首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Ampullae of Lorenzini were examined from juvenile Carcharhinus leucas (831–1,045 mm total length) captured from freshwater regions of the Brisbane River. The ampullary organ structure differs from all other previously described ampullae in the canal wall structure, the general shape of the ampullary canal, and the apically nucleated supportive cells. Ampullary pores of 140–205 µm in diameter are distributed over the surface of the head region with 2,681 and 2,913 pores present in two sharks that were studied in detail. The primary variation of the ampullary organs appears in the canal epithelial cells which occur as either flattened squamous epithelial cells or a second form of pseudostratified contour‐ridged epithelial cells; both cell types appear to release material into the ampullary lumen. Secondarily, this ampullary canal varies due to involuted walls that form a clover‐like canal wall structure. At the proximal end of the canal, contour‐ridged cells abut a narrow region of cuboidal epithelial cells that verge on the constant, six alveolar sacs of the ampulla. The alveolar sacs contain numerous receptor and supportive cells bound by tight junctions and desmosomes. Pear‐shaped receptor cells that possess a single apical kinocilium are connected basally by unmyelinated neural boutons. Opposed to previously described ampullae of Lorenzini, the supportive cells have an apical nucleus, possess a low number of microvilli, and form a unique, jagged alveolar wall. A centrally positioned centrum cap of cuboidal epithelial cells overlies a primary afferent lateral line nerve. J. Morphol. 276:481–493, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Ampullary organs of Euristhmus lepturus occur in high densities along the head and in four parallel pathways along the trunk of the body. Large ampullary pores (125–130 μm) are easily distinguishable from other sensory epithelial pores due to the differences in size and the presence of a collar-like structure. Simple, singular ampullary organs of the head region consist of an ampullary pore connected to a long canal with a diameter of 115–175 μm before terminating as a simple ampulla with an external diameter of 390–480 μm. The ampullary canal is composed of 1–2 layers of flattened squamous epithelial cells, the basement membrane and an interlocking collagen sheath. The innermost cells lining the canal wall are adjoined via tight junctions and numerous desmosomes, as are those of the receptor and supportive cells. Canal wall tissue gives rise to a sensory epithelium containing between 242 and 285 total receptor cells, with an average diameter of 11.7 ± 5.3 μm, intermixed with medially nucleated supportive cells. Each receptor cell (21.38 ± 4.41 μm, height) has an apically positioned nucleus and a luminal surface covered with numerous microvilli. Neural terminals abut the basal region of receptor cells opposite multiple presynaptic bodies and dense mitochondria. Supportive cells extend from the ampullary lumen to the basement membrane, which is adjacent to the complex system of collagen fibres.  相似文献   

3.
The ampulla of Lorenzini of juvenile Carcharhlinus leucas differ histologically from those previously described for other elasmobranchs. The wall of the ampullary canal consists of protruding hillock-shaped epidermal cells that appear to secrete large quantities of a mucopolysaccharide gel. The ampullary organs comprise a long canal sheathed in collagen terminating in an ampulla. Each ampulla contains six alveolar sacs, with each sac containing hundreds of receptor cells. The receptor cells are characteristic of others described for elasmobranchs being pear-shaped cells with a central nucleus and bearing a single kinocilium in the exposed apical region of the cell. The supportive cells differ from general elasmobranch ampullary histology in that some have an apical nucleus. These ampullary structures allow Carcharhinus leucas to detect and respond to artificial electrical fields. Carcharhinus leucas from freshwater habitats respond to electrical signals supplied in freshwater aquaria by abruptly turning towards low voltage stimuli (< or = 10 microA) and either swimming over or biting at the origin of the stimulus.  相似文献   

4.
Summary The multicellular epithelial organs in Proteus anguinus, which Bugnion (1873) assumed to be developing neuromasts, have been analyzed by lightand electron-microscopy. Their fundamental structure consists of single ampullae with sensory and accessory cells with apical parts that extend into the pit of the ampulla, and of a short jelly-filled canal connecting the ampulla pit with the surface of the skin. The organs are located intra-epithelially and are supported by a tiny dermal papilla. The cell elements of sensory epithelium are apically linked together by tight junctions. The free apical surface of the sensory cell bears several hundred densely packed stereocilia-like microvilli whereas the basal surface displays afferent neurosensory junctions with a pronounced round synaptic body. The compact uniform organization of the apical microvillous part shows a hexagonal pattern. A basal body was found in some sensory cells whereas a kinocilium was observed only in a single cell. The accessory cells have their free surface differentiated in a sparsely distributed and frequently-forked microvilli. The canal wall is built of two or three layers of tightly coalescent flat cells bordering on the lumen with branching microvilli. The ultrastructure of the content of the ampulla pit is presented.In the discussion stress is laid on the peculiarities of the natural history of Proteus anguinus that support the view that the morphologically-identified ampullary organs are electroreceptive. The structural characteristics of ampullary receptor cells are dealt with from the viewpoint of functional morphology and in the light of evolutionary hypotheses of ampullary organs.  相似文献   

