首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many promising therapeutics are currently awaiting their clinical application. Due to their low capability of cell membrane crossing, these compounds do not reach their site of action. One way to overcome this problem might be the fusion of these agents to cell-penetrating peptides (CPP), which are able to shuttle various cargoes across cellular membranes. One disadvantage in using CPP in drug delivery is their low metabolic stability. The aim of our work was to increase the proteolytic resistance of the CPP hCT(9-32), a truncated C-terminal fragment of human calcitonin. Thus, we synthesised six modified N-terminally carboxyfluorescein labelled hCT(9-32) derivatives by replacing positions 12 and/or 16 of hCT(9-32) with either N-methylphenylalanine or d-phenylalanine, respectively. By using confocal laser scanning microscopy we showed that the modifications did neither affect the peptide internalisation efficiency in HeLa nor HEK 293T cells. The metabolic stability of the peptides was investigated in human blood plasma and HEK 293T cell culture supernatant. To analyse the degradation patterns, we used RP-HPLC and MALDI-TOF mass spectrometry. However, we found for all of the new derivatives high metabolic stabilities. In blood plasma, the half-lives for five of the six peptides increased compared to unmodified hCT(9-32). The degradation patterns showed a distinct stabilisation in the N-terminal part of the modified peptides, in the C-terminal part, we found some cleavage to a minor extent. Furthermore, we studied the conformation of the peptides by CD spectroscopy and demonstrated that they possess no cell toxicity. Since our metabolically more stable compounds are still able to pass the cell membrane they provide powerful tools as drug delivery vectors.  相似文献   

2.
Cellular entry of peptide, protein, and nucleic acid biopharmaceuticals is severely impeded by the cell membrane. Linkage or assembly of such agents and cell-penetrating peptides (CPP) with the ability to cross cellular membranes has opened a new horizon in biomedical research. Nevertheless, the uptake mechanisms of most CPP have been controversially discussed and are poorly understood. We present data on two recently developed oligocationic CPP, the sweet arrow peptide SAP, a gamma-zein-related sequence, and a branched human calcitonin derived peptide, hCT(9-32)-br, carrying a simian virus derived nuclear localization sequence in the side chain. Uptake in HeLa cells and intracellular trafficking of N-terminally carboxyfluorescein labeled peptides was studied by confocal laser scanning microscopy and flow cytometry using biochemical markers in combination with quenching and colocalization approaches. Both peptides were readily internalized by HeLa cells through interaction with the extracellular matrix followed by lipid raft-mediated endocytosis as confirmed by reduced uptake at lower temperature, in the presence of endocytosis inhibitors and through cholesterol depletion by methyl-beta-cyclodextrin, supported by colocalization with markers for clathrin-independent pathways. In contrast to the oligocationic SAP and hCT(9-32)-br, interaction with the extracellular matrix, however, was no prerequisite for the observed lipid raft-mediated uptake of the weakly cationic, unbranched hCT(9-32). Transient involvement of endosomes in intracellular trafficking of SAP and hCT(9-32)-br prior to endosomal escape of both peptides was revealed by colocalization and pulse-chase studies of the peptides with the early endosome antigen 1. The results bear potential for CPP as tools for intracellular drug delivery.  相似文献   

3.
The interest in using small peptides for therapeutic and diagnostic in vivo applications is based on several advantageous features such as good penetration into tissues and rapid clearance from the body. Because of their size, they can easily be synthesized chemically. The recently discovered cell-penetrating peptides (CPP) and among them CPP derived from the native peptide hormone human calcitonin (hCT) could meet these requirements. Therefore, they are nowadays widely used as delivery vectors for a variety of bioactive molecules. However, the knowledge about the distribution and metabolism of CPP in vivo is very limited. Hence, evaluation of the pharmacological features of any promising peptide is a crucial challenge in its development process. Herein, we studied the in vivo radiopharmacology of (68)Ga radiolabeled DOTA-modified, hCT-derived CPP in rats using small animal PET. Furthermore, the arterial blood at different time points and urine were analyzed for radio-metabolites. It was shown that d-amino acid modifications of the sequence hCT(9-32) resulted in an increased in vivo stability and lower retention in the kidney cortex of this peptide.  相似文献   

