首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The asoA gene of Aeromonas salmonicida is located approximately 7 kb downstream of the A-layer structural gene, vapA. A 6 kb Bam HI fragment containing aso A was cloned and marker-exchange mutagenesis using a kanamycin-resistance cassette was performed to generate an aso A mutation in the low-virulence strain A449L. When analysed by electron microscopy, the mutant A449L-MB exhibited an altered surface morphology. Strands and blebs of membranous material were observed protruding from the disorganized cell surface. This material was shown to contain lipopolysaccharide and A-layer subunit protein. The disorganization of the surface of A449L-IV1B had no apparent effect on virulence when the bacteria were administered to rainbow trout (Oncorhynchus mykiss) by bath Immersion. However, when administered by intraperitoneal injection, the mutant A449L-MB was found to exhibit significantly increased virulence. The predicted amino acid sequence of AsoA shows homology to a number of polytopic membrane proteins involved in translocation across the cytoplasmic membrane.  相似文献   

2.
The surface of Aeromonas salmonicida is covered by a tetragonal paracrystalline array (A-layer) composed of a single protein (A-protein, Mr = 50,778). This array is a virulence factor. Cells containing A-layer and isolated A-layer sheets specifically bound laminin and fibronectin with high affinity. Binding by cells was inactivated by selective removal of A-layer at pH 2.2, and neither isogenic A-layer-deficient A. salmonicida mutants nor tetragonal paracrystalline array producing Aeromonas hydrophila and Aeromonas sobria strains bound either matrix protein. Laminin binding was by a single class of high affinity interactions (cell Kd = 1.52 nM), whereas fibronectin bound via two classes of interactions, one being similar to that of laminin (cell Class 2 interaction Kd = 6.6 nM). This interaction with both proteins was partly hydrophobic. The Class 1 fibronectin interaction was of lower affinity (cell Kd = 218 nM) and distinct. Purified A-protein inhibited binding of both matrix proteins to A-layer, and trypsin cleavage localized the matrix-protein binding region to the N-terminal major trypsin-resistant structural domain of A-protein. Monoclonal antibody inhibition studies showed that A-protein was folded such that Fabs of only one of two antibodies with epitopes mapping C-terminal to this trypsin-resistant peptide was capable of blocking binding.  相似文献   

3.
Lipopolysaccharide isolated from Pseudomonas aeruginosa PAO1 (O5 serotype) was separated into two antigenically distinct fractions. A minor fraction, containing shorter polysaccharide chains, reacted with a monoclonal antibody to a P. aeruginosa common antigen but did not react with antibodies specific to O5-serotype lipopolysaccharide. In contrast, fractions containing long polysaccharide chains reacted only with the O5-specific monoclonal antibodies. The shorter, common-antigen fraction lacked phosphate and contained stoichiometric amounts of sulfate, and the fatty acid composition of this fraction was similar to that of the O-antigen-specific fraction. The lipid A derived from the serotype-specific lipopolysaccharide cross-reacted with monoclonal antibodies against lipid A from Escherichia coli, while the lipid A derived from the common antigen did not react. We propose that many serotypes of P. aeruginosa produce two chemically and antigenically distinct lipopolysaccharide molecules, one of which is a common antigen with a short polysaccharide and a unique core-lipid A structure.  相似文献   

4.
Achromogenic atypical Aeromonas salmonicida is the causative agent of goldfish ulcer disease. Virulence of this bacterium is associated with the production of a paracrystalline outer membrane A-layer protein. The species-specific structural gene for the monomeric form of A-protein was cloned into a pET-3d plasmid in order to express and produce a recombinant form of the protein in Escherichia coli BL21(DE3). The induced protein was isolated from inclusion bodies by a simple solubilization-renaturation procedure and purified by ion exchange chromatography on Q-Sepharose to over 95% pure monomeric protein. Recombinant A-protein was compared by biochemical, immunological, and molecular methods with the A-protein isolated from atypical A. salmonicida bacterial cells by the glycine and the membrane extraction methods. The recombinant form was found to be undistinguishable from the wild type when examined by SDS-PAGE and gel filtration chromatography. The immunological similarity of the protein samples was demonstrated by employing polyclonal and monoclonal antibodies in ELISA and Western blot techniques. All forms of A-protein were found to activate the secretion of tumor necrosis factor alpha from murine macrophage. To date, this represents the first large-scale production of biologically active recombinant A-protein.  相似文献   

