovine pancreatic ribonuclease A (RNase A) with a 1:1 stoichiometry, and the mode of inhibition of RNase A by either is competitive. PRI delta 3-4 binds to angiogenin and RNase A with Ki values of 0.72 and 170 pM, respectively The corresponding values for PRI delta 6 are 22 and 43 pM, respectively. Since recombinant PRI to angiogenin and RNase A with Ki values of 0.29 and 68 fM, respectively, deletion of repeats 3 plus 4 weakens both interactions 2500-fold while deletion of repeat 6 weakens them 76,000- and 630-fold, respectively. Therefore, either the deletion of these repeats has altered the conformation of the angiogenin/RNase binding site in PRI or the deleted repeats contribute directly to the binding site, or both. In addition, the tighter binding to angiogenin versus RNase A seen with native PRI has been preserved in PRI delta 3-4 but has been almost completely abolished in PRI delta 6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
F S Lee  D S Auld  B L Vallee 《Biochemistry》1989,28(1):219-224
The binding of human placental ribonuclease inhibitor (PRI) to angiogenin, a human protein that induces neovascularization, occurs with a 1:1 stoichiometry and is accompanied by a 50% increase in tryptophan fluorescence. In contrast, the binding of PRI to bovine pancreatic RNase A or to angiogenin oxidized at its single tryptophan residue results in a quenching of fluorescence. These observations suggest that there is a change in the local environment of Trp-89 of angiogenin. Quenching experiments with acrylamide are consistent with the view that Trp-89 is exposed in the native protein and becomes less accessible upon formation of the complex with PRI. Stopped-flow kinetic measurements monitoring the fluorescence enhancement indicate a two-step mechanism for the binding of PRI to angiogenin. The first step involves rapid formation of an enzyme-inhibitor complex, EI, followed by a slower isomerization of EI to a tight enzyme-inhibitor complex, EI*: (Formula: see text). In 0.1 M NaCl at pH 6 and 25 degrees C, the values of K1 and K2 are 0.53 microM and 97 s-1, respectively. The apparent second-order rate constant of association at protein concentrations much less than K1 is approximated by K2/K1 and equals 1.8 X 10(8) M-1 s-1. The corresponding value for the association of PRI with RNase A is only slightly higher, 3.4 X 10(8) M-1 s-1. The effects of pH and sodium chloride concentration on the association rate of PRI with angiogenin suggest the importance of ionizable groups and ionic interactions, respectively, in the association process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
R Shapiro  B L Vallee 《Biochemistry》1991,30(8):2246-2255
The interactions of human placental ribonuclease inhibitor (PRI) with bovine pancreatic ribonuclease (RNase) A and human angiogenin, a plasma protein that induces blood vessel formation, have been characterized in detail in earlier studies. However, studies on the interaction of PRI with the RNase(s) indigenous to placenta have not been performed previously, nor have any placental RNases been identified. In the present work, the major human placental RNase (PR) was purified to homogeneity by a five-step procedure and was obtained in a yield of 110 micrograms/kg of tissue. The placental content of angiogenin was also examined and was found to be at least 10-fold lower than that of PR. On the basis of its amino acid composition, amino-terminal sequence, and catalytic properties, PR appears to be identical with an RNase previously isolated from eosinophils (eosinophil-derived neurotoxin), liver, and urine. The apparent second-order rate constant of association for the PR.PRI complex, measured by examining the competition between PR and angiogenin for PRI, is 1.9 X 10(8) M-1 s-1. The rate constant for dissociation of the complex, determined by HPLC measurement of the rate of release of PR from its complex with PRI in the presence of a scavenger for free PRI, is 1.8 X 10(-7) s-1. Thus the Ki value for the PR.PRI complex is 9 X 10(-16) M, similar to that obtained with angiogenin, and 40-fold lower than that measured with RNase A. Complex formation causes a small red shift in the protein fluorescence emission spectrum, with no significant change in overall intensity. The fluorescence quantum yield of PR and the Stern-Volmer constant for fluorescence quenching by acrylamide are both high, possibly due to the presence of an unusual posttranslationally modified tryptophan residue at position 7 in the primary sequence.  相似文献   