5.
Whole body studies of Plotosus tandanus revealed that ampullary pores occur over the entire body of the fish, but are in higher concentrations in the head region. These pores give rise to a short canal (50-60 microm) produced by columnar epithelial cells bound together by tight junctions and desmosomes. At the junction of the canal and the ampulla, cuboidal epithelial cells make up the wall. The ampulla consists of layers of collagen fibers that surround flattened epithelial cells in the lateral regions and give rise to supportive cells that encase a small number of receptor cells (10-15). The ampullary wall comprises several types of cells that are adjoined via tight junctions and desmosomes between cell types. The ovoid receptor cells possess microvilli along the luminar apical area. Beneath this area, the cells are rich in mitochondria and rough endoplasmic reticulum. An unmyelinated neuron adjoins with each receptor cell opposite multiple presynaptic bodies. This form of microampulla has not been previously described within the Family Plotosidae.  相似文献   

6.
The morphology of ampullary organs in Plicofollis argyropleuron, collected from a southeast Queensland estuary, was examined by light and electron microscopy to assess the morphological characteristics of teleost ampullary organs in environments with fluctuating salinities. This catfish possesses both macroampullae and microampullae. Both have the typical teleost arrangement of an ampullary pore linked by a canal to a single ampulla that is lined with receptor and supportive cells. The canal wall of macroampullae consists of a collagen sheath, a basement membrane, and two layers of squamous epithelial cells adjacent to the lumen, joined by desmosomes and tight junctions near the surface of the epithelium. Ampullary pore diameters are similar in range for both the macroampullae and the microampullae, with microampullae always arising from the larger pores within a single region of the head. Canal length of the macroampullae is longer than those of the microampullae. Macroampullae also contain approximately 10 times as many receptor cells compared with the microampullae. In both organs, these pear‐shaped receptor cells alternate with supportive cells along the entire luminal surface of the ampulla. The apical region of receptor cells extends into the lumen and bears numerous microvilli. The basal region of receptor cells adjoins to either individual or multiple unmyelinated neural terminals. The coexistence of two markedly different ampullary organ morphologies within a single species support theories concerning the possible multifunctionality of these sensory organs. J. Morphol., 276:1405–1411, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
This study investigated and compared the morphology of the electrosensory system of three species of benthic rays. Neotrygon trigonoides, Hemitrygon fluviorum and Maculabatis toshi inhabit similar habitats within Moreton Bay, Queensland, Australia. Like all elasmobranchs, they possess the ability to detect weak electrical fields using their ampullae of Lorenzini. Macroscopically, the ampullary organs of all three species are aggregated in three bilaterally paired clusters: the mandibular, hyoid and superficial ophthalmic clusters. The hyoid and superficial ophthalmic clusters of ampullae arise from both dorsal and ventral ampullary pores. The dorsal pores are typically larger than the ventral pores in all three species, except for the posterior ventral pores of the hyoid grouping. Ampullary canals arising from the hyoid cluster possessed a quasi‐sinusoidal shape, but otherwise appeared similar to the canals described for other elasmobranchs. Ultrastructure of the ampullae of Lorenzini of the three species was studied using a combination of light, confocal and electron microscopy. All possess ampullae of the alveolar type. In N. trigonoides and M. toshi, each ampullary canal terminates in three to five sensory chambers, each comprising several alveoli lined with receptor and supportive cells and eight to 11 sensory chambers in H. fluviorum. Receptor cells of all three species possess a similar organization to those of other elasmobranchs and were enveloped by large, apically nucleated supportive cells protruding well into the alveolar sacs. The luminally extended chassis of supportive cells protruding dramatically into the ampullary lumen had not previously been documented for any elasmobranch species.  相似文献   