4.
Severe and often therapy-limiting side effects are a major obstacle in cancer chemotherapy. New delivery concepts reducing systemic side effects are needed in order to optimize anticancer therapies. Several approaches have been followed, most of them concentrating on macromolecular carriers like liposomes, monoclonal antibodies, serum proteins or polyethylene glycol. We present here a novel type of anthracycline conjugate, using a small carrier peptide derived from the peptide hormone human calcitonin (hCT). The carrier peptide hCT(9-32) has so far been shown to be capable of transporting fluorophores or proteins across cellular membranes. Two different carrier peptide-daunorubicin conjugates were prepared, one with an acid-stable amide bond, the second with an acid-labile hydrazone bond. In vitro studies with daunorubicin linked to the carrier peptide via an acid-labile hydrazone bond demonstrated comparable cytotoxicity to daunorubicin in various daunorubicin sensitive cell lines (neuroblastoma cell lines SK-N-MC and SMS-KAN; HEK 293 T cells). In addition, fluorescence microscopy provided further insight into the mechanism of uptake of the carrier peptide hCT(9-32), indicating that endosomal compartments with reduced pH are involved in the intracellular release of daunorubicin.  相似文献   

5.
Lee JS  Tung CH 《Biopolymers》2011,96(6):772-779
Developing efficient cellular delivery vectors is crucial for designing novel therapeutic agents to enhance their plasma membrane permeability and metabolic stability in cells. Previously, we engineered cell penetrating peptide vectors named as "lipo-oligoarginine peptides" (LOAPs) by conjugating a proper combination of fatty acid and oligoarginine that translocated into cell easily without adverse effect on cell viability. In the present study, we report a systemic evaluation of cellular uptake and metabolic stability of LOAPs in Jurkat cells by introducing different combination of D-Arg residues in the peptide backbone. The cellular uptake and intracellular fate, cell viability, and metabolic stability and proteolytic degradation patterns of various LOAPs consisted of different combination of L- and D-Arg sequences were confirmed by flow cytometry, cytotoxicity assay, and analytical RP-HPLC with MALDI-TOF mass. All investigated LOAPs penetrated the cell efficiently with low cellular toxicity. The LOAPs having D-Arg residues at their N-termini seemed to have better metabolic stability than the LOAPs having C-terminal D-Arg residues. The metabolic degradation patterns were similar among all investigated LOAPs. The major hydrolytic site was between lauroyl group and β-Ala residue. Without the lipid chain, the oligoarginine peptide was pumped out ofcells easily. The results presented in this study suggest that structurally modified LOAPs could be used as a novel CPP design toward improved therapeutic application.  相似文献   

6.
Human calcitonin and its C-terminal fragment 9-32 (hCT(9-32)) administered in a spray translocate into respiratory nasal epithelium with an effect similar to intravenous injection. hCT(9-32) is an efficient carrier to transfer the green fluorescent protein into excised bovine nasal mucosa. To understand the translocation of hCT(9-32) across plasma membranes, we investigated its interactions with phospholipids and its interfacial structure using model lipid monolayers. A combination of physicochemical methods was applied including surface tension measurements on adsorbed and spread monolayers at the air-water interface, Fourier transform infrared, circular dichroism, and atomic force microscopy on Langmuir-Blodgett monolayers. The results disclose that hCT(9-32) preferentially interacts with negatively charged phospholipids and does not insert spontaneously into lipid monolayers. This supports a nonreceptor-mediated endocytic internalization pathway as previously suggested. Structural studies revealed a random coil conformation of hCT(9-32) in solution, transforming to alpha-helices when the peptide is localized at lipid-free or lipid-containing air-water interfaces. Atomic force microscopy studies of monolayers of the peptide alone or mixed with dioleoylphosphatidylcholine revealed that hCT(9-32) forms filaments rolled into spirals. In contrast, when interacting with dioleoylphosphatidylglycerol, hCT(9-32) does not adopt filamentous structures. A molecular model and packing is proposed for the spiral-forming hCT(9-32).  相似文献   