5.
F S Lee  B L Vallee 《Biochemistry》1989,28(8):3556-3561
The importance of specific residues in angiogenin for binding to placental ribonuclease inhibitor (PRI) has been assessed by examining the interaction of angiogenin derivatives with PRI. PRI binds native angiogenin with a Ki value of 7.1 X 10(-16) M [Lee, F. S., Shapiro, R., & Vallee, B. L. (1989) Biochemistry 28, 225-230]. Substitution of a Gln for Lys-40 in angiogenin by site-specific mutagenesis decreases the association rate constant 3-fold and increases the dissociation rate constant 440-fold, resulting in a 1300-fold weaker Ki value. The half-life of the mutant.PRI complex is 3.4 h compared to approximately 60 days for the native angiogenin.PRI complex. The magnitude of the change in Ki value suggests that in the complex, Lys-40 forms a salt bridge or hydrogen bond with an anionic moiety in PRI. Carboxymethylation of His-13 or His-114 with bromoacetate increases the Ki value 15-fold, and oxidation of Trp-89 by means of dimethyl sulfoxide and hydrochloric acid increases it 2.4-fold, suggesting that these residues also form part of the contact region with PRI. The changes in Ki value reflect an increase in the dissociation rate constant. On the other hand, dinitrophenylation of either Lys-50 or Lys-60 with 1-fluoro-2,4-dinitrobenzene does not significantly alter the Ki value, suggesting that these residues are not part of the contact region. These results indicate that PRI inhibition minimally involves the three residues critical for the activity of angiogenin--Lys-40, His-13, and His-114--and to a lesser extent its single tryptophan, Trp-89.  相似文献   

6.
A convenient in vitro assay for angiogenin has been developed which greatly facilitates its routine detection and quantitation. The assay is based on the capacity of angiogenin to bind placental ribonuclease inhibitor (PRI); it is less tedious and more versatile than existing procedures that measure blood vessel growth or cleavage of rRNA. The test sample is added to a reaction mixture containing a known quantity of PRI, which complexes any angiogenin present in the sample. A slight excess of RNase A, relative to PRI, is then added, and the amount of RNase A which remains unbound is determined by measuring the generation of acid-soluble fragments from yeast RNA. The assay is sensitive to 30 fmol of angiogenin and is linear over a 17-fold concentration range. Use of the binding assay in parallel with a conventional RNase A assay provides a means of detecting angiogenin in chromatographic fractions and differentiating it from RNases. This procedure makes possible the isolation of angiogenin from new sources, such as nonhuman sera. It may also be applicable to other biologically active proteins with sequence homology to RNase A, e.g., eosinophil cationic protein or eosinophil derived neurotoxin.  相似文献   

7.
M D Bond  B L Vallee 《Biochemistry》1990,29(13):3341-3349
The region of human angiogenin containing residues 8-21 is highly conserved in angiogenins from four mammalian species but differs substantially from the corresponding region of the homologous protein ribonuclease A (RNase A). Regional mutagenesis has been employed to replace this segment of angiogenin with the corresponding RNase A sequence, and the activities of the resulting covalent angiogenin/RNase hybrid, designated ARH-III, have been examined. The ribonucleolytic activity of ARH-III is unchanged toward most substrates, including tRNA, naked 18S and 28S rRNA, CpA, CpG, UpA, and UpG. In contrast, the capacity of ARH-III to inhibit cell-free protein synthesis is decreased 20-30-fold compared to that of angiogenin. The angiogenic activity of ARH-III is also different; it is actually more potent. It induces a maximal response in the chick chorioallantoic membrane assay at 0.1 ng per egg, a 10-fold lower dose than required for angiogenin. In addition, binding of ARH-III to the placental ribonuclease inhibitor is increased by at least 1 order of magnitude (Ki less than or equal to 7 x 10(-17) M) compared to angiogenin. Thus, mutation of a highly conserved region of angiogenin markedly affects those properties likely involved in its biological function(s); it does not, however, alter ribonucleolytic activity toward most substrates.  相似文献   