8.
Whole body staining of Arius graeffei revealed that ampullary pores cover the body with their highest densities occurring on the head and lowest densities on the mid‐ventral surface. Each ampullary organ consists of a long canal (0.2–1.75 mm) passing perpendicular to the basement membrane, through the epidermis into underlying dermal connective tissues, curving thereafter to run roughly parallel to the epidermis. Histochemical staining techniques (Alcian blue and Lillie′s allochrome) indicate that the canals contain a neutral to acidic glycoprotein‐based mucopolysaccharide gel that varies in composition along the length of the canal. Collagen fibers, arranged in a sheath, surround a layer of squamous epithelium that lines each ampullary canal. At the proximal end of the canal, squamous cells are replaced by cuboidal epithelial cells that protrude into the lumen, thus constricting the lumen to form a small pore into the ampulla. The ampulla is lined with receptor and supportive cells. The numerous (60–120) pear‐shaped receptor cells bear microvilli on their luminal surface. Two forms of receptor cells exist in each ampullary organ: basal and equatorial receptor cells. Each receptor cell is connected to an unmyelinated nerve. Each receptor cell is surrounded by supportive cells on all but the apex. Tight junctions and underlying desmosomes occur between adjacent receptor and supportive cells. This form of ampullary organ has not previously been described for teleosts. J. Morphol. 239:97–105, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

9.
Ampullary receptor organs of African mormyrids consist of a cavity beneath the epidermis. The wall of the cavity contains embedded receptor cells and two types of supporting cells. A canal extends from the cavity to an opening at the surface. The lumen of the canal and the ampulla are filled with a jelly-like material and dense cylinders apparently secreted by two types of supporting cells. Flattened cells of the canal wall are joined by occluding junctions. Synapses between receptor cells and the afferent nerve fiber are characterized by a presynaptic dense body, but presynaptic vesicles were not observed. Degenerating receptor cells are occasionally seen among normal receptor cells in the base of the organ.  相似文献   

10.
The Ampullae of Lorenzini can vary in their size, shape and distribution patterns among elasmobranch species. However, no study has compared the ampullary characteristics between the sexes within a species. The present study found a sexual dimorphism in the Ampullae of Lorenzini of the lesser-spotted catshark, Scyliorhinus canicula. Male S. canicula were found to possess longer ampullae and alveoli, greater numbers of alveolar bulbs, larger sensory epithelial surface areas and greater numbers of sensory receptor cells in the ampullae than female S. canicula. Greater lengths of both ampullae and alveoli, numbers of alveoli, larger sensory epithelial surface areas and greater numbers of sensory receptor cells in male S. canicula could increase the capability of adult male S. canicula in detecting females. The presence of the sexual dimorphism in the alveoli of the Ampullae of Lorenzini could be directly related to reproductive behaviour and/or reflect the sexual segregation patterns of adult S. canicula.  相似文献   

11.
The anatomical characteristics of the mechanoreceptive lateral line system and electrosensory ampullae of Lorenzini of Rhinobatos typus and Aptychotrema rostrata are compared. The spatial distribution of somatic pores of both sensory systems is quite similar, as lateral line canals are bordered by electrosensory pore fields. Lateral line canals form a sub-epidermal, bilaterally symmetrical net on the dorsal and ventral surfaces; canals contain a nearly continuous row of sensory neuromasts along their length and are either non-pored or pored. Pored canals are connected to the surface through a single terminal pore or additionally possess numerous tubules along their length. On the dorsal surface of R. typus, all canals of the lateral line occur in the same locations as those of A. rostrata. Tubules branching off the lateral line canals of R. typus are ramified, which contrasts with the straight tubules of A. rostrata. The ventral prenasal lateral line canals of R. typus are pored and possess branched tubules in contrast to the non-pored straight canals in A. rostrata. Pores of the ampullae of Lorenzini are restricted to the cephalic region of the disk, extending only slightly onto the pectoral fins in both species. Ampullary canals penetrate subdermally and are detached from the dermis. Ampullae occur clustered together, and can be surrounded by capsules of connective tissue. We divided the somatic pores of the ampullae of Lorenzini of R. typus into 12 pore fields (10 in A. rostrata), corresponding to innervation and cluster formation. The total number of ampullary pores found on the ventral skin surface of R. typus is approximately six times higher (four times higher in A. rostrata) than dorsally. Pores are concentrated around the mouth, in the abdominal area between the gills and along the rostral cartilage. The ampullae of both species of shovelnose ray are multi-alveolate macroampullae, sensu Andres and von Düring (1988). Both the pore patterns and the distribution of the ampullary clusters in R. typus differ from A. rostrata, although a basic pore distribution pattern is conserved.  相似文献   

12.
On the basis of experimental data [2] a model of electrical processes taking place on the receptor epithelium of the ampulla of Lorenzini was developed. The basic assumption made in the model is that the apical membrane of the receptor cell has a stationary current-voltage characteristic curve with a region of negative resistance. The model explains logically the unusual sign of the spike response of the ampullae (excitation on application of a cathode to the apical surface of the epithelium) and experimental data obtained by various workers [2,7–10], including some concerned with the most complex forms of electrical and spike responses.  相似文献   

