首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Secondary growth in the stem of Dolichos lablab is achieved by the formation of eccentric successive rings of vascular bundles. The stem is composed of parenchymatous ground tissue and xylem and phloem confined to portions of small cambial segments. However, development of new cambial segments can be observed from the obliterating ray parenchyma, the outermost phloem parenchyma and the secondary cortical parenchyma. Initially cambium develops as small segments, which latter become joined to form a complete cylinder of vascular cambium. Each cambial ring is functionally divided into two distinct regions. The one segment of cambium produces thick-walled lignified xylem derivatives in centripetal direction and phloem elements centrifugally. The other segment produces only thin-walled parenchyma on both xylem and phloem side. In mature stems, some of the axial parenchyma embedded deep inside the xylem acquires meristematic activity and leads to the formation of thick-walled xylem derivatives centrifugally and phloem elements centripetally. The secondary xylem comprises vessel elements, tracheids, fibres and axial parenchyma. Rays are uni-multiseriate in the region of cambium that produces xylem and phloem derivatives, while in some of the regions of cambium large multiseriate, compound, aggregate and polycentric rays can be noticed.  相似文献   

2.
The initiation of secondary xylem in elongating axillary branchesof Populus deltoides Bartr. ex Marsh. is independent of thatin the main stem. Although secondary xylem differentiates acropetallyin the main stem, it does not differentiate from the stem intothe axillary branch. Secondary xylem is usually initiated ininternode 4 (occasionally 3) of the axillary branch, and fromthis site it develops both acropetally in the elongating branchand basipetally toward the main stem. Secondary vessel differentiationalways precedes fibre differentiation. Although secondary xylemdifferentiates in internodes that have ceased elongation, itdifferentiates first in traces of the vascular cylinder servingrapidly expanding and maturing foliage leaves. As younger leaveson the branch expand and mature, secondary xylem differentiatesin their traces eventually producing a complete secondary vascularcylinder. Scale leaves do not initiate secondary xylem independentlyin their traces; they are activated by adjacent traces in thevascular cylinder serving foliage leaves. Once established,the primary-secondary vascular transition zone advances acropetallyin a branch just as it does in the main stem. Populus deltoides Bartr. ex Marsh., cottonwood, axillary branches, secondary xylem, plastochron index, post-dormancy development, xylem.  相似文献   

3.
Root development in suspension cultures of Yucca schidigerawas light-mediated. The green cultures consisted of roots, smalltissue aggregates and suspension cells. Roots possessed an apicalmeristem with a root cap, meristematic region and region ofdifferentiating tissues. Phloem, xylem vessels and tracheidsoccurred in discrete polyarch vascular bundles. Xylary wallthickening was reticulate, and endodermis and pericycle werepresent. Roots of intact Y. schidigera plants had a similardistribution of vascular tissues. Dark-grown cultures were cream-colouredand contained only lobed tissue aggregates and suspension cells. Yucca schidigera Roezl., tissue cultures, morphogenesis, root organ, light/dark  相似文献   

4.
DUNCAN  E. J. 《Annals of botany》1973,37(5):981-985
The stem of Ipomoea batatas (L.) Lam. is characterized by thepossession of a ring of bicollateral, leaftrace bundles. Lacticifersoccur in the pith, in the parenchyma between neighbouring islandsof medullary phloem, and in the cortex. The xylem groups become united by the activity of the inter-fascicularcambium. The production of a certain amount of secondary xylemtakes place before the production of secondary phloem begins.The former is produced more extensively in some areas than inothers, so that the original symmetry of the vascular cylinderis lost. The phellogen originates in the cells of the epidermis. When the stem is attacked by the larvae of Megastes grandalisGuen., which remove most of the internal tissues, anomalousgrowth takes place as a result of the activity of accessorycambia, which develop in the primary cortex, the secondary phloem,and the phelloderm. Residual parenchyma of the pith and/or xylemundergoes hyperplasia to produce a callus tissue which linesthe cavity made by the larvae.  相似文献   