8.
Hypersensitive substrate for ribonucleases.   总被引:4,自引:1,他引:3       下载免费PDF全文
A substrate for a hypersensitive assay of ribonucleolytic activity was developed in a systematic manner. This substrate is based on the fluorescence quenching of fluorescein held in proximity to rhodamine by a single ribonucleotide embedded within a series of deoxynucleotides. When the substrate is cleaved, the fluorescence of fluorescein is manifested. The optimal substrate is a tetranucleotide with a 5',6-carboxyfluorescein label (6-FAM) and a 3',6-carboxy-tetramethylrhodamine (6-TAMRA) label: 6-FAM-dArUdAdA-6-TAMRA. The fluorescence of this substrate increases 180-fold upon cleavage. Bovine pancreatic ribonuclease A (RNase A) cleaves this substrate with a k (cat)/ K (m)of 3.6 x 10(7)M(-1)s(-1). Human angiogenin, which is a homolog of RNase A that promotes neovascularization, cleaves this substrate with a k (cat)/ K (m)of 3. 3 x 10(2)M(-1)s(-1). This value is >10-fold larger than that for other known substrates of angio-genin. With these attributes, 6-FAM-dArUdAdA-6-TAMRA is the most sensitive known substrate for detecting ribo-nucleolytic activity. This high sensitivity enables a simple protocol for the rapid determination of the inhibition constant ( K (i)) for competitive inhibitors such as uridine 3'-phosphate and adenosine 5'-diphos-phate.  相似文献   

9.
Stress-induced phosphorylation of eIF2α inhibits global protein synthesis to conserve energy for repair of stress-induced damage. Stress-induced translational arrest is observed in cells expressing a nonphosphorylatable eIF2α mutant (S51A), which indicates the existence of an alternative pathway of translational control. In this paper, we show that arsenite, heat shock, or ultraviolet irradiation promotes transfer RNA (tRNA) cleavage and accumulation of tRNA-derived, stress-induced small RNAs (tiRNAs). We show that angiogenin, a secreted ribonuclease, is required for stress-induced production of tiRNAs. Knockdown of angiogenin, but not related ribonucleases, inhibits arsenite-induced tiRNA production and translational arrest. In contrast, knockdown of the angiogenin inhibitor RNH1 enhances tiRNA production and promotes arsenite-induced translational arrest. Moreover, recombinant angiogenin, but not RNase 4 or RNase A, induces tiRNA production and inhibits protein synthesis in the absence of exogenous stress. Finally, transfection of angiogenin-induced tiRNAs promotes phospho-eIF2α–independent translational arrest. Our results introduce angiogenin and tiRNAs as components of a phospho-eIF2α–independent stress response program.  相似文献   

10.
A comparison of the sequences of three homologous ribonucleases (RNase A, angiogenin and bovine seminal RNase) identifies three surface loops that are highly variable between the three proteins. Two hypotheses were contrasted: (i) that this variation might be responsible for the different catalytic activities of the three proteins; and (ii) that this variation is simply an example of surface loops undergoing rapid neutral divergence in sequence. Three hybrids of angiogenin and bovine pancreatic ribonuclease (RNase) A were prepared where regions in these loops taken from angiogenin were inserted into RNase A. Two of the three hybrids had unremarkable catalytic properties. However, the RNase A mutant containing residues 63-74 of angiogenin had greatly diminished catalytic activity against uridylyl-(3'----5')-adenosine (UpA), and slightly increased catalytic activity as an inhibitor of translation in vitro. Both catalytic behaviors are characteristic of angiogenin. This is one of the first examples of an engineered external loop in a protein. Further, these results are complementary to those recently obtained from the complementary experiment, where residues 59-70 of RNase were inserted into angiogenin [Harper and Vallee (1989) Biochemistry, 28, 1875-1884]. Thus, the external loop in residues 63-74 of RNase A appears to behave, at least in part, as an interchangeable 'module' that influences substrate specificity in an enzyme in a way that is isolated from the influences of other regions in the protein.  相似文献   