13.
The protonephridial terminal complex of Artioposthia is formed by one or two terminal cells, each with a nucleus located in the lateral wall of the flame bulb, and probably two proximal canal cells forming the wall of the protonephridial capillary. The weir is restricted to the proximal parts of the flame bulbs and consists of convoluted slits separated by thick cytoplasmic columns. Cross-striated ciliary rootlets running parallel with and obliquely or transversely to the longitudinal axis of the flame bulbs strengthen the walls of the flame bulbs and, to a lesser degree, that of the capillary. Numerous cristate mitochondria are present in the terminal and proximal canal cells. Cytoplasmic processes extend from the terminal cells into the adjacent tissue, and narrow internal leptotriches extend from the cytoplasm of the terminal cells into the lumen of the flame bulbs. The wall of the capillary contains many interconnected, liquid filled spaces that communicate with the lumen of the capillary, and two septate junctions. Phylogenetic implications of the findings are discussed.  相似文献   

14.
Summary Ampullary organs were found in the epidermis of the paddle-fish Sorubim lima; they are distributed all over the skin surface of the fish but are particularly densely grouped in the head region and on the dorsal surface of the paddle. Histological and electron microscopical observations show that their structure is similar to the type of cutaneous ampullary organs characteristic of other Siluroidea. Composed of a relatively large mucus-filled ampulla, the organ possesses a short and narrow canal which leads to the outer epidermal surface. The wall of the ampulla is formed of several layers of flat epidermal cells. In general four sensory cells, each one surrounded by supporting cells, compose the sensory epithelium at the bottom of the ampulla. The inner surface of the sensory cells in contact with the ampullary mucus bears only microvilli. The contact between the nerve endings and the sensory cells show the characteristic structure of an afferent neuro-sensory junction. Two ampullae are innervated in some cases by the same afferent nerve fibre.The author expresses her gratitude to Dr. Szabo for his scientific advice during her stay in Gif sur Yvette  相似文献   

15.
Effects of dalargin, a synthetic leu-enkephalin analogue and its antagonist naloxone on synaptic transmission in afferent synapses of ray electroreceptors were investigated using an isolated preparation of Lorenzini ampullae from Black sea rays. It was shown that dalargin (10–6–10–10 mole liter) both decreased background activity and evoked activity of an afferent fiber in a dose-dependent manner. Naloxone (10–5 mole/liter) also inhibited afferent impulsation and completely blocked responses of the Lorenzini ampullae to dalargin application. L-glutamate-induced excitatory responses were reduced in the presence of dalargin. It is suggested that the modulatory action of dalargin on glutamatergic synaptic transmission in the Lorenzini ampullae is exerted via specific opiate receptors.Translated from Neirofiziologiya, Vol. 25, No. 1, pp. 18–21, January–February, 1993.  相似文献   

16.
Mode of Operation of Ampullae of Lorenzini of the Skate, Raja   总被引:5,自引:4,他引:1       下载免费PDF全文
Ampullae of Lorenzini are sensitive electroreceptors. Applied potentials affect receptor cells which transmit synaptically to afferent fibers. Cathodal stimuli in the ampullary lumen sometimes evoke all-or-none "receptor spikes," which are negative-going recorded in the lumen, but more frequently they evoke graded damped oscillations. Cathodal stimuli evoke nerve discharge, usually at stimulus strengths subthreshold for obvious receptor oscillations or spikes. Anodal stimuli decrease any ongoing spontaneous nerve activity. Cathodal stimuli evoke long-lasting depolarizations (generator or postsynaptic potentials) in afferent fibers. Superimposed antidromic spikes are reduced in amplitude, suggesting that the postsynaptic potentials are generated similarly to other excitatory postsynaptic potentials. Anodal stimuli evoke hyperpolarizations of nerves in preparations with tonic activity and in occasional silent preparations; presumably tonic release of excitatory transmitter is decreased. These data are explicable as follows: lumenal faces of receptor cells are tonically (but asynchronously) active generating depolarizing responses. Cathodal stimuli increase this activity, thereby leading to increased depolarization of and increased release of transmitter from serosal faces, which are inexcitable. Anodal stimuli act oppositely. Receptor spikes result from synchronized receptor cell activity. Since cathodal stimuli act directly to hyperpolarize serosal faces, strong cathodal stimuli overcome depolarizing effects of lumenal face activity and are inhibitory. Conversely, strong anodal stimuli depolarize serosal faces, thereby causing release of transmitter, and are excitatory. These properties explain several anomalous features of responses of ampullae of Lorenzini.  相似文献   