5.
Structural changes in root apices of Catasetum pileatum Reichb.f. cultured in vitro, result in the formation of protocorm-likebodies (PLBs). These PLBs, in turn, give rise to seedlings.After 30 d incubation, the positions occupied by xylem and phloemin the vascular tissue, in transverse sections of the upperportions of PLBs, were typical of stem tissue. The vasculatureof the central part of the PLBs resembled the transition regionbetween shoot and root of whole plants, while in the remainingpart of the PLBs, the vascular arrangement was similar to thatfound in roots. Catasetum pileatum, orchid, root apex, protocorm-like body  相似文献   

6.
This paper describes the differentiation process of regenerated tissue after ordinary girdling or after removal of a section of xylem from the stem, and the disparity in differentiation of the regenerated tissues after being differently treateds in Broussonetia papyrifera. After ordinary girdling for 3–4 weeks, new bark regenerated in the xylem. During the process of rind' formation, many specks of meristematic tissue were formed in the callus, from which vascular tissue clusters were developed. In addition, the new periderm appeared almost at the same time as the new vascular cambium was seen. When a section of xylem was removed from the stem, numerous calli developed rapidly on the inner surface of the bark. Meanwhile, the vascular cambium appeared in the immature phloem. Soon after, discontinued meristematic tissue bands also occurred in the callus. These meristematic tissues then connected with each other to form a concave oblate cambial ring which developed xylem inward and phloem outward. About 2–3 weeks later, the concave oblate trunk grew lengthwisely connecting with the upper anct lower portions of the normal stem. By then, the tree continued to grow. The inner surface tissue of the bark, after the xylem was removed, differentiated about one week earlier than the tissue on the surface of the xylem after girdling.  相似文献   

7.
应用植物解剖学、组织化学及植物化学方法对白鲜营养器官根、茎、叶的结构及其生物碱的积累进行了研究。结果显示:(1)白鲜根的次生结构以及茎和叶的结构类似一般双子叶植物;白鲜多年生根主要由周皮、次生韧皮部、维管形成层以及次生木质部组成,根次生韧皮部中可见大量的淀粉、草酸钙簇晶、韧皮纤维以及油细胞;茎由表皮、皮层、维管组织和髓组成;叶由表皮、栅栏组织、海绵组织和叶脉组成;在茎和叶初生韧皮部的位置均分布有韧皮纤维,在叶表皮上分布有头状腺毛和非腺毛;在茎和叶紧贴表皮处分布有分泌囊。(2)组织化学分析结果显示:在白鲜多年生根中,生物碱类物质主要分布在周皮、次生韧皮部、维管形成层和木薄壁细胞中;在茎中,生物碱主要分布在表皮、皮层、韧皮部、木薄壁细胞及髓周围薄壁细胞中;在叶中,生物碱主要分布在表皮细胞、叶肉组织和维管组织的薄壁细胞;此外在分泌囊和头状腺毛中亦含有生物碱类物质。(3)植物化学结果显示,秦岭产白鲜根皮/白鲜皮、根木质部、茎和叶中白鲜碱含量分别为0.041%、0.012%、0.004%和0.002%,其中木质部中白鲜碱含量和其他部分地区白鲜皮中白鲜碱含量类似。研究表明,在秦岭产白鲜营养器官中,除根皮/白鲜皮外,在根木质部亦含有大量的白鲜碱,且在茎和叶中亦含有一定的白鲜碱,具有潜在的开发利用价值。  相似文献   

8.
The occurrence of flattened stems in Rhynchosia phaseoloides (SW.) DC. (Fabaceae) has been known for years, but little interest has been shown toward elucidating its secondary growth. This study aims to (1) understand the pattern of secondary growth and development of vascular elements from the cambium at different stages of stem growth and (2) elucidate the type, size and distribution of cells related to these processes at different regions of the stem. Dilatation growth in main stems and branches of R. phaseoloides is achieved by successive cambia formed in two areas of the actual cortex that are opposed to each other by approximately 180°. Only the first cambial ring is functionally normal and closed-elliptical in outline, supporting the growth of the middle part of the rather flat stem. Later on, this stem becomes oval to oblong in cross-section outline by the activity of successive cambia from which cells produce further xylem, phloem and parenchyma tissues in a somewhat fan-shaped way. As shown in cross section, a flat cable-like structure of several modules results, forming wings relative to the primary central axis tissues. The secondary cambia are formed by dedifferentiation of cortical parenchyma cells, resulting in small clusters of radially arranged meristematic bands of cells. From these meristematic bands, an outward-facing crescent-shaped new band of cambium is originated. The innermost cells of this meristematic band form the parenchymatic tissue that connects the new lateral module to the proximal one. This occurs several times during the whole stem ontogeny.  相似文献   