7.
Wagner K  Beck-Sickinger AG  Huster D 《Biochemistry》2004,43(39):12459-12468
Previous studies have shown that human calcitonin (hCT) and its C-terminal fragment hCT(9-32) translocate in nasal epithelium. Moreover, hCT(9-32) was used as a carrier to internalize efficiently the green fluorescent protein, drugs, and plasmid DNA. To understand the mechanism of the membrane crossing process, we determined structural parameters of the carrier peptide hCT(9-32) in a membrane environment using solid-state NMR. For that purpose, we synthesized a multiply labeled hCT(9-32) peptide comprising four positions with fully (15)N- and (13)C-labeled amino acids. Multilamellar vesicle samples containing varying mixing ratios of hCT(9-32) and phospholipids found in the plasma membrane of nasal epithelium were prepared. The typical axially symmetric powder patterns of (31)P NMR spectra confirmed the presence of lamellar bilayers in our samples. The chemical shift anisotropy of the (31)P NMR spectra of the samples in the presence of hCT(9-32) is slightly reduced, revealing weak interaction of the peptide with the lipid headgroups. The peptide does not penetrate the lipid membrane as indicated by very similar (2)H NMR order parameters of the phospholipid fatty acid chains in the absence and presence of the carrier peptide. This membrane topology was confirmed by measurements of paramagnetic enhancement of relaxation rates. The conformation of hCT(9-32) was investigated by cross polarization magic angle spinning NMR methods. All peptide signals were resolved and fully assigned in two-dimensional proton-driven (13)C spin diffusion experiments. The isotropic chemical shifts of (13)CO, (13)Calpha, and (13)Cbeta provide information about the secondary structure of the carrier peptide. The conformation of hCT(9-32) was further corroborated by quantitative phi torsion angle measurements. Two monomeric structural models are consistent with the data: (i) a linear backbone conformation of hCT(9-32) and (ii) an antiparallel beta-sheet structure. These structures are maintained over a wide range of peptide:lipid mixing ratios. No direct indications for fibril formation of hCT(9-32) were found. Dipolar coupling measurements indicate rather high amplitudes of motion of the peptide.  相似文献   

8.
The Purkinje cell degeneration (pcd) mouse has a disruption in the gene encoding cytosolic carboxypeptidase 1 (CCP1). This study tested two proposed functions of CCP1: degradation of intracellular peptides and processing of tubulin. Overexpression (2-3-fold) or knockdown (80-90%) of CCP1 in human embryonic kidney 293T cells (HEK293T) did not affect the levels of most intracellular peptides but altered the levels of α-tubulin lacking two C-terminal amino acids (delta2-tubulin) ≥ 5-fold, suggesting that tubulin processing is the primary function of CCP1, not peptide degradation. Purified CCP1 produced delta2-tubulin from purified porcine brain α-tubulin or polymerized HEK293T microtubules. In addition, CCP1 removed Glu residues from the polyglutamyl side chains of porcine brain α- and β-tubulin and also generated a form of α-tubulin with two C-terminal Glu residues removed (delta3-tubulin). Consistent with this, pcd mouse brain showed hyperglutamylation of both α- and β-tubulin. The hyperglutamylation of α- and β-tubulin and subsequent death of Purkinje cells in pcd mice was counteracted by the knock-out of the gene encoding tubulin tyrosine ligase-like-1, indicating that this enzyme hyperglutamylates α- and β-tubulin. Taken together, these results demonstrate a role for CCP1 in the processing of Glu residues from β- as well as α-tubulin in vitro and in vivo.  相似文献   

9.
Bilayers made of dioleoylphosphatidylcholine (DOPC)/dipalmitoylphosphatidylcholine (DPPC) mixture containing or not cholesterol (Chl) were used to investigate the interaction of a carrier peptide with membranes. Atomic force microscopy revealed that the C-terminal 9-32 fragment of human calcitonin (hCT (9-32)), free or coupled to enhanced green fluorescent protein (hCT-eGFP) cargo forms aggregates in the DOPC fluid phase in absence of Chl and in the DPPC enriched liquid-ordered phase when Chl is present. The data show that hCT (9-32) plays a determinant role in the membrane localization of the peptide-cargo complex. They suggest that carpet-like mechanism for membrane destabilization may be involved in the carrier function of hCT (9-32).  相似文献   