11.
Cytotoxic potential of ribonuclease and ribonuclease hybrid proteins   总被引:4,自引:0,他引:4  
Pancreatic RNase injected into Xenopus oocytes abolishes protein synthesis at concentrations comparable to the toxin ricin yet has no effect on oocyte protein synthesis when added to the extracellular medium. Therefore RNase behaves like a potent toxin when directed into a cell. To explore the cytotoxic potential of RNase toward mammalian cells, bovine pancreatic ribonuclease A was coupled via a disulfide bond to human transferrin or antibodies to the transferrin receptor. The RNase hybrid proteins were cytotoxic to K562 human erythroleukemia cells in vitro with an IC50 around 10(-7) M whereas greater than 10(-5) M native RNase was required to inhibit protein synthesis. Cytotoxicity requires both components of the conjugate since excess transferrin or ribonuclease inhibitors added to the medium protected the cells from the transferrin-RNase toxicity. Compounds that interfere with transferrin receptor cycling and compartmentalization such as ammonium chloride decreased the cytotoxicity of transferrin-RNase. After a dose-dependent lag period inactivation of protein synthesis by transferrin-RNase followed a first-order decay constant. In a clonogenic assay that measures the extent of cell death 1 x 10(-6) M transferrin-RNase killed at least 4 logs or 99.99% of the cells whereas 70 x 10(-6) M RNase was nontoxic. These results show that RNase coupled to a ligand can be cytotoxic. Human ribonucleases coupled to antibodies also may exhibit receptor-mediated toxicities providing a new approach to selective cell killing possibly with less systemic toxicity and importantly less immunogenicity than the currently employed ligand-toxin conjugates.  相似文献   

12.
J W Harper  B L Vallee 《Biochemistry》1989,28(4):1875-1884
Human angiogenin is a blood vessel inducing protein whose primary structure displays 33% identity to that of bovine pancreatic ribonuclease A (RNase A). Angiogenin catalyzes limited cleavage of 18S and 28S ribosomal RNA and is several orders of magnitude less potent than RNase A toward conventional substrates. A striking structural difference between angiogenin and RNase is the virtual absence of sequence similarity within the region of RNase that contains the Cys-65--Cys-72 disulfide bond. Indeed, angiogenin lacks this disulfide linkage. The present report describes the use of regional mutagenesis to generate a covalent angiogenin/RNase hybrid protein, ARH-I, where residues 58-70 of angiogenin have been replaced by the corresponding segment of RNase A (residues 59-73). The protein expressed in Escherichia coli readily folds at pH 8.5 to form the four expected disulfide bonds. The in vivo angiogenic potency of ARH-I is markedly diminished compared with that of angiogenin when examined using the chick chorioallantoic membrane assay. In contrast, its enzymatic activity is dramatically increased. With high molecular weight wheat germ RNA and tRNA, ARH-I is 660- and 300-fold more active than angiogenin, respectively, while with poly(uridylic acid), poly(cytidylic acid), cytidylyl(3'----5')adenosine (CpA), and uridylyl(3'----5')adenosine (UpA) activity is enhanced by about 200-fold. In addition, the specificity of ARH-I toward dinucleoside 3',5'-phosphates is qualitatively similar to RNase A; while angiogenin prefers cytidylyl(3'----5')guanosine (CpG) to UpA, both RNase and the hybrid prefer UpA to CpG. ARH-I also displays greater than 10-fold enhanced activity toward rRNA in intact ribosomes, while abolishing the capacity of the ribosome to support cell-free protein synthesis. The enhanced enzymatic properties of ARH-I parallel a 2-fold increase in chemical reactivity of active-site lysine and histidine residues based on rates of chemical modification. The data indicate that introduction of a region of RNase A containing the Cys-65--Cys-72 disulfide bond into angiogenin dramatically increases RNase-like enzymatic activity while reducing its angiogenicity.  相似文献   