5.
Immunoglobulin binding by the regular surface array of Aeromonas salmonicida   总被引:12,自引:0,他引:12  
The cell surface of Aeromonas salmonicida is covered by a regular surface array composed of a single species of protein, the A-protein (Phipps, B. M., Trust, T. J., Ishiguro, E. E., and Kay, W. W. (1983) Biochemistry 22, 2934-2939). The array, known as the A-layer, is the key virulence factor for this organism. Cells containing the A-layer specifically bound rabbit IgG and human IgM with high affinity (KD = 1.0 X 10(-6) M and 3.3 X 10(-6) M, respectively), but neither isogenic A-protein-deficient strains nor an Aeromonas hydrophila strain also possessing a regular surface array had binding activity. Selective removal of A-protein at pH 2.2 inactivated IgG binding. Structurally intact IgG was requisite for binding since both Fab and Fc fragments were inactive. Aeromonas A-protein did not share the same IgG binding sites as Staphylococcus aureus protein A. Purified A-protein bound IgG only weakly, but reassembled A-layer regained binding activity. Protein modification and perturbation of the A-layer indicated that no single amino acid residue was critical for binding, and that the binding site consisted of a native arrangement of at least four A-protein monomers in the layer.  相似文献   

6.
Achromogenic atypical Aeromonas salmonicida is the causative agent of goldfish ulcer disease. Virulence of this bacterium is associated with the production of a paracrystalline outer membrane A-layer protein. The species-specific structural gene for the monomeric form of A-protein was cloned into a pET-3d plasmid in order to express and produce a recombinant form of the protein in Escherichia coli BL21(DE3). The induced protein was isolated from inclusion bodies by a simple solubilization-renaturation procedure and purified by ion exchange chromatography on Q-Sepharose to over 95% pure monomeric protein. Recombinant A-protein was compared by biochemical, immunological, and molecular methods with the A-protein isolated from atypical A. salmonicida bacterial cells by the glycine and the membrane extraction methods. The recombinant form was found to be undistinguishable from the wild type when examined by SDS–PAGE and gel filtration chromatography. The immunological similarity of the protein samples was demonstrated by employing polyclonal and monoclonal antibodies in ELISA and Western blot techniques. All forms of A-protein were found to activate the secretion of tumor necrosis factor α from murine macrophage. To date, this represents the first large-scale production of biologically active recombinant A-protein.  相似文献   

7.
The fish pathogen Aeromonas salmonicida possesses a regular surface layer (or A-layer) which is an important virulence determinant. The A-protein, a single bilobed protein organized in a p4 lattice of M4C4 arrangement with two morphological domains, comprises this layer. The role of divalent cations in the A-layer structure was studied to better understand A-protein subunit interactions affecting structural flexibility and function. Divalent cation bridges were found to be involved in the integrity of the A-layer. Two novel A-layer patterns were formed as the result of growth under calcium limitation or by chelation of divalent cations with EDTA or EGTA, thereby constituting the first reported case of formation of distinct regular arrays upon divalent cation depletion. Furthermore, under these conditions A-protein was sometimes released as tetrameric units, rather than in monomeric form. The formation of the two novel patterns is best explained by a sequence of structural rearrangements, following disruption of only one of the two A-layer morphological units, that is, those held together by divalent cation bridges. The free tetrameric units represent four A-protein subunits clustered around the unaffected four-fold axis.  相似文献   