9.
ZAMSKI  E. 《Annals of botany》1980,45(5):561-567
An investigation of stem structure of Bougainvillea by serialsections and cine-photography shows that the medullary systemof the inner area of young stems is the sole vascular systemdirectly continuous into the lateral appendages (leaves, axillarybuds and axillary thorns) via complex nodal anastomoses. Thevascular system at the periphery of the primary bundles is notdirectly continuous into these appendages. In secondary growth,there is direct continuity between vascular bundles within asingle ring, in a tangential direction via either xylem aloneor both xylem and phloem, and between rings in a radial directionalways via xylem and phloem, even though the rings are derivativesof successive cambia. Bougainvillea, vascular system, phloem, xylem, anomalous secondary thickening  相似文献   

10.
Regeneration of xylem induced by adventitious root formationin the hypocotyl of Luffa cylindrica Roem. seedlings is described.This naturally occurring form of xylem regeneration involvesthe formation of a bypass of regenerated tracheary elementsaround a root without external severance of the vascular strands.The regeneration of xylem around an adventitious root is polarand is very similar in its developmental pattern to the well-knownxylem regeneration induced by wounding vascular strands. Adventitious root formation, Luffa cylindrica Roem, regenerated tracheary elements, vascular differentiation, xylem regeneration  相似文献   

11.
Induction of Near-vessellessness in Ephedra campylopoda C. A. Mey.   总被引:1,自引:0,他引:1  
Lev-Yadun  Simcha 《Annals of botany》1994,74(6):683-687
Near-vessellessness was induced in the secondary xylem of Ephedracampylopoda C. A. Mey. by mechanical bark blocking or by wounding.Both treatments resulted in regions of near-vesselless xylem.Xylem formed after the mechanical bark blocking also had regionsin which the orientation of the axial components was changedfrom axial to lateral. Since either mechanical arrest of phloemand cambial transport or wounding of the cambium almost stoppeddifferentiation into vessels, and instead induced differentiationinto tracheids, it seems that the developmental signal for tracheiddifferentiation is not the same as that for vessels. The possibleregulation of near-vessellessness in Ephedra is discussed.Copyright1994, 1999 Academic Press Differentiation, Ephedra campylopoda, near-vessellessness, wood formation, xylem  相似文献   

12.
Regeneration of xylem induced by adventitious root formationin the hypocotyl of Luff a cylindrica Roem. seedlings is described.This naturally occurring form of xylem regeneration involvesthe formation of a bypass of regenerated tracheary elementsaround a root without external severance of the vascular strands.The regeneration of xylem around an adventitious root is polarand is very similar in its developmental pattern to the well-knownxylem regeneration induced by wounding vascular strands. Adventitious root formation, Luffa cylindrica Roem, regenerated tracheary elements, vascular differentiation, xylem regeneration.  相似文献   

13.
Anatomical observations were made on 1-, 2-, and 3-yr-old plants of Yucca whipplei Torr, ssp. percursa Haines grown from seed collected from a single parent in Refugio Canyon, Santa Barbara, California. The primary body of the vegetative stem consists of cortex and central cylinder with a central pith. Parenchyma cells in the ground tissue are arranged in anticlinal cell files continuous from beneath the leaf bases, through the cortex and central cylinder to the pith. Individual vascular bundles in the primary body have a collateral arrangement of xylem and phloem. The parenchyma cells of the ground tissue of the secondary body are also arranged in files continuous with those of the primary parenchyma. Secondary vascular bundles have an amphivasal arrangement and an undulating path with frequent anastomoses. Primary and secondary vascular bundles are longitudinally continuous. The primary thickening meristem (PTM) is longitudinally continuous with the secondary thickening meristem (STM). Axillary buds initiated during primary growth were observed in the leaf axils. The STM becomes more active prior to and during root initiation. Layers of secondary vascular bundles are associated with root formation.  相似文献   

14.