13.
Angiogenin is a protein belonging to the superfamily of RNase A. The RNase activity of this protein is essential for its angiogenic activity. Although members of the RNase A family carry out RNase activity, they differ markedly in their strength and specificity. In this paper, we address the problem of higher specificity of angiogenin towards cytosine against uracil in the first base binding position. We have carried out extensive nano-second level molecular dynamics(MD) computer simulations on the native bovine angiogenin and on the CMP and UMP complexes of this protein in aqueous medium with explicit molecular solvent. The structures thus generated were subjected to a rigorous free energy component analysis to arrive at a plausible molecular thermodynamic explanation for the substrate specificity of angiogenin.  相似文献   

14.
Angiogenin is one of the most potent angiogenesis-inducing proteins. Angiostatin is one of the most potent angiogenesis inhibitors, and it contains the first four kringle domains of plasminogen (K1-4). Recombinant human plasminogen kringle 1-3 (rK1-3) was expressed in Escherichia coli and purified to homogeneity. The binding of t-4-aminomethylcyclohexanecarboxylic acid with the purified kringle 1-3 was determined by changes in intrinsic fluorescence. rK1-3 exhibits comparable ligand-binding properties as native human plasminogen kringle 1-3. The purified rK1-3 inhibits neovascularization in the chick embryo chorioallantoic membrane (CAM) assay. Interaction of angiogenin with rK1-3 was examined by immunological binding assay and surface plasmon resonance kinetic analysis, and the equilibrium dissociation constants for the complex, Kd, are 0.89 and 0.18 μM, respectively. rK1-3 inhibits angiogenin-induced angiogenesis in the chick embryo CAM in a concentration-dependent manner. These results indicate that rK1-3 directly binds to angiogenin and thus rK1-3 inhibits the angiogenic activity of angiogenin.  相似文献   