10.
Cell-penetrating peptides (CPPs) are able to translocate problematic therapeutic cargoes across cellular membranes. The exact mechanisms of translocation are still under investigation. However, evidence for endocytic uptake is increasing. We investigated the interactions of CPPs with phospholipid bilayers as first step of translocation. To this purpose, we employed four independent techniques, comprising (i) liposome buffer equilibrium dialysis, (ii) Trp fluorescence quenching, (iii) fluorescence polarization, and (iv) determination of zeta-potentials. Using unilamellar vesicles (LUVs) of different phospholipid composition, we compared weakly cationic human calcitonin (hCT)-derived peptides with the oligocationic CPPs pVEC and penetratin (pAntp). Apparent partition coefficients of hCT-derived peptides in neutral POPC LUVs were dependent on amino acid composition and secondary structure; partitioning in negatively charged POPC/POPG (80:20) LUVs was increased and mainly governed by electrostatic interactions. For hCT(9-32) and its derivatives, D values raised from about 100-200 in POPC to about 1000 to 1500 when negatively charged lipids were present. Localization profiles of CPPs obtained by Trp fluorescence quenching were dependent on the charge density of LUVs. In POPC/POPG, hCT-derived CPPs were located on the bilayer surface, whereas pVEC and pAntp resided deeper in the membrane. In POPG LUVs, an increase of fluorescence polarization was observed for pVEC and pAntp but not for hCT-derived peptides. Generally, we found strong peptide-phospholipid interactions, especially when negatively charged lipids were present.  相似文献   

11.
hCT(9-32) is a human calcitonin (hCT)-derived cell-penetrating peptide that has been shown to translocate the plasma membrane of mammalian cells. It has been suggested as a cellular carrier for drugs, green fluorescent protein, and plasmid DNA. Because of its temperature-dependent cellular translocation resulting in punctuated cytoplasmatic distribution, its uptake is likely to follow an endocytic pathway. To gain insight into the molecular orientation of hCT(9-32) when interacting with lipid models, and to learn more about its mode of action, various biophysical techniques from liposome partitioning to high-resolution NMR spectroscopy were utilized. Moreover, to establish the role of individual residues for the topology of its association with the lipid membrane, two mutants of hCT(9-32), i.e., W30-hCT(9-32) and A23-hCT(9-32), were also investigated. Although unstructured in aqueous solution, hCT(9-32) adopted two short helical stretches when bound to dodecylphosphocholine micelles, extending from Thr10 to Asn17 and from Gln24 to Val29. A23-hCT(9-32), in which the helix-breaking Pro23 was replaced by Ala, displayed a continuous alpha-helix extending from residue 12 to 26. Probing with the spin label 5-doxylstearate revealed that association with dodecylphosphocholine micelles was such that the helix engaged in parallel orientation to the micelle surface. Moreover, the Gly to Trp exchange in W30-hCT(9-32) resulted in a more stable anchoring of the C-terminal segment close to the interface, as reflected by a twofold increase in the partition coefficient in liposomes. Interestingly, tighter binding to model membranes was associated with an increase in the in vitro uptake in human cervix epithelial adenocarcinoma cell line cells. Liposome leakage studies excluded pore formation, and the punctuated fluorescence pattern of internalized peptide indicated vesicular localization and, in conclusion, strongly suggested an endocytic pathway of translocation.  相似文献   

12.
13.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protease that regulates low density lipoprotein receptor (LDLR) protein levels. The mechanisms of this action, however, remain to be defined. We show here that recombinant human PCSK9 expressed in HEK293 cells was readily secreted into the medium, with the prosegment associated with the C-terminal domain. Secreted PCSK9 mediated cell surface LDLR degradation in a concentration- and time-dependent manner when added to HEK293 cells. Accordingly, cellular LDL uptake was significantly reduced as well. When infused directly into C57B6 mice, purified human PCSK9 substantially reduced hepatic LDLR protein levels and resulted in increased plasma LDL cholesterol. When added to culture medium, fluorescently labeled PCSK9 was endocytosed and displayed endosomal-lysosomal intracellular localization in HepG2 cells, as was demonstrated by colocalization with DiI-LDL. PCSK9 endocytosis was mediated by LDLR as LDLR deficiency (hepatocytes from LDLR null mice), or RNA interference-mediated knockdown of LDLR markedly reduced PCSK9 endocytosis. In addition, RNA interference knockdown of the autosomal recessive hypercholesterolemia (ARH) gene product also significantly reduced PCSK9 endocytosis. Biochemical analysis revealed that the LDLR extracellular domain interacted directly with secreted PCSK9; thus, overexpression of the LDLR extracellular domain was able to attenuate the reduction of cell surface LDLR levels by secreted PCSK9. Together, these results reveal that secreted PCSK9 retains biological activity, is able to bind directly to the LDLR extracellular domain, and undergoes LDLR-ARH-mediated endocytosis, leading to accelerated intracellular degradation of the LDLR.  相似文献   