17.
Summary Three types of sensilla occurring on the lips and on the antennae of Peripatopsis moseleyi have been investigated by scanning and transmission electron microscopy. On the lips sensory spines can be found which contain numerous cilia originating from bipolar receptor cells. They reach the tip of the spine where the cuticle is modified. The perikarya of the sensory cells, a large supporting cell with a complicated surface and a second type of receptor, form a bud-like structure and are surrounded by a layer of collagen fibrils. The second receptor cell bears apical stereocilia as well as a kinocilium which are directed towards the centre of the animal — thus the cell appears to be turned upside down. The sensilla of the antennae are 1) sensory bristles containing two or three kinds of receptor cells, one of which bears an apical cilium and one kind of supportive cell and 2) sensory bulbs located within furrows consisting of receptor cells with branched cilia and two kinds of supportive cells which are covered by a modified thin cuticle. According to the electron microscopical findings the sensory spines on the lips are presumably chemoreceptors. The sensory bristles on the antennae can be regarded as mechanoreceptors and the sensory bulbs as chemoreceptors.Supported by the Deutsche Forschungsgemeinschaft (Sto 75/3)  相似文献   

18.
Summary The ampullae of Molgula occidentalis are hollow, tubular extensions of the epidermis. They are ensheathed by a secreted tunic. When they grow out shortly after settlement, the ampullae spread the tunic over the substratum to form a firm attachment for the sessile juvenile. A simple squamous epithelium forms the thin ampullar walls. A glandular, simple columnar epithelium forms the distal tip of each ampulla. The glandular cells probably secrete the adhesive that attaches the tunic to the substratum.Repetitive, peristaltic contractions pass from the base to the distal end of each ampulla. Microsurgery, time-lapse cinemicrography and TEM have been used to analyze this phenomenon. The contractions are mediated by a layer of 4–8 nm microfilaments in the base of the ampullar epithelium.Each juvenile has 7–9 ampullae which contract at different frequencies. Isolated ampullae continue to contract normally for several days. Thus each ampulla has an intrinsic rhythm. Microsurgical experiments suggest that there is no specific region within an ampulla with unique pacemaker properties. It is proposed that communication via gap junctions allows the coordination of ampullar cells into a well organized peristaltic wave.  相似文献   

19.
The effects of L-aspartic acid (L-ASP) on spontaneous and evoked activity in afferent nerve fibers were investigated by perfusing the basal membrane of sea skate electroreceptors (the ampullae of Lorenzini) with this substance. It was found that perfusion with physiological saline containing L-ASP exerted a primarily excitatory effect on afferent activity (threshold concentration: 10–7 M). When synaptic transmission was blocked by magnesium ions, activity was restored in the afferent fibers if L-ASP was added to the solution and spike activity persisted for longer; this would imply the presence of desensitizing processes in the postsynaptic receptors of the ampullae. Finding would lead to the conclusion that L-ASP and L-glutamate fulfill a set of criteria for likely neurotransmitters in the ampullae of Lorenzini.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 61–67, January–February, 1987.  相似文献   

20.
During recording of impulse activity from single nerve fibers of electroreceptors of the ampullae of Lorenzini of skates, we studied the responses to electromagnetic radiation (EMR) at a frequency of 37–55 GHz and an intensity of 1–100 mW/cm2.Exposure of the ampullar canal pore to EMR at an intensity of 1–5 mW/cm2 and a distance of 1–10 mm evoked a transient increase in the frequency of low-threshold receptor activity (current threshold was 0.04–0.2 µA). An increase in EMR intensity by more than 8–10 mW/cm2 produced, together with elevation of receptor activity, an inhibition due to a rise in temperature of 1–3°C in the region exposed. The phase of increase in frequency of activity was absent in high current-threshold receptors (0.3–2.0 µA) when exposed to EMR. The receptors responded to irradiation of the ampullar canal pore at a distance of 15–20 mm by an increase in discharge frequency for 20 min. Direct irradiation of the ampullae of Lorenzini induced only inhibitory responses in receptor cells regardless of their excitability.The results obtained indicate that the sensory receptors of vertebrates are sensitive to EMR. It is concluded that the excitatory effects are due to direct reception of EMR by electroreceptors, and the inhibitory effects are related to local heating of the Lorenzini ampullar pore.Neirofiziologiya/Neurophysiology, Vol. 25, No. 5, pp. 325–329, September–October, 1993.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号