In this study, lignin content data are presented for annual regenerant Iris sibirica plants, comparable to those in six-year-old intact plants. The structure of the shoots of Iris sibirica grown on artificial nutrient media was studied by the histochemical method. Features of the formation of the xylem in Iris sibirica on artificial nutrient media were revealed. Regenerants very quickly developed a complex system consisting of vascular bundles containing sieve tubes, vessels and tracheids, and hydrocyte systems. Hydrocytes of Iris sibirica were tracheids with lignified thickening, but, in contrast to tracheids and vessels of xylem (they are formed based on procambium or cambium—special lateral primary or secondary meristem), hydrocytes differentiated from the cells of permanent tissues (like phellogen), which probably possessed meristematic activity at the time of differentiation. In Iris sibirica hydrocytes covered the vascular bundle by the thick layer and strung along it up to a certain height. High lignin content in young regenerant Iris sibirica plants was due to the formation of the dense tissue from lignified tracheal elements. The study of the differentiation of xylem elements under controlled conditions can serve as a model for our understanding of wood formation processes.

  相似文献   

15.
Empirical quantitative models were constructed for Populus deltoidesdescribing temporal and spatial changes in vessel characteristicsof metaxylem, both within individual central leaf traces andwithin all central leaf traces considered as a morphologicalunit at a given transverse level in the stem (the central tracesympodia). Similar models were constructed for secondary vesselcharacteristics. The growth processes of the stem segment throughwhich the vasculature extended were incorporated in these modelsto illustrate how a functional vascular system is maintainedin the stem as a whole. The central trace sympodia representedthe integrals of the temporal and spatial functions for individualcentral leaf traces. Metaxylem vessel production ceased in individualleaf traces two plastochrons before the cessation was reflectedin the central trace sympodia because of the integrative natureof the sympodial complex. A functional continuum of developmentwas apparent between metaxylem vessels of the central tracesympodia and secondary vessels of the stem. The transition betweenmetaxylem and secondary xylem production in the central tracesympodia corresponded with cessation of leaf and internode elongation. Populus deltoides Bartr. ex Marsh., cottonwood, primary xylem, secondary xylem, primary-secondary vascular transition, leaf growth, xylogenesis  相似文献   

16.
The response of the stem of a resistant host (Impatiens baslamina) to infection by the parasitic flowering plant Cuscuta japonica was studied with light and electron microscopy. The intra- and interfascicular cambial cells in the host stem first reacted to the penetrating upper haustorium by dividing, and the differentiation of the host xylem (vascular) tissues proceeded toward interfascicular areas from vascular bundles. When the host vascular tissue was invaded by the endophyte (haustorial portion in the host stem), the host xylem was displaced, and host vessels became occluded with parenchyma cells, resulting in tyloses. As the parasitism progressed, areas of the host stem penetrated by the endophyte became swollen via secondary growth and cell division in the parenchymatous cortex, pith, and interfascicular areas. During this intrusion by the endophyte, darkly stained necrotic reactions were detected at the interface between the host tissue and the invading endophyte. The results suggested that in the host tissues penetrated by the parasite, the formation of secondary tissue and swellings caused by active cell division of ground tissue and host vessel occlusion by tyloses constitute the host structural defense against the parasite.  相似文献   

17.
The radially-organized petiole of Phaseolus and the dorsiventralpetioles of Datura and Lycopersicon were used as stocks in budgrafting. Petiolar structure was examined after some weeks'growth of the scion, during which the grafted petiole came tofunction as a stem in supporting normal, vigorous shoot growthand was not abscised even at the end of the growing season.Below the graft union, reactivated petiolar cambium producedmassive amounts of secondary tissue with greatly enlarged vessels.Cambial activity was confined to the existing vascular bundlesexcept for the development of a little inter-fascicular cambiumin young, grafted Phaseolus petioles. Datura petioles woundedbelow the graft union, by a cut into the petiolar are from eitherthe abaxial or the adaxial surface and removal of a 1 cm lengthof tissue, responded by restoring the vascular are (abaxialwounds) or almost completing a vascular ring (adaxial wounds).In grafted, wounded Lycopersicon petioles the presence of deadxylem caused the separation of cambium regenerated from thecut vascular are and that arising in relation to the centralwound surface. A similar response, in which stimulated internalphloem plays an important part, occurred in certain woundedLycopersicon stems. The results are discussed in terms of thegradient induction hypothesis. graft, petiole, wound, cambium, xylem, phloem, Phaseolus multiflorus, Datura stramonium, Lycopersicon esculentum, bean, thornapple, tomato  相似文献   