8.
The fish pathogen Aeromonas salmonicida possesses a regular surface layer (or A-layer) which is an important virulence determinant. The A-protein, a single bilobed protein organized in a p4 lattice of M4C4 arrangement with two morphological domains, comprises this layer. The role of divalent cations in the A-layer structure was studied to better understand A-protein subunit interactions affecting structural flexibility and function. Divalent cation bridges were found to be involved in the integrity of the A-layer. Two novel A-layer patterns were formed as the result of growth under calcium limitation or by chelation of divalent cations with EDTA or EGTA, thereby constituting the first reported case of formation of distinct regular arrays upon divalent cation depletion. Furthermore, under these conditions A-protein was sometimes released as tetrameric units, rather than in monomeric form. The formation of the two novel patterns is best explained by a sequence of structural rearrangements, following disruption of only one of the two A-layer morphological units, that is, those held together by divalent cation bridges. The free tetrameric units represent four A-protein subunits clustered around the unaffected four-fold axis.  相似文献   

9.
We have cloned a 13 kb Escherichia coli DNA fragment which complemented the rfe mutation to recover the biosynthesis of E. coli O9 polysaccharide. Using Tn5 insertion inactivation, the rfe gene was localized at the 1.5 kb HindIII-EcoRI region flanking the rho gene. We constructed an rfe-deficient E. coli K-12 mutant by site-directed inactivation using a DNA fragment of the cloned 1.5 kb rfe gene. This also confirmed the presence of the rfe gene in the 1.5 kb region. By simultaneous introduction of both the rfe plasmid and the plasmid of our previously cloned E. coli O9 rfb into this rfe mutant, we succeeded in achieving in vivo reconstitution of O9 polysaccharide biosynthesis. From sequence analysis of the rfe gene, a putative promoter followed by an open reading frame (ORF) was identified downstream of the rho gene. This ORF coincided with the position of the rfe gene determined by Tn5 analysis and site-directed mutagenesis. Furthermore, we identified the rff genes in the 10.5 kb DNA flanking the rfe gene. We recognized at least two functional domains on this cloned rff region. Region I complemented a newly found K-12 rff mutant, A238, to synthesize the enterobacterial common antigen (ECA). Deletion of region II resulted in the synthesis of ECAs with shorter sugar chains. When the 10.5 kb rff genes of the plasmid were inactivated by either deletion or Tn5 insertion, the plasmid lost its ability to give rise to transformants of the rfe mutants.  相似文献   

10.
Strains of the fish pathogen Aeromonas salmonicida which possess the cell surface protein array known as the A-layer (A+) involved in virulence formed deep red colonies on tryptic soy agar containing 30 micrograms of Congo red per ml. These were readily distinguished from colorless or light orange colonies of avirulent mutants lacking A-layer (A-). The utility of Congo red agar for quantifying A+ and A- cells in the routine assessment of culture virulence was demonstrated. Intact A+ cells adsorbed Congo red, whereas A- mutants did not bind Congo red unless first permeabilized with EDTA. The dye-binding component of A+ cells was shown to be the 50,000-Mr A-protein component of the surface array. Purified A-protein avidly bound Congo red at a dye-to-protein molar ratio of about 30 by a nonspecific hydrophobic mechanism enhanced by high salt concentrations. Neither A+ nor A- cells adsorbed to Congo red-Sepharose columns at low salt concentrations. On the other hand, A+ (but not A-) cells were avidly bound at high salt concentrations.  相似文献   

11.
The lipid hydrocarbon chains in the outer membrane of gram-negative bacteria appear from previous experiments to be less mobile than in the cytoplasmic membrane. To determine whether lipopolysaccharide, a unique outer membrane component, is a cause of this restricted mobility, outer membranes differing in the amount of lipopolysaccharide, and the length of the polysaccharide side chain, were prepared from Escherichia coli J5. Cytoplasmic membranes were prepared for comparison. The probes, 5- and 12-doxylstearate, were introduced into these membranes, electron spin resonance spectra were analyzed, and the order parameter (S) and empirical motion parameter (tau0) were calculated. Outer membrane preparations containing long chain lipopolysaccharide were much less fluid by these criteria than were preparations containing short chain lipopolysaccharide. Removing about 40% of the lipopolysaccharide from the former preparations greatly increased their fluidity. The lipid in the cytoplasmic membrane preparations was more fluid than in the outer membrane and cytoplasmic membranes were similar to each other regardless of the composition of the outer membrane. These results indicate that lipopolysaccharide, and especially the polysaccharide portion, directly or indirectly causes the restricted mobility of the lipid hydrocarbon chains observed in the outer membrane.  相似文献   

