首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Earlier, using bioinformatic methods, we reported the identification of repeated DNA sequences (RSs), presumably responsible for the attachment of chromatin loops to the lateral elements of synaptonemal complex in meiotic chromosomes. In the present study, consensus sequences for this class of RS were identified. It was demonstrated that at least part of these sequences belonged to the AluJb subfamily of Alu sequences. The Alu copies distribution along the major human histocompatibility complex (MHC) and their spatial separation from the sites of meiotic recombination was examined. It was demonstrated that simple sequences, like (GT/CA) n , were flanking meiotic recombination sites. A model of the RS organization in meiotic chromosome, most efficiently linking experimental data on the meiotic recombination in MHC and the in silico data on the RS localization (the coefficient of multiple correlation, r = 0.92) is suggested.  相似文献   

2.
Synatonemal complexes (SCs) are the intranuclear structures which facilitate reversible lateral synapsis of the homologous chromosomes in the course of meiosis. It is still unclear which DNA nucleotide sequences are responsible for the chromatin attachment to the SC lateral elements. Considering the features of the dispersed repeated sequences (RS) it is worth to assume their participation in the structure functional organization of the meiotic chromosome. Using numerical analysis we have investigated the relationship between RS and the distribution of events of the meiotic recombination in mouse chromosome 1. Using in situ hybridization on spread mouse spermatocytes, we have demonstrated the arrangement of different types of RS relative to SCs. Hybridization signals of B1(Alu), B2, and minisatellite probes were localizating predominantly in the SCs regions. Our results allow us to suggest the model of the meiotic chromosome organization with the RS as the sequences, participating in the attachment of chromatin loops and SCs.  相似文献   

3.
Synaptonemal complexes (SCs) are intranuclear structures that facilitate the reversible lateral synapsis of homologous chromosomes in the course of meiosis. It is still unclear which DNA nucleotide sequences are responsible for the attachment of chromatin to SC lateral elements. Considering the features of the dispersed repeated sequences (RSs), it is possible to assume that they participate in the structure and functional organization of the meiotic chromosomes. Using numerical analysis, we have investigated the relationship between the RS and the distribution of meiotic recombination events in mouse chromosome 1. Using in situ hybridization on spread mouse spermatocytes, we have examined the arrangement of different types of RSs relative to SCs. Hybridization signals of B1(Alu), B2, and minisatellite probes were localized predominantly in SCs regions. Based on the results, we proposed a model of meiotic chromosome organization. According to the model, RSs participate in the attachment of chromatin loops to SCs.  相似文献   

4.
5.
Analysis of homologous recombination in eukaryotes has shown that some meiotic crossing-over occurs preferentially at specific genomic sites of limited physical distance called recombinational hotspots. In the mouse, recombinational hotspots have only been defined in the major histocompatibility complex (MHC) on chromosome (Chr) 17. In an attempt to examine whether hotspots are unique to the MHC or are present throughout the genome, high-resolution linkage maps of Chr 17 based on five backcrosses involving different inbred strains have been generated. These maps separate many markers that were previously shown at the same map position and allow a detailed analysis of recombination patterns across Chr 17. Corresponding recombination intervals in these maps have been compared for the identification of intervals with very little or no recombination in certain genetic crosses and considerable recombination in other genetic crosses. This approach has been termed Recombination Interval Analysis. Possible haplotype-dependent non-MHC hotspots, as well as previously identified MHC hotspots, have been detected by interval analysis. Received: 1 December 1997/ Accepted: 27 February 1998  相似文献   

6.
A strong correlation between GC content and recombination rate is observed in many eukaryotes, which is thought to be due to conversion events linked to the repair of meiotic double-strand breaks. In several organisms, the length of conversion tracts has been shown to decrease exponentially with increasing distance from the sites of meiotic double-strand breaks. I show here that this behavior leads to a simple analytical model for the evolution and the equilibrium state of the GC content of sequences devoid of meiotic double-strand break sites. In the yeast Saccharomyces cerevisiae, meiotic double-strand breaks are practically excluded from protein-coding sequences. A good fit was observed between the predictions of the model and the variations of the average GC content of the third codon position (GC3) of S. cerevisiae genes. Moreover, recombination parameters that can be extracted by fitting the data to the model coincide with experimentally determined values. These results thus indicate that meiotic recombination plays an important part in determining the fluctuations of GC