14.
Some therapeutic peptides self-assemble in solution to form ordered, insoluble, β-sheet-rich amyloid fibrils. This physical instability can result in reduced potency, cause immunogenic side effects, and limit options for formulation. Understanding the mechanisms of fibrillation is key to developing rational mitigation strategies. Here, amide hydrogen-deuterium exchange with mass spectrometric analysis (HDX-MS) coupled with proteolytic digestion was used to identify the early stage interactions leading to fibrillation of human calcitonin (hCT), a peptide hormone important in calcium metabolism. hCT fibrillation kinetics was sigmoidal, with lag, growth, and plateau phases as shown by thioflavin T and turbidity measurements. HDX-MS of fibrillating hCT (pH 7.4; 25°C) suggested early involvement of the N-terminal (1–11) and central (12–19) fragments in interactions during the lag phase, whereas C-terminal fragments (20–32 and 26–32) showed limited involvement during this period. The residue-level information was used to develop phosphorylated hCT analogs that showed modified fibrillation that depended on phosphorylation site. Phosphorylation in the central region resulted in complete inhibition of fibrillation for the phospho-Thr-13 hCT analog, whereas phosphorylation in the N-terminal and C-terminal regions inhibited but did not prevent fibrillation. Reduction of the Cys1-Cys7 disulfide bond resulted in faster fibrillation with involvement of different hCT residues as indicated by pulsed HDX-MS. Together, the results demonstrate that small structural changes have significant effects on hCT fibrillation and that understanding these effects can inform the rational development of fibrillation-resistant hCT analogs.  相似文献   

15.
Cell-penetrating peptides (CPPs) are able to translocate problematic therapeutic cargoes across cellular membranes. The exact mechanisms of translocation are still under investigation. However, evidence for endocytic uptake is increasing. We investigated the interactions of CPPs with phospholipid bilayers as first step of translocation. To this purpose, we employed four independent techniques, comprising (i) liposome buffer equilibrium dialysis, (ii) Trp fluorescence quenching, (iii) fluorescence polarization, and (iv) determination of ζ-potentials. Using unilamellar vesicles (LUVs) of different phospholipid composition, we compared weakly cationic human calcitonin (hCT)-derived peptides with the oligocationic CPPs pVEC and penetratin (pAntp). Apparent partition coefficients of hCT-derived peptides in neutral POPC LUVs were dependent on amino acid composition and secondary structure; partitioning in negatively charged POPC/POPG (80:20) LUVs was increased and mainly governed by electrostatic interactions. For hCT(9-32) and its derivatives, D values raised from about 100-200 in POPC to about 1000 to 1500 when negatively charged lipids were present. Localization profiles of CPPs obtained by Trp fluorescence quenching were dependent on the charge density of LUVs. In POPC/POPG, hCT-derived CPPs were located on the bilayer surface, whereas pVEC and pAntp resided deeper in the membrane. In POPG LUVs, an increase of fluorescence polarization was observed for pVEC and pAntp but not for hCT-derived peptides. Generally, we found strong peptide-phospholipid interactions, especially when negatively charged lipids were present.  相似文献   

16.
Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes ("peptiplexes") enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the "chelate effect" and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide dimer resulting from its stronger binding to DNA.  相似文献   

17.
Efficient drug delivery systems are currently one of the greatest challenges in pharmacokinetics, and the transposition of the gap between in vitro candidate molecule and in vivo test drug is, sometimes, poles apart. In this sense, the cell‐penetrating peptides (CPP) may be the bridge uniting these worlds. Here, we describe a technique to rapidly identify unlabeled CPPs after incubation with liposomes, based on commercial desalting (size exclusion) columns and liquid chromatography‐MS/MS, for peptide de novo sequencing. Using this approach, we found it possible to identify one new CPP – interestingly, a classical bradykinin‐potentiating peptide – in the peptide‐rich low molecular mass fraction of the Bothrops jararaca venom, which was also able to penetrate live cell membranes, as confirmed by classical approaches employing fluorescence‐labeled analogues of this CPP. Moreover, both the labeled and unlabeled CPPs caused no metabolic, cell‐cycle or morphologic alterations, proving to be unmistakably cargo deliverers and not drugs themselves. In sum, we have developed and validated a method for screening label‐free peptides for CPP activity, regardless of their biological origin, which could lead to the identification of new and more efficient drug delivery systems. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Cell-penetrating peptides (CPPs) are attractive vectors for in vivo and in vitro cellular uptake. Their use is, however, limited by insufficient understanding of their preference for a target cell. Here, a new CPP screening method is presented that uses mRNA display. After incubating the target cell lines, such as human embryonic kidney 293 (HEK 293) and HeLa cells, with an mRNA display library for 3 h at 37°C, the CPP-mRNA nucleotide conjugates were harvested. These were amplified with PCR and subsequently sequenced. The screened CPPs for each cell line were identified after four rounds of selection. Among them, two peptides, MAMPGEPRRANVMAHKLEPASLQLR NSCA (CPPK) and MAPQRDTVGGRTTPPSWGPAKAQLRNSCA (CPPL) were selected, and the FITC-labeled peptides were evaluated for their ability to penetrate cells. The screened CPPs were superior to polyarginine (R(11) ), which is widely used as a standard peptide and shows good cell penetration efficiency. Our method can be applied to other target cells for which CPPs have not yet been elucidated.  相似文献   

19.
PACAP-27 and PACAP-38 are the exclusive physiological ligands for the mammalian PAC1 receptor. The role of C-terminal amidation of these ligands at that receptor was examined in neuroendocrine cells expressing the PAC1 receptor endogenously and in non-neuroendocrine cells in which the human and rat PAC1 receptors were expressed from stable single-copy genes driven by the CMV promoter, providing stoichiometrically appropriate levels of this Gs-coupled GPCR in order to examine the potency and intrinsic activity of PACAP ligands and their des-amidated congeners. We found that replacement of the C-terminal glycine residues of PACAP-27 and -38 with a free acid; or extension of either peptide with the two to three amino acids normally found at these positions in PACAP processing intermediates in vivo following endoproteolytic cleavage and after exoproteolytic trimming and glycine-directed amidated, were equivalent in potency to the fully processed peptides in a variety of cell-based assays. These included real-time monitoring of cyclic AMP generation in both NS-1 neuroendocrine cells and non-neuroendocrine HEK293 cells; PKA-dependent gene activation in HEK293 cells; and neuritogenesis and cell growth arrest in NS-1 cells. The specific implications for the role of amidation in arming of secretin-related neuropeptides for biological function, and the general implications for neuropeptide-based delivery in the context of gene therapy, are discussed.  相似文献   

20.
It is often an immense challenge to overexpress human membrane proteins at levels sufficient for structural studies. The use of Human Embryonic Kidney 293 (HEK 293) cells to express full-length human membrane proteins is becoming increasingly common, since these cells provide a near-native protein folding and lipid environment. Nevertheless, the labor intensiveness and low yields of HEK 293 cells and other mammalian cell expression systems necessitate the screening for suitable expression as early as possible. Here we present our methodology used to generate constructs of human membrane proteins and to rapidly assess their suitability for overexpression using transiently transfected, glycosylation-deficient GnT I-HEK 293 cells (HEK 293S). Constructs, in the presence or absence of a C-terminal enhanced green fluorescence protein (EGFP) molecule, are made in a modular manner, allowing for the rapid generation of several combinations of fusion tags and gene paralogues/orthologues. Solubilization of HEK 293S cells, using a range of detergents, followed by Western blotting is performed to assess relative expression levels and to detect possible degradation products. Fluorescence-detection size exclusion chromatography (FSEC) is employed to assess expression levels and overall homogeneity of the membrane proteins, to rank different constructs for further downstream expression trials. Constructs identified as having high expression are instantly suitable for further downstream large scale transient expression trials and stable cell line generation. The method described is accessible to all laboratory scales and can be completed in approximately 3 weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号