15.
J W Harper  E A Fox  R Shapiro  B L Vallee 《Biochemistry》1990,29(31):7297-7302
The primary structure of the blood vessel inducing protein angiogenin is 35% identical with that of pancreatic ribonuclease (RNase) and contains counterparts for the critical RNase active-site residues His-12, Lys-41, and His-119. Although angiogenin is a ribonucleolytic enzyme, its activity toward conventional substrates is lower than that of pancreatic RNase by several orders of magnitude. Comparison of the amino acid sequences of RNase and angiogenin reveals several striking differences in the region flanking the active-site lysine, including a deletion and a transposition of aspartic acid and proline residues. In order to examine how these sequence changes alter the functional properties of angiogenin, an angiogenin/RNase hybrid protein (ARH-II), in which residues 38-41 of angiogenin (Pro-Cys-Lys-Asp) have been replaced by the corresponding segment of bovine pancreatic RNase (Asp-Arg-Cys-Lys-Pro), was prepared by regional mutagenesis. Compared to angiogenin, ARH-II has markedly diminished angiogenic activity on the chick embryo chorioallantoic membrane but 5-75-fold greater enzymatic activity toward a variety of polynucleotide and dinucleotide substrates. In addition, the specificity of ARH-II toward dinucleotide substrates differs from that of angiogenin and is qualitatively similar to that of pancreatic RNase. Thus, non-active-site residues near Lys-40 in angiogenin appear to play a significant role in determining enzymatic specificity and reactivity as well as angiogenic potency. An additional angiogenin/RNase hybrid protein (ARH-IV), in which residues 59-71 of ARH-II have been replaced by the corresponding segment of pancreatic RNase, was also prepared.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The primary structures of the blood vessel inducing protein human angiogenin and human pancreatic ribonuclease (RNase) are 35% identical. Angiogenin catalyzes the limited cleavage of ribosomal RNA (18 and 28 S), yielding a characteristic pattern of polynucleotide products, but shows no significant activity toward conventional pancreatic RNase substrates [Shapiro, R., Riordan, J. F., & Vallee, B. L. (1986) Biochemistry 25, 3527-3532]. Angiogenin/RNase hybrid enzymes--wherein particular regions of primary structure in RNase are replaced by the corresponding segments of angiogenin--serve to explore the structural features underlying angiogenin's characteristic activities. Herein we show that synthetic angiogenin peptides, Ang(1-21) and Ang(108-123), form noncovalent complexes with inactive fragments of bovine RNase A--RNase(21-124) (i.e., S-protein) and RNase(1-118), respectively--with regeneration of activity toward conventional RNase substrates. Maximal activities for the Ang(1-21)/S-protein complex (Kd = 1.0 microM) are 52%, 45%, and 15% toward cytidine cyclic 2',3'-phosphate, cytidylyl(3'----5')adenosine, and yeast RNA, respectively. In contrast, activities of the RNase(1-118)/Ang(108-123) hybrid (Kd = 25 microM) are 1-2 orders of magnitude lower toward cyclic nucleotides and dinucleoside phosphates. However, substitution of phenylalanine for Leu-115 in Ang(108-123) increases activity up to 100-fold. Both His-13 and His-114 in the angiogenin peptides are required for activity since their substitution by alanine yields inactive complexes. Importantly, the pattern of polynucleotide products formed during cleavage of ribosomal RNA by the Ang(1-21)/S-protein hybrid shows a striking resemblance to that formed by angiogenin, demonstrating that the hybrid retains features of both angiogenin and RNase A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Bovine pancreatic ribonuclease A (RNase A) catalyzes the cleavage of P-O5' bonds in RNA on the 3' side of pyrimidine to form cyclic 2', 5'-phosphates. It has several high affinity binding sites that make it possible target for many organic and inorganic molecules. Ligand binding to RNase A can alter protein secondary structure and its catalytic activity. In this review, the effects of several drugs such as AZT (anti-AIDS), cis-Pt (antitumor), aspirin (anti-inflammatory), and vitamin C (antioxidant) on the stability and conformation of RNase A in vitro are compared. The results of UV-visible, FTIR, and CD spectroscopic analysis of RNase complexes with aspirin, AZT, cis-Pt, and vitamin C at physiological conditions are discussed here. Spectroscopic results showed one major binding for each drug-RNase adduct with KAZT=5.29 (+/-1.6)x10(4) M(-1), Kaspirin=3.57 (+/-1.4)x10(4) M(-1), Kcis-Pt=5.66 (+/-1.9)x10(3) M(-1), and Kascorbate=3.50 (+/-1.5)x10(3) M(-1). Major protein unfolding occurred with reduction of alpha-helix from 29% (free protein) to 20% and increase of beta-sheet from 39% (free protein) to 45% in the aspirin-, ascorbate-, and cis-Pt-RNase complexes, while minor increase of alpha-helix was observed for AZT-RNase adduct.  相似文献   

18.
The mechanism of lignin peroxidase (LiP) was examined using bovine pancreatic ribonuclease A (RNase) as a polymeric lignin model substrate. SDS/PAGE analysis demonstrates that an RNase dimer is the major product of the LiP-catalyzed oxidation of this protein. Fluorescence spectroscopy and amino acid analyses indicate that RNase dimer formation is due to the LiP-catalyzed oxidation of Tyr residues to Tyr radicals, followed by intermolecular radical coupling. The LiP-catalyzed polymerization of RNase in strictly dependent on the presence of veratryl alcohol (VA). In the presence of 100 microM H2O2, relatively low concentrations of RNase and VA, together but not individually, can protect LiP from H2O2 inactivation. The presence of RNase strongly inhibits VA oxidation to veratraldehyde by LiP; whereas the presence of VA does not inhibit RNase oxidation by LiP. Stopped-flow and rapid-scan spectroscopy demonstrate that the reduction of LiP compound I (LiPI) to the native enzyme by RNase occurs via two single-electron steps. At pH 3.0, the reduction of LiPI by RNase obeys second-order kinetics with a rate constant of 4.7 x 10(4) M-1.s-1, compared to the second-order VA oxidation rate constant of 3.7 x 10(5) M-1.s-1. The reduction of LiP compound II (LiPII) by RNase also follows second-order kinetics with a rate constant of 1.1 x 10(4) M-1.s-1, compared to the first-order rate constant for LiPII reduction by VA. When the reductions of LiPI and LiPIi are conducted in the presence of both VA and RNase, the rate constants are essentially identical to those obtained with VA alone. These results suggest that VA is oxidized by LiP to its cation radical which, while still in its binding site, oxidizes RNase.  相似文献   

