首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Kim ST  Kim SG  Hwang DH  Kang SY  Kim HJ  Lee BH  Lee JJ  Kang KY 《Proteomics》2004,4(11):3569-3578
Proteomic approaches using two-dimensional gel electrophoresis (2-DE) were adopted to identify proteins from rice leaf that are differentially expressed in response to the rice blast fungus, Magnaporthe grisea. Microscopic observation of inoculated leaf with M. grisea revealed that callose deposition and hypersensitive response was clearly visible in incompatible interactions but excessive invading hypha with branches were evident in compatible interactions. Proteins were extracted from leaves 24, 48, and 72 hours after rice blast fungus inoculation. Eight proteins resolved on the 2-DE gels were induced or increased in the inoculated leaf. Matrix-assisted laser desorption/ionization-time of flight analysis of these differentially displayed proteins showed them to be two receptor-like protein kinases (RLK), two beta-1.3-glucanases (Glu1, Glu2), thaumatin-like protein (TLP), peroxidase (POX 22.3), probenazole-inducible protein (PBZ1), and rice pathogenesis-related 10 (OsPR-10). Of these proteins, RLK, TLP, PBZ, and OsPR-10 proteins were induced more in the incompatible interactions than in compatible ones. A phytohormone, jasmonic acid also induced all eight proteins in leaves. To confirm whether the expression profile is equal to the 2-DE data, seven cDNA clones were used as probes in Northern hybridization experiments using total RNA from leaf tissues inoculated with incompatible and compatible rice blast fungal races. The genes encoding POX22.3, Glu1, Glu2, TLP, OsRLK, PBZ1, and OsPR-10 were activated in inoculated leaves, with TLP, OsRLK, PBZ1, and OsPR-10 being expressed earlier and more in incompatible than in compatible interactions. These results suggest that early and high induction of these genes may provide host plants with leading edges to defend themselves. The localization of two rice PR-10 proteins, PBZ1 and OsPR-10, was further examined by immunohistochemical analysis. PBZ1 accumulated highly in mesophyll cells under the attachment site of the appressorium. In contrast, OsPR-10 expression was mainly localized to vascular tissue.  相似文献   

2.
Kim ST  Cho KS  Yu S  Kim SG  Hong JC  Han CD  Bae DW  Nam MH  Kang KY 《Proteomics》2003,3(12):2368-2378
We used two-dimensional electrophoresis (2-DE) and other proteomic approaches to identify proteins expressed in suspension-cultured rice cells in response to the rice blast fungus, Magnaporthe grisea. Proteins were extracted from suspension-cultured cells at 24 and 48 h after rice blast fungus inoculation or treatment with elicitor or other signal molecules such as jasmonic acid (JA), salicylic acid, and H(2)O(2). The proteins were then polyethylene glycol fractionated before separation by 2-DE. Fourteen protein spots were induced or increased by the treatments, which we analyzed by N-terminal or internal amino acid sequencing. Twelve proteins from six different genes were identified. Rice pathogen-related protein class 10 (OsPR-10), isoflavone reductase like protein, beta-glucosidase, and putative receptor-like protein kinase were among those induced by rice blast fungus; these have not previously been reported in suspension-cultured rice cells. Six isoforms of probenazole-inducible protein (PBZ1) and two isoforms of salt-induced protein (SalT) that responded to blast fungus, elicitor, and JA were also resolved on a 2-DE gel and identified by proteome analysis. The expression level of these induced proteins both in suspension-cultured cells and in leaves of whole plants was analyzed by Western blot. PBZ1, OsPR-10, and SalT proteins from incompatible reactions were induced earlier and to a greater extent than those in compatible reactions. Proteome analysis can thus distinguish differences in the timing and amount of protein expression induced by pathogens and other signal molecules in incompatible and compatible interactions.  相似文献   

3.
Diverse expression profiles of 21 rice peroxidase genes   总被引:9,自引:0,他引:9  
Secretory class III plant peroxidases (POXs) catalyze the oxidation of various reductants, and are encoded by a large multigene family. In rice, 42 independent expressed sequence tags for POXs have been identified. By RNA gel blot analysis using specific probes, we show here that 21 rice POX genes are unique in their developmental, organ specific and external stimuli-responsive expression. This would suggest that encoded POX isoenzymes are involved in a broad range of physiological processes in rice plants, individually.  相似文献   

4.
以亲和性与非亲和性两个稻瘟病原真菌小种(Magnaporthe grisea(Hebert)Barr)感染同一水稻品种(Oryzasativa L.cv.Shenxianggeng No.4)的植株产生明显不同的致病和抗病反应,由此建立了有效的感染系统。应用差异显示技术获得两个在侵染早期具有诱导表达特征的cDNA克隆,其中一个同时在致病和抗病反应中进行早期诱导表达,但在抗病反应中的诱导相对早于其在  相似文献   