12.
The distribution of intravenously injected A-layer protein and lipopolysaccharide (LPS) purified from the outer surface of the fish pathogen Aeromonas salmonicida, was studied in Atlantic salmon. Radiolabelling was achieved by conjugating the antigens to tyramine cellobiose (TC) or fluorescein isothiocyanate (FITC) which were radioiodinated either before or after conjugation. Since both TC and FITC are trapped intralysosomally at the cellular site of uptake, the ligands are advantageous in studies on tissue distribution of antigens. Injection of TC-A-layer protein and TC-LPS resulted in high specific radioactivity (cpm g−1tissue) in both head kidney and trunk kidney. In contrast, only low specific radioactivity was recovered in spleen, heart and liver. Surprisingly, use of FITC-LPS as the antigen changed the uptake to be high in both spleen and head kidney. Radiolabelled (125I-TC-) LPS and A-protein, administered by a dorsal aorta catheterisation technique, were cleared from the blood within 24 h. In immunised fish, the antibody activity against the A-layer protein was diminished even within 10 min after administration, in contrast to the level of anti-LPS antibodies which remained high. These results suggest that immune-complex formation took place at least with the A-layer protein, but the uptake of A-layer protein in the various tissues did not differ significantly in vaccinated (A. salmonicida bacterin) and non-vaccinated fish.  相似文献   

13.
Aeromonas salmonicida variants were characterized for alterations in their cell surface structure and used to examine reconstitution of the surface protein layer (A-layer). Variants lacking outer membrane O-polysaccharide were devoid of A-layer and excreted stainable floret-like material of the surface protein (A-protein). One variant, showing partial loss of O-polysaccharide, was associated with a disrupted A-layer and excretion of some A-protein. Variants lacking A-protein but possessing O-polysaccharide rapidly absorbed and concentrated sufficient excreted A-protein at the cell surface to coat the cells with a single confluent layer. Although differences in electrophoretic mobilities of A-proteins and O-polysaccharides from typical and atypical strains were evident, the different A-proteins and A-protein-deficient variants were interchangeable for reconstitution of a surface protein layer. No association of A-protein with cell surfaces of unrelated gram-negative bacteria was observed.Abbreviations A-layer additional surface protein layer - A-protein surface protein - Ast Aeromonas salmonicida typical - Asa Aeromonas salmonicida atypical - A- phenotypically A-protein-negative variant - O- phenotypically O-polysaccharide-negative variant - Owk phenotypically O-polysaccharide weak variant - BHI brain heart infusion - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis - TEM transmission electron microscopy  相似文献   

14.
The objectives of this work were (i) to use transposon mutagenesis to produce mutants of Pseudomonas fluorescens that were altered in adhesion ability and transport through porous media and (ii) to identify the alterations in surface characteristics that were responsible for the changes in attachment. Mutants of P. fluorescens were generated with TnphoA, which enabled identification of mutants that were altered in surface proteins. Transposon mutants were screened for alterations in adhesion ability by attachment assays on hydrophobic polystyrene and water-wettable polystyrene. Four TnphoA mutants with increased adhesion to the hydrophobic surface and decreased adhesion to the water-wettable surface were obtained. Transport of the strains through porous media was evaluated by passing suspensions of each mutant and the parent through columns containing quartz sand and determining the number of cells retained in the columns. The mutants all demonstrated increased adhesion and retention in the columns. Southern analysis demonstrated two types of mutants with separate transposon insertion sites. Polyacrylamide gel electrophoresis of the strains demonstrated that the O antigen on the lipopolysaccharide was either attenuated or absent. Lack of this polysaccharide, and the consequent increased exposure of the lipid moiety of the lipopolysaccharide, is probably responsible for the increase in adhesion to the hydrophobic substrata and retention in the sand column. This work combined with previous studies of attachment of P. fluorescens demonstrates that more than one type of polymer can mediate the adhesion of this organism to nonbiological surfaces.  相似文献   