19.
The effects of modification of bovine pancreatic ribonuclease A by monomethoxypoly(ethylene glycol) (MPEG) were examined for changes in recognition by antiRNase antibodies, enzymatic activity against low and high molecular weight substrates and conformational stability to temperature elevation. Modified forms of RNase were prepared containing an average of 4, 9, and 11 mol of MPEG/mol protein, by amino group modification. These were analysed by binding to RNase antibodies crosslinked to solid phase-immobilized protein A. The affinity column was incorporated into a high performance liquid chromatograph and the RNase species were studied by both zonal and frontal analytical affinity chromatography. An antibody dissociation constant of 7.6 x 10(-8) M was found for unmodified RNase, as compared to values of 1.3 x 10(-7) and 1.2 x 10(-6) M for RNase with 4 and 9 covalently bound MPEG chains, respectively. Modification also led to progressive loss of enzymatic activity against RNA, down to 3% for the most highly modified enzyme. In contrast, enzymatic activity against cytidine-2',3'-cyclic monophosphate was suppressed to a maximum of only 33% at the highest modification level, and the stability to temperature, as followed by circular dichroism, was reduced only partially, from 67 degrees C for native protein to 57 degrees C for RNase with 11 mol equivalents MPEG incorporated. The above differential effects on enzymatic activity, antibody binding and temperature effects are consistent with the view that MPEG modification has relatively small effects on conformational stability and small molecule accessibility, but more dramatic effects on large molecule (substrate as well as antibody) accessibility.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The ribonuclease inhibitor protein (RI) binds to members of the bovine pancreatic ribonuclease (RNase A) superfamily with an affinity in the femtomolar range. Here, we report on structural and energetic aspects of the interaction between human RI (hRI) and human pancreatic ribonuclease (RNase 1). The structure of the crystalline hRI x RNase 1 complex was determined at a resolution of 1.95 A, revealing the formation of 19 intermolecular hydrogen bonds involving 13 residues of RNase 1. In contrast, only nine such hydrogen bonds are apparent in the structure of the complex between porcine RI and RNase A. hRI, which is anionic, also appears to use its horseshoe-shaped structure to engender long-range Coulombic interactions with RNase 1, which is cationic. In accordance with the structural data, the hRI.RNase 1 complex was found to be extremely stable (t(1/2)=81 days; K(d)=2.9 x 10(-16) M). Site-directed mutagenesis experiments enabled the identification of two cationic residues in RNase 1, Arg39 and Arg91, that are especially important for both the formation and stability of the complex, and are thus termed "electrostatic targeting residues". Disturbing the electrostatic attraction between hRI and RNase 1 yielded a variant of RNase 1 that maintained ribonucleolytic activity and conformational stability but had a 2.8 x 10(3)-fold lower association rate for complex formation and 5.9 x 10(9)-fold lower affinity for hRI. This variant of RNase 1, which exhibits the largest decrease in RI affinity of any engineered ribonuclease, is also toxic to human erythroleukemia cells. Together, these results provide new insight into an unusual and important protein-protein interaction, and could expedite the development of human ribonucleases as chemotherapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号