18.
Eukaryotic translation initiation factor 5A (eIF5A) is thoughtto facilitate protein synthesis by participating in the nuclearexport of specific mRNAs. In Arabidopsis, there are three isoformsof eIF5A. One of them, AteIF5A1, has been shown to be expressedin vascular tissue, specifically developing vessel members,using GUS as a reporter. In order to determine whether AteIF5A1plays a role in xylem formation, its full-length cDNA was constitutivelyover-expressed in transgenic Arabidopsis plants. Microscopicanalysis revealed that the cross-sectional area of the xylemin the main inflorescence stems of transgenic plants was 1.9-foldhigher than those of corresponding inflorescence stems of wild-typeplants. In wild-type stems, the primary xylem typically comprisedsix cell layers and was 105 µm thick, but increased to9–11 cell layers, 140–155 µm thick, in transgenicstems. Similarly, the secondary xylem increased from six celllayers, 70 µm thick, in control stems to 9 cell layers,95–105 µm thick, in transgenic stems. Moreover,constitutive down-regulation of AteIF5A1 using antisense technologyresulted in the major suppression of xylem formation comparedwith control plants, and the antisense transgenic plants werealso stunted. These data collectively indicate that eIF5A1 playsa role in xylogenesis. Key words: Arabidopsis thaliana, eukaryotic translation initiation factor 5A, inflorescence stem, xylem Received 5 November 2007; Revised 26 December 2007 Accepted 10 January 2008  相似文献   

19.
SHAH  J. J.; BABU  A. M. 《Annals of botany》1986,57(5):603-611
The stem of Ailanthus excelsa Roxb. (Simaroubaceae) may developvascular occlusions and gum-resin cavities in the xylem as aresponse to injury and infection. Fungal hyphae are observedin the vessel lumen and in the adjacent parenchyma cells. Theocclusions appeared in various forms and showed varying chemicalcomposition. The chemical nature of the occluding material differedfrom that of the exudate formed in the cavities. The majorityof occlusions contained lipids, protein, polysaccharides, phenolics,lignin and probably pectin, whereas, the exudate contained lipids,protein and four soluble sugars. All the components of the occlusionexcept lignin and pectin appear to have been formed in the parenchymacells adjacent to the vessel and migrated to vessel lumen throughthe vessel wall pits. The different constituents migrate intothe vessel lumen independently where they mix to form occlusions. Ailanthus excelsa Roxb., vascular occlusions, lignin, fluorescence, exudation  相似文献   

20.
Investigations revealed that the anatomy of the primary radicularroot of yam bean (Pachyrhizus erosus L.) was typically dicotyledonousexcept that the xylem was not completely developed centripetally.Most of the roots had tetrarch xylem, although a few triarchand pentarch roots were also observed. In both tuberous andnon-tuberous roots, secondary thickening occurred by the formationof the meristematic vascular cambium which formed secondarytissues in a normal fashion. Subsequently, tuberization wasinitiated in the secondary xylem by the development of anomalous‘secondary’ cambia from parenchyma cells surroundingvessel elements. Anomalous ‘secondary’ cambia alsodeveloped from parenchyma cells not associated with vessels.Subsequently, anomalous ‘tertiary’ cambia differentiatedfrom tissues produced by the anomalous ‘secondary’cambia. Activities of these anomalous cambia resulted in theproduction of parenchyma storage cells and were chiefly responsiblefor the growth of the mature tuber. Pachyrhizus erosus L., yam bean, tuberous root, anatomy, anomalous ‘secondary’ cambia, anomalous ‘tertiary’ cambia, centripetal xylem development  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号