15.
The survival of Salmonella montevideo during serum treatment depends on the presence of an O antigen (O-Ag) associated with the lipopolysaccharide molecule. In this organism, the O antigen is a polysaccharide composed of 0 to more than 55 subunits, each containing 4 mannose residues together with glucose and n-acetylglucosamine. We used a mutant strain of S. montevideo that requires exogenous mannose for the synthesis of O-Ag. Lipopolysaccharide (LPS) was prepared from these cells grown under three different conditions where the availability of exogenous mannose was regulated such that the average number of O-Ag units per LPS molecule, the percentage of LPS molecules bearing long O-Ag side chains, and the percentage of lipid A cores bearing O-Ag were all varied. These changes in LPS profiles were monitored on sodium dodecyl sulfate-polyacrylamide gels, and cells with different LPS profiles were tested for their ability to survive treatment with pooled normal human serum. Survival in serum was associated with LPS that contained an average of 4 to 5 O-Ag units per LPS molecule, and 20 to 23% of the LPS molecules had more than 14 O-Ag units per LPS molecule. Serum survival was less clearly associated with the percentage of lipid A cores covered with O-Ag. We propose, based on these data and on previous work, that the O-Ag polysaccharide provides the cell protection from serum killing by sterically hindering access of the C5b-9 complex to the outer membrane and that a critical density of long O-Ag polysaccharide is necessary to provide protection.  相似文献   

16.
Two-polymer aqueous-phase systems were used to compare via partitioning the surface properties of strains of the fish pathogen Aeromonas salmonicida which differed in their ability to produce the surface protein array known as the A layer and in their ability to produce smooth lipopolysaccharide. In these two-phase systems, biological particles are known to partition between the phases in a manner related to a variety of surface properties, including hydrophobicity, charge, and lipid composition. Both the presence of the superficial protein layer and the O polysaccharide chains of lipopolysaccharide were shown to play an important role in the partitioning behavior of A. salmonicida cells. The presence of the A layer, which is crucial to the virulence of A. salmonicida, appeared to decrease the surface hydrophilicity of this pathogen and to increase, in a somewhat specific manner, its surface affinity for fatty acid esters of polyethylene glycol. The ability of two-polymer aqueous-phase systems to differentially partition A. salmonicida cells on the basis of differences in surface architecture suggests their general usefulness for the analysis of surface properties important in bacterial virulence and should permit their use in the selection of strains and mutants exhibiting specific surface characteristics.  相似文献   

17.
Two-polymer aqueous-phase systems were used to compare via partitioning the surface properties of strains of the fish pathogen Aeromonas salmonicida which differed in their ability to produce the surface protein array known as the A layer and in their ability to produce smooth lipopolysaccharide. In these two-phase systems, biological particles are known to partition between the phases in a manner related to a variety of surface properties, including hydrophobicity, charge, and lipid composition. Both the presence of the superficial protein layer and the O polysaccharide chains of lipopolysaccharide were shown to play an important role in the partitioning behavior of A. salmonicida cells. The presence of the A layer, which is crucial to the virulence of A. salmonicida, appeared to decrease the surface hydrophilicity of this pathogen and to increase, in a somewhat specific manner, its surface affinity for fatty acid esters of polyethylene glycol. The ability of two-polymer aqueous-phase systems to differentially partition A. salmonicida cells on the basis of differences in surface architecture suggests their general usefulness for the analysis of surface properties important in bacterial virulence and should permit their use in the selection of strains and mutants exhibiting specific surface characteristics.  相似文献   