5.
Compatible and incompatible reactions in rice plants (Oryza sativa L. cv. Shenxianggen No.4) were resulted from inoculation with two different virulent races of rice blast fungus (Magnaporthe grisea (Hebert) Barr), and thus an effective infecting system was established between rice plants and the rice blast pathogen. Two cDNA clones that showed induced and temporal patterns in expression in the very early stage in response to infection of the fungus were obtained from the plants by use of differential display. Of the two cDNA clones, Fastresp-a was induced to express in both compatible and incompatible interactions although it was expressed earlier in the former reaction. The second one, Fastresp-b, was only expressed in incompatible interaction. Southern blot analysis of the rice genomic DNA indicated that both of the two clones were from genome of the plant. No significant homology to the two genes was found from the rice gene database. This suggested that they were novel genes in rice and may play important roles in rice resistant response to infection of rice blast fungus.  相似文献   

6.
7.
A large family of class III plant peroxidases   总被引:30,自引:0,他引:30  
Class III plant peroxidase (POX), a plant-specific oxidoreductase, is one of the many types of peroxidases that are widely distributed in animals, plants and microorganisms. POXs exist as isoenzymes in individual plant species, and each isoenzyme has variable amino acid sequences and shows diverse expression profiles, suggesting their involvement in various physiological processes. Indeed, studies have provided evidence that POXs participate in lignification, suberization, auxin catabolism, wound healing and defense against pathogen infection. Little, however, is known about the signal transduction for inducing expression of the pox genes. Recent studies have provided information on the regulatory mechanisms of wound- and pathogen-induced expression of some pox genes. These studies suggest that pox genes are induced via different signal transduction pathways from those of other known defense-related genes.  相似文献   

8.
9.
We describe the cloning and identification of a rice cDNA, OsTVLP1, encoding a protein with similarity to TGF-beta receptor interacting proteins and vacuolar assembly Vam6p/Vps39p proteins. OsTVLP1 has an open reading frame of 2955 bp, which encodes a 984 amino acid protein, containing a citron homology (CNH) domain at its N-terminal and a clathrin heavy-chain repeat homology (CLH) domain at its C-terminal. The expression of OsTVLP1 was induced by treatments with benzothiadiazole (BTH), a chemical activator of plant disease resistance responses, and by infection of the blast fungus, Magnaporthe grisea. Importantly, the expression of OsTVLP1 was activated specifically in disease resistance response induced by BTH and in an incompatible interaction between rice and the blast fungus. Our observations suggest that OsTVLP1 may play a role in rice disease resistance response against pathogen infection.  相似文献   

10.
11.
This review describes current advances in understanding the biology of plant infection by the rice blast fungus Magnaporthe grisea. Development of the specialized infection structure, the appressorium, in M. grisea has recently been shown to be controlled by cell cycle progression and initiation of autophagic, programmed cell death in the fungal spore. Re-cycling of the contents of the fungal spore and peroxisomal fatty acid beta-oxidation are therefore important processes for appressorium function. Following entry to the host plant, new evidence suggests that M. grisea grows biotrophically within rice cells, bounded by the plant plasmalemma, and the fungus moves from cell-to-cell by means of plasmodesmata. Biotrophic proliferation of the fungus is likely to require secretion of effector proteins and suppression of host defences. Consistent with this, a component of the polarized exocytosis machinery of M. grisea is necessary for pathogenicity and also for induction of host defences in an incompatible interaction. Large-scale insertional mutagenesis is now allowing the rapid analysis of gene function in M. grisea, heralding a new approach to the study of this important fungal pathogen.  相似文献   

12.
13.
The rice Oryza sativa selenium-binding protein homologue (OsSBP) gene encodes a homologue of mammalian selenium-binding proteins, and it has been isolated as one of the genes induced by treating a plant with a cerebroside elicitor from rice blast fungus. The possible role of OsSBP in plant defense was evaluated by using a transgenic approach. Plants overexpressing OsSBP showed enhanced resistance to a virulent strain of rice blast fungus as well as to rice bacterial blight. The expression of defense-related genes and the accumulation of phytoalexin after infection by rice blast fungus were accelerated in the OsSBP overexpressors. A higher level of H(2)O(2) accumulation and reduced activity of such scavenging enzymes as ascorbate peroxidase and catalase were seen when the OsSBP-overexpressing plants were treated with the protein phosphatase 1 inhibitor, calyculin A. These results suggest that the upregulation of OsSBP expression conferred enhanced tolerance to different pathogens, possibly by increasing plant sensitivity to endogenous defense responses. Additionally, the OsSBP protein might have a role in modulating the defense mechanism to biotic stress in rice.  相似文献   

14.
Identification of rice genes induced in a rice blast-resistant mutant   总被引:9,自引:0,他引:9  
To clarify mechanisms of rice blast resistance in rice plants we used suppression subtractive hybridization (SSH) to isolate genes induced upon rice blast inoculation in a rice blast-resistant mutant. A total of 26 rice cDNAs were isolated and found to have elevated expression upon rice blast infection in a rice blast-resistant derivative, SHM-11, of the rice cultivar, Sanghaehyanghyella. Sequencing of the cDNAs revealed that many of the proteins they encoded had been previously described as involved in plant responses against pathogen attack. Two interesting groups of the defense-related proteins consisted of three different PR5 homologues and four different protease inhibitors, all highly expressed in the rice blast mutant. Genes encoding proteins involved in signal transduction and regulation were also identified, including translation initiation factor eIF5A, C2 domain DNA binding protein, putative rice EDS and putative receptor like kinase. Most of the identified cDNAs were highly expressed 24 h after blast inoculation. Our results suggest that a pathway regulating defense gene expression may be altered in the mutant, resulting in early induction of the defense genes upon fungal infection.  相似文献   

15.
We previously detected infection-promoting activity in the supernatant of the conidial suspension (SCS) of the rice blast fungus. In the present study, a molecule carrying the activity was purified and identified as 2'-deoxyuridine (dU). The infection-promoting activity of dU was strictly dependent on its chemical structure and displayed characteristics consistent with those of the SCS. Notably, the activity of dU was exclusively detected during interactions between rice and virulent isolates of the fungus, the number of susceptible lesions in leaf blades was increased by dU, and nonhost resistance in rice plants was not affected by treatment with dU. In addition, the expression of pathogensis-related genes, accumulation of H(2)O(2), and production of phytoalexins in rice in response to inoculation with virulent fungal isolates was not suppressed by dU. The infection-promoting activity of dU was not accompanied by elevated levels of endogenous abscissic acid, which is known to modify plant-pathogen interactions, and was not detected in interactions between oat plants and a virulent oat blast fungus isolate. Taken together, these results demonstrate that dU is a novel infection-promoting factor that acts specifically during compatible interactions between rice plants and rice blast fungus in a mode distinct from that of toxins and suppressors.  相似文献   

16.
Park CH  Kim S  Park JY  Ahn IP  Jwa NS  Im KH  Lee YH 《Molecules and cells》2004,17(1):144-150
A cDNA encoding a class III chitinase (Oschib1) was isolated from a cDNA library constructed from rice leaves infected with the blast fungus Magnaporthe grisea. The cDNA contains an open reading frame of 861 nucleotides encoding 286 amino acid residues with a pI of 5.06. The deduced amino acid sequence of Oschibl has a high level of similarity with class IIIb chitinases of Gladiolus gandavensis (46%) and Tulipa bakeri (49%). A high level of Oschibl mRNA was detected after inoculation with M. grisea or Xanthomonas oryzae pv. oryzae. Expression of Oschib1 was induced more rapidly when an avirulent strain of M. grisea was inoculated (incompatible interaction) than when a virulent strain was used (compatible interaction). Expression of Oschibl was also induced by treatment of signaling molecules such as salicylic acid, ethylene, and methyl jasmonic acid, and by treatment with H2O2 or CuSO4. The induction patterns of Oschibl expression suggest that Oschib1 may be involved in defense response against pathogen infections and may be classified as a member of pathogenesis-related protein 8 in rice.  相似文献   

17.
18.
Mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant growth and development as well as biotic and abiotic stress responses. In Arabidopsis, 20 MAPKs have been identified and divided into four major groups. In rice, a monocot model and economically important cereal crop, only five MAPKs were characterized, including three related to the host defense response. In this study, we have identified 17 members of the rice MAPK gene (OsMPK) family through an in silico search of rice genome databases. Based on the phylogenetic analysis and pairwise comparison of Arabidopsis and rice MAPKs, we propose that MAPKs can be divided into six groups. Interestingly, the rice genome contains many more MAPKs with the TDY phosphorylation site (11 members) than with the TEY motif (six members). In contrast, the Arabidopsis genome contains more MAPKs with the TEY motif (12 members) than with the TDY motif (eight members). Upon inoculation with the blast fungus (Magnaporthe grisea), nine of 17 OsMPK genes were found to be induced at the mRNA level during either early, late, or both stages of infection. Four of the M. grisea-induced OsMPK genes were associated with host-cell death in the lesion-mimic rice mutant, and eight of them were differentially induced in response to defense signal molecules such as jasmonic acid, salicylic acid, abscisic acid, and ethylene. The genome-wide expression analysis suggests that about half of the rice MAPK genes are associated with pathogen infection and host defense response.  相似文献   

19.
20.
Dynamic profiles of the rate of O2 generation from press-injured and inoculated rice leaf slices, versus the time after inoculation, discriminated between the incompatible and compatible combination of blast fungus races with a cultivar. The application of sodium saccharin to rice seedlings via the root system for 6 days changed the compatible to incompatible profile. Even after press- injury and inoculation with the compatible conidia, the leaf application of sodium saccharin enhanced superoxide generation. The application of N-methylsaccharin in a similar manner, however, did not enhance the superoxide generation. Inoculation of press-injured leaves with incompatible conidia in the presence of an aqueous diffusate of the germinating compatible conidia changed the incompatible to compatible profile. The application to press-injured of concanavalin A or a lyophylized preparation from 5 m ammonia extracts of rice leaf homogenate prior to stimulating with a resistance-inducing factor (RIF) from the fungus also enhanced the superoxide generation. The RIF, either from the incompatible or compatible race, gave a quite similar profile of activation upon the generation of the superoxide anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号