首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In this work, we report on the further development of the scale-down, two-compartment (STR + PFR) experimental simulation model. For the first time, the effect on high cell density Escherichia coli fed-batch fermentations of a changing microenvironment with respect to all three of the major spatial heterogeneities that may be associated with large-scale processing (pH, glucose, and dissolved oxygen concentration) were studied simultaneously. To achieve this, we used traditional microbiological analyses as well as multiparameter flow cytometry to monitor cell physiological response at the individual cell level. It was demonstrated that for E. coli W3110 under such conditions in a 20 m(3) industrial fed-batch fermentation, the biomass yield is lower and final cell viability is higher than those found in the equivalent well-mixed, 5L laboratory scale case. However, by using a combination of the well-mixed 5L stirred tank reactor (STR) with a suitable plug flow reactor (PFR) to mimic the changing microenvironment at the large scale, very similar results to those in the 20 m(3) reactor may be obtained. The similarity is greatest when the PFR is operated with a mean residence time of 50 sec with a low level of dO(2) and a high glucose concentration with either a pH of 7 throughout the two reactors or with pH controlled at 7 in the STR by addition into the PFR where the pH is > 7.  相似文献   

2.
A Large bioreactor is an inhomogenous system with concentration gradients which depend on the fluid dynamics and the mass transfer of the reactor, the feeding strategy, the saturation constant, and the cell density. The responses of Escherichia coli cells to short-term oscillations of the carbon/energy substrate in glucose limited fed-batch cultivations were studied in a two-compartment reactor system consisting of a stirred tank reactor (STR) and an aerated plug flow reactor (PFR) as a recycle loop. Short-term glucose excess or starvation in the PFR was simulated by feeding of glucose to the PFR or to the STR alternatively. The cellular response to repeated short-term glucose excess was a transient increase of glucose consumption and acetate formation. But, there was no accumulation of acetate in the culture, because it was consumed in the STR part where the glucose concentration was growth limiting. However, acetate accumulated during the cultivation if the oxygen supply in the PFR was insufficient, causing higher acetate formation. The biomass yield was then negatively influenced, which was also the case if the PFR was used to simulate a glucose starvation zone. The results suggest that short-term heterogeneities influence the cellular physiology and growth, and can be of major importance for the process performance. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
In this work, we present the design and characterization of Green Fluorescent Protein (GFP)‐based reporter systems designed to describe cellular activity in “complex,” heterogeneous bioreactors. The reporter systems consist of Escherichia coli strains carrying growth dependent promoters fused to genes expressing stable and unstable variants of GFP, respectively. The response of Escherichia coli cells to transient exposure to glucose was studied in a two‐compartment scale down bioreactor (SDR) consisting of a well‐stirred tank reactor (STR) connected to a plug‐flow reactor (PFR). Such a SDR system is employed to mimic the situation of high glucose concentration and oxygen limitation that often encountered in large‐scale, fed‐batch bioreactors and the response of E. coli was simulated by continuously pumping microbial cells from STR to the PFR. We found that repeated addition of concentrated glucose pulses with varied frequency at the entrance of the PFR had consequences on strain physiological behavior. The GFP expressions were significantly marked after 10 h of cultivation in STR (control reactor) and SDR, whereas, growth rates were rather similar. Additional experiments in chemostat with programmed glucose perturbation suggested that the activities of the promoters were linked with the substrate limitation signal. Taken together with immunoblot analysis, we suppose protein leakage is responsible for the overexpression of fis and the related promoters, such as rrnB in this case study, but additional works are required in order to confirm this relationship. This investigation is useful for a better understanding of the fast dynamic phenomena occurring in heterogeneous large‐scale bioreactors. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 553–563, 2013  相似文献   

4.
The response of Escherichia coli cells to transient exposure (step increase) in substrate concentration and anaerobiosis leading to mixed‐acid fermentation metabolism was studied in a two‐compartment bioreactor system consisting of a stirred tank reactor (STR) connected to a mini‐plug‐flow reactor (PFR: BioScope, 3.5 mL volume). Such a system can mimic the situation often encountered in large‐scale, fed‐batch bioreactors. The STR represented the zones of a large‐scale bioreactor that are far from the point of substrate addition and that can be considered as glucose limited, whereas the PFR simulated the region close to the point of substrate addition, where glucose concentration is much higher than in the rest of the bioreactor. In addition, oxygen‐poor and glucose‐rich regions can occur in large‐scale bioreactors. The response of E. coli to these large‐scale conditions was simulated by continuously pumping E. coli cells from a well stirred, glucose limited, aerated chemostat (D = 0.1 h?1) into the mini‐PFR. A glucose pulse was added at the entrance of the PFR. In the PFR, a total of 11 samples were taken in a time frame of 92 s. In one case aerobicity in the PFR was maintained in order to evaluate the effects of glucose overflow independently of oxygen limitation. Accumulation of acetate and formate was detected after E. coli cells had been exposed for only 2 s to the glucose‐rich (aerobic) region in the PFR. In the other case, the glucose pulse was also combined with anaerobiosis in the PFR. Glucose overflow combined with anaerobiosis caused the accumulation of formate, acetate, lactate, ethanol, and succinate, which were also detected as soon as 2 s after of exposure of E. coli cells to the glucose and O2 gradients. This approach (STR‐mini‐PFR) is useful for a better understanding of the fast dynamic phenomena occurring in large‐scale bioreactors and for the design of modified strains with an improved behavior under large‐scale conditions. Biotechnol. Bioeng. 2009; 104: 1153–1161. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
Substrate concentration gradients are likely to appear during large scale fermentations. To study effects of such gradients on microorganisms, an aerated scale-down reactor system was constructed. It consists of a plug flow reactor (PFR) and a stirred tank reactor (STR), between which the medium is circulated. The PFR, which is an aerated static mixer reactor, was characterized with respect to plug flow behaviour and oxygen transfer. A Bodenstein number of 15–220, depending on residence time and aeration rate, and a kLa of 500–1130 h–1, depending mainly on aeration rate, were obtained. The biological test system used, was aerobic ethanol production by Saccharomyces cerevisiae, due to sugar excess. The ethanol concentration profile and the yield of biomass were compared in two fed-batch fermentations. In the first case, the feeding point of molasses was located at the inlet of the PFR. This simulates location of the feeding point in the segregated part of a heterogeneous reactor, with local high sugar concentrations. In the second mode of operation, as a control with good mixing conditions, the PFR was disconnected from the STR, into which the substrate was fed. Differences were found: Up to 6% less biomass was produced and a larger amount of ethanol was formed in the two-compartment reactor system, due to the uneven sugar concentration distribution. This emphasizes the importance of the location of, and the mixing conditions at, the feeding point in a bioreactor.  相似文献   

6.
Microorganisms traveling through circulation loops in large-scale bioreactors experience variations in their environment such as dissolved oxygen concentration and pH gradients. The same changes are not experienced in small bioreactors, and it is suggested that herein lies one of the major reasons for the problems encountered when translating fermentation data from one scale to another. One approach to study this problem is to look at the circulation loop itself. The present work concerns an attempt to simulate the circulation loops inside stirred tank reactors, using a tubular loop reactor specially constructed for the purpose. The reactor carries a number of ports and probes along its length for the determination of concentration gradients within. The broth is circulated around the loop by the use of peristaltic pumps, and the circulation time (t(c), s) is used as a measure of simulated reactor size. The reactor system has been evaluated using the citric acid fermentation by Aspergillus niger as a test process. Acid production and fungal morphology, in terms of the mean convex perimeter of mycelial clumps quantified by image analysis, were used as the parameters of evaluation for the two systems in comparison. From comparative experiments carried out in 10 and 200 L stirred tank bioreactors, it appears that the loop reactor simulates the corresponding stirred tank representing a valuable tool in scaling up and scaling down of fermentation process.  相似文献   

7.
Jet aerated loop reactors (JLRs) provide high mass transfer coefficients (kLa) and can be used for the intensification of mass transfer limited reactions. The jet loop reactor achieves higher kLa values than a stirred tank reactor (STR). The improvement relies on significantly higher local power inputs (~104) than those obtainable with the STR. Operation at high local turnover rates requires efficient macromixing, otherwise reactor inhomogeneities might occur. If sufficient homogenization is not achieved, the selectivity of the reaction and the respective yields are decreased. Therefore, the balance between mixing and mass transfer in jet loop reactors is a critical design aspect. Monitoring the dissolved oxygen levels during the turnover of a steady sodium sulfite feed implied the abundance of gradients in the JLR. Prolonged mixing times at identical power input and aeration rates (~100%) were identified for the JLR in comparison to the STR. The insertion of a draft tube to the JLR led to a more homogenous dissolved oxygen distribution, but unfortunately a reduction of mixing time was not achieved. In case of increased medium viscosities as they may arise in high cell density cultivations, no gradient formation was detected. However, differences in medium viscosity significantly altered the mass transfer and mixing performance of the JLR.  相似文献   

8.
This study describes an advanced version of a two-compartment scale-down bioreactor that simulates inhomogeneities present in large-scale industrial bioreactors on the laboratory scale. The system is made of commercially available parts and is suitable for sterilization with steam. The scale-down bioreactor consists of a usual stirred tank bioreactor (STR) and a plug flow reactor (PFR) equipped with static mixer modules. The PFR module with a working volume of 1.2 L is equipped with five sample ports, and pH and dissolved oxygen (DO) sensors. The concept was applied using the non-sporulating Bacillus subtilis mutant strain AS3, characterized by a SpoIIGA gene knockout. In a fed-batch process with a constant feed rate, it is found that oscillating substrate and DO concentration led to diminished glucose uptake, ethanol formation and an altered amino acid synthesis. Sampling at the PFR module allowed the detection of dynamics at different concentrations of intermediates, such as pyruvic acid, lactic acid and amino acids. Results indicate that the carbon flux at excess glucose and low DO concentrations is shifted towards ethanol formation. As a result, the reduced carbon flux entering the tricarboxylic acid cycle is not sufficient to support amino acid synthesis following the oxaloacetic acid branch point.  相似文献   

9.
Co-immobilized Aspergillus awamori and Zymomonas mobilis cultures were investigated in a stirred tank reactor on synthetic medium with starch as substrate at various dissolved oxygen concentrations. In a gaslift loop reactor, freely suspended and immobilized A. awamori were cultivated on synthetic medium and soluble potato starch. In the same reactor, the growth and ethanol production of freely suspended and immobilized Z. mobilis cultures were studied on synthetic medium and glucose. Co-immobilized A. awamori and Z. mobilis were cultivated in batch and continuous operations in the gaslift loop reactor on synthetic medium with starch substrate at different dissolved oxygen concentrations. The interrelations between the different process variables are discussed.  相似文献   

10.
A Citrobacter sp. accumulates heavy metals as cell-bound metal phosphates, utilizing phosphate released by the enzymatic cleavage of a phosphomonoester substrate. The effect of increased substrate (glycerol 2-phosphate, G2P) concentration on phosphate release and heavy metal accumulation was evaluated using a stirred tank reactor (STR) and a plug flow reactor (PFR). A significant improvement in metal removal was achieved with increased substrate concentration using immobilized Citrobacter cells in the PFR, which was not observed using free cells in the STR. Nitrate is an inhibitor of the Citrobacter phosphatase. This inhibition was concentration dependent and reversible. The rate of product release was restored by increasing the concentration of substrate (G2P). The ratio of rates of phosphate release under two different conditions (different nitrate and G2P concentrations) can be described by a equation developed from Michaelis-Menten kinetics. The concentration of substrate required for restoration of maximum velocity, V(max), in a batch and continuous-flow system can be predicted by substitution and calculation; this was confirmed by an experiment in model systems using cell suspensions and polyacrylamide gel immobilized cells in a flow-though column. For use in industrial situations it may be uneconomical or infeasible to supply additional substrate. Bioreactor activity was also restored by increasing the flow residence time, in accordance with a Michaelis-Menten-based model to describe removal of lanthanum from nitrate-supplemented flow in a PFR. (c) 1997 John Wiley & Sons, Inc. Biotechnol Biotechnol Bioeng 55:821-830, 1997.  相似文献   

11.
Enzymatic oxidation of lactose to lactobionic acid (LBA) by a carbohydrate oxidase from Microdochium nivale was studied in a pilot-scale batch reactor of 600 L working volume using a rotary jet head (RJH) for mixing and mass transfer (Nordkvist et al., 2003, Chem Eng Sci 58:3877-3890). Both lactose and whey permeate were used as substrate, air was used as oxygen source, and catalase was added to eliminate the byproduct hydrogen peroxide. More than 98% conversion to LBA was achieved. Neither enzyme deactivation nor enzyme inhibition was observed under the experimental conditions. The dissolved oxygen tension (DOT) was constant throughout the tank for a given set of operating conditions, indicating that liquid mixing was sufficiently good to avoid oxygen gradients in the tank. However, at a given oxygen tension measured in the tank, the specific rate of reaction found in the RJH system was somewhat higher than previously obtained in a 1 L mechanically stirred tank reactor (Nordkvist et al., 2007, in this issue, pp. 694-707). This can be ascribed to a higher pressure in the recirculation loop which is part of the RJH system. Compared to mechanically stirred systems, high values of the volumetric mass transfer coefficient, k(L)a, were obtained when lactose was used as substrate, especially at low values of the specific power input and the superficial gas velocity. k(L)a was lower for experiments with whey permeate than with lactose due to addition of antifoam. The importance of mass transfer and of the saturation concentration of oxygen on the volumetric rate of reaction was demonstrated by simulations.  相似文献   

12.
Abstract

Optimization of pyranose-2-oxidase (P2O) production conditions from Trametes versicolor was carried out in shaking cultures containing glucose, malt, and yeast extracts; the optimum concentration values were found to be 1.5% glucose, 1.0% yeast extract, and 1.0% malt extract, pH 5.0, temperature, 26°C, and agitation rate 150 rpm. For the first time, P2O production was also carried out in a stirred tank reactor (STR) with 2.2 L working volume in the optimized medium composition, and biomass, P2O activity, protein, nitrogen and glucose concentrations were also monitored besides pH and dissolved oxygen (DO). In the STR, P2O activity peaked on day 9. Partial enzyme characterization occurred and optimum pH and temperature were detected as 7.0 and 37°C, respectively. K m value was found to be 1.009 mM.  相似文献   

13.
Animal cells are cultured in several types of vessels at laboratory and industrial scale the most common being the stirred tank and the air-lift. Economically, it is preferable to culture animal cells at the largest possible scale but the perceived sensitivity of animal cells to hydrodynamic shear has, until now, limited the aeration and agitation rates used. This has been reported to cause inhomogeneities in operational parameters such as dissolved oxygen concentration, temperature and pH. pH is of special interest during the latter stages of many animal cell fermentation because alkali additions, used for pH control, can cause large local pH perturbations of varying size and duration. The effect of single and multiple pH perturbations on the cell growth of a widely used GS-NS0 mouse myeloma cell line grown in batch culture was investigated. The effect of perturbation amplitude and duration was investigated using a single stirred tank reactor (STR). In the single STR system cells were subjected to one pH 8.0 or 9.0 perturbation ranging in duration from 0-90 minutes. No measurable decrease in viable cell number was seen for pH 8.0 perturbations of any duration whereas pH 9.0 perturbations lasting for 10 minutes caused a 15% decrease in viable cell number. The proportion of viable cells decreased with increasing perturbation time and a 90-minute exposure killed all of the cells. The effect of multiple pH perturbations on GS-NS0 cells was investigated using two connected STR's. More specifically the number of perturbations and the perturbation frequency were investigated. Cells were subjected to between 0 and 100 perturbations at pH 8.0; the time between each perturbation (frequency) was 6 minutes and each perturbation lasted for 200 seconds. Viable cell number decreased with increasing perturbation number, with 100 perturbations causing death of 27.5% of cells. Cells were also exposed to 10 perturbations at pH 9.0, each of 200 second duration at frequencies of either 6, 18 or 60 minutes. Approximately 8 times more cells were killed with perturbations at a 6-minute frequency (28.3% cell death) than at a 60-minute frequency (3.4% cell death).  相似文献   

14.
Following a consideration of the prerequisites for reactor comparison and the fundamental differences between stirred tank and airlift tower loop reactors, their performances are compared for the production of secondary metabolites: penicillin V by Penicillium chrysogenum, cephalosporin C by Cephalosporium acremonium, and tetracycline by Streptomyces aureofaciens. In stirred tank reactors, cell mass concentrations, volumetric productivities, and specific power inputs are higher than in airlift tower loop reactors. In the latter, efficiencies of oxygen transfer are higher, and specific productivities with regard to power input, substrate and oxygen consumptions, and yield coefficients of product formation with regard to substrate and oxygen consumptions are considerably higher than in stirred tank reactors. The prerequisites for improved performance are discussed.  相似文献   

15.
A small, stirred, 14.4-mL tank reactor was designed to serve as a measurement cell for short-term investigation of microbial kinetics. A mass spectrometer membrane probe allowed the measurement of the dissolved gases of hydrogen, methane, oxygen, and carbon dioxide. pH was measured by an electrode and controlled by addition of acid or alkali. The highly sensitive measurement of gases with low solubility allowed rapid measurements at very low conversion. In kinetic experiments, a stepwise increase of substrate concentration (method A) and continuous feed of substrate (method B) were used, allowing quick estimation of substrate kinetics. Acetate conversion in mixed culture biofilms from a fluidized bed reactor was investigated. Substrate inhibition was found to be negligible in the concentration range studied. Experiments at various pH values showed that the undissociated acid form was the kinetic determinant. Kinetic parameters for Haldane kinetics of protons were KSH = 1.3 x 10(-5) mol m-3 and KIH = 8.1 x 10(-3) mol m-3. With free acid (HAc) as the rate determining species, the kinetic parameters for method A were KSHAc = 0.005 mol m-3 and KIHAc = 100 mol m-3 and for method B were KSHAc = 0.2 mol m-3 and KIHAc = 50 mol m-3. The maximum biomass activity occurred at around pH 6.5. Acetate was exclusively converted to methane and CO2 at pH > 6. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

16.
In industrial biotechnology increasing reactor volumes have the potential to reduce production costs. Whenever the achievable space time yield is determined by the mass transfer performance of the reactor, energy efficiency plays an important role to meet the requirements regarding low investment and operating costs. Based on theoretical calculations, compared to bubble column, airlift reactor, and aerated stirred tank, the jet loop reactor shows the potential for an enhanced energetic efficiency at high mass transfer rates. Interestingly, its technical application in standard biotechnological production processes has not yet been realized. Compared to a stirred tank reactor powered by Rushton turbines, maximum oxygen transfer rates about 200% higher were achieved in a jet loop reactor at identical power input in a fed batch fermentation process. Moreover, a model‐based analysis of yield coefficients and growth kinetics showed that E. coli can be cultivated in jet loop reactors without significant differences in biomass growth. Based on an aerobic fermentation process, the assessment of energetic oxygen transfer efficiency [kgO2 kW?1 h?1] for a jet loop reactor yielded an improvement of almost 100%. The jet loop reactor could be operated at mass transfer rates 67% higher compared to a stirred tank. Thus, an increase of 40% in maximum space time yield [kg m?3 h?1] could be observed.  相似文献   

17.
A face-centered central composite design was applied to optimize a cultivation condition for improved beta-carotene production by Rhodotorula glutinis DM28 in a stirred tank reactor using 30 g/l total soluble solid of fermented radish brine as a sole substrate. The experiments were performed with regression models, where temperature, pH and dissolved oxygen were considered as variables. Results showed that an optimum condition for beta-carotene production of the yeast was at 30 degrees C, pH 6 and 80% dissolved oxygen. Under this condition, the yeast yielded 2.7 g/l biomass and the maximum beta-carotene of 201 microg/l after 24-h fermentation indicating approximately 15% higher than those under an initial condition (2.3g/l and 178 microg/l, respectively).  相似文献   

18.
Self-cycling fermentations (SCFs) were conducted in a stirred tank apparatus using Bacillus subtilis and Acinetobacter calcoaceticus. The systems were very stable and the experiments lasted through many cycles. The variation of parameters such as biomass and doubling time from cycle to cycle was small. The stirred tank reactor (STR) allowed a much better control of the working volume in the fermentor from cycle to cycle, compared to the cyclone column, and it was not necessary to make periodic corrections.The production of surfactin from B. subtilis was achieved without extending the cycle time. The harvested broth at the end of each cycle was allowed to remain in a secondary vessel, at ambient temperature, before being collected. It is exhaustion of the limiting nutrient which causes an increase in dissolved oxygen (DO). At this point, the computer, which constantly monitors the DO, triggered the harvesting sequence to end the cycle. Thus, the mature culture in the secondary vessel experienced appropriate conditions for the production of the secondary metabolite. Meanwhile, the next batch of cells was being grown in the primary reactor.The response of a gas analyzer on the effluent paralleled that of the DO measurements in the fermentor. These data for oxygen and carbon dioxide exhibited less noise than the DO readings. Either would be a more reliable parameter for feedback control of the SCF because the problem of fouling of the DO probe after extended runs of many cycles would be eliminated. (c) 1993 John Wiley & Sons, Inc.  相似文献   

19.
Microaerobic cultivation conditions are often beneficial for the biotechnological production of reduced metabolites like 2,3‐butanediol. However, due to oxygen limitation, process monitoring based on oxygen transfer rate, or dissolved oxygen measurement provides only limited information. In this study, online monitoring of the respiratory quotient is used to investigate the metabolic activity of Bacillus licheniformis DSM 8785 during mixed acid‐2,3‐butanediol production under microaerobic conditions. Thereby, the respiratory quotient provides valuable information about different metabolic phases. Based on partial reaction stoichiometries, the metabolic activity in each phase of the cultivation was revealed, explaining the course of the respiratory quotient. This provides profound information on the formation or consumption of glucose, 2,3‐butanediol, ethanol and lactate, both, in shake flasks and stirred tank reactor cultivations. Furthermore, the average respiratory quotient correlates with the oxygen availability during the cultivation. Carbon mass balancing revealed that this reflects the increased formation of reduced metabolites with increasing oxygen limitation. The results clearly demonstrate that the respiratory quotient is a valuable online signal to reveal and understand the metabolic activity during microaerobic cultivations. The approach of combining respiratory quotient monitoring with stoichiometric considerations can be applied to other organisms and processes to define suitable cultivation conditions to produce the desired product spectrum.  相似文献   

20.
The impact of mass transfer on productivity can become a crucial aspect in the fermentative production of bulk chemicals. For highly aerobic bioprocesses the oxygen transfer rate (OTR) and productivity are coupled. The achievable space time yields can often be correlated to the mass transfer performance of the respective bioreactor. The oxygen mass transfer capability of a jet aerated loop reactor is discussed in terms of the volumetric oxygen mass transfer coefficient kLa [h?1] and the energetic oxygen transfer efficiency E [kgO2 kW?1 h?1]. The jet aerated loop reactor (JLR) is compared to the frequently deployed aerated stirred tank reactor. In jet aerated reactors high local power densities in the mixing zone allow higher mass transfer rates, compared to aerated stirred tank reactors. When both reactors are operated at identical volumetric power input and aeration rates, local kLa values up to 1.5 times higher are possible with the JLR. High dispersion efficiencies in the JLR can be maintained even if the nozzle is supplied with pressurized gas. For increased oxygen demands (above 120 mmol L?1 h?1) improved energetic oxygen transfer efficiencies of up to 100 % were found for a JLR compared to an aerated stirred tank reactor operating with Rushton turbines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号