18.
Two genes of Yersinia enterocolitica, inv and ail, have been identified as having a role in the bacterial adherence to and entry into mammalian cells in vitro. Expression of both genes is regulated by temperature. In stationary phase, ail gene expression is detectable only in bacteria at 37 degrees C, not at lower temperatures. An inv mutant derivative of Y. enterocolitica, which cannot enter mammalian cells when grown at 30 degrees C because of the lack of both inv and ail gene products, was mutagenized with the transposons mini-Tn10 and Tn5B50 to look for an increase in Ail-mediated cell entry. Sixteen mutants that could enter tissue culture cells after growth at 30 degrees C were selected. All of the mutants had increased cell surface Ail levels as detected by an Ail-specific monoclonal antibody. All of the ten Tn5B50 and one of the six mini-Tn10 mutants showed no increase in ail expression, but they had alterations in their lipopolysaccharide (LPS) such that no O side chains were detectable in bacteria grown at 30 degrees C. Thus, these mutants that are increased in their ability to enter cells appear to be so as a result of a change in the LPS on the surface resulting in increased levels of Ail protein able to interact with the mammalian cell surface. In the remaining mini-Tn10 mutants, LPS is normal, and the increase in cell surface Ail levels appears to be due to an increase in ail mRNA present in the cell. These mutants may therefore be affecting a repressor of ail gene expression.  相似文献   

19.
Atypical Aeromonas salmonicida strains comprise a heterogeneous group in terms of molecular and phenotypic characteristics. They cause various conditions of ulcer diseases or atypical furunculosis and are being isolated in increasing number from various fish species and geographical areas. Several marine fish species susceptible to atypical A. salmonicida, including spotted wolffish Anarhichas minor O., are now being farmed and new vaccines may be needed. A commercial furunculosis vaccine for salmon is reported to protect wolffish poorly against experimental challenge with atypical A. salmonicida. The protective antigen(s) in furunculosis vaccines is still unclear, but in oil-adjuvanted vaccine for Atlantic salmon Salmo salar L., the surface A-layer was shown to be important for protection. In spotted wolffish, the efficacy of atypical furunculosis vaccines seems to vary with the atypical A. salmonicida strains used as bacterin in the vaccine. In the present study we investigated whether differences in the A-layer protein among atypical strains might be responsible for the observed variation in vaccine efficacy. Atypical A. salmonicida strains from 16 fish species in 11 countries were compared by genome polymorphism analysis using amplified fragment length polymorphism (AFLP) fingerprinting and by comparative sequencing of the vapA genes encoding the A-protein. The A-protein sequences appeared to be highly conserved except for a variable region between Residues 90 to 170. Surprisingly, the grouping of strains based on AFLP- or A-protein sequence similarities was consistent. In addition, serological differences in the A-protein among the strains were demonstrated by an A-protein-specific monoclonal antibody. Vaccines based on atypical A. salmonicida strains possessing genetically and serologically different A-layer proteins were shown to result in significantly different protection in spotted wolffish.  相似文献   

20.
Previously we have shown that flagella and the O-specific polysaccharide of lipopolysaccharide play a role in colonization of the potato root by plant growth-promoting Pseudomonas strains WCS374 and WCS358. In this paper, we describe a novel cell surface-exposed structure in Pseudomonas putida WCS358 examined with a specific monoclonal antibody. This cell surface structure appeared to be a polysaccharide, which was accessible to the monoclonal antibody at the outer cell surface. Further study revealed that it does not contain 2-keto-3-deoxyoctonate, heptose, or lipid A, indicating that it is not a second type of lipopolysaccharide. Instead, the polysaccharide shared some characteristics with K antigen described for Escherichia coli. From a series of 49 different soil bacteria tested, only one other potato plant growth-promoting Pseudomonas strain reacted positively with the monoclonal antibody. Mutant cells lacking the novel antigen were efficiently isolated by an enrichment method involving magnetic antibodies. Mutant strains defective in the novel antigen contained normal lipopolysaccharide. One of these mutants was affected in neither its ability to adhere to sterile potato root pieces nor its ability to colonize potato roots. We conclude that the bacterial cell surface of P. putida WCS358 contains at least two different polysaccharide structures. These are the O-specific polysaccharide of lipopolysaccharide, which is relevant for potato root colonization, and the novel polysaccharide, which is not involved in adhesion to or colonization of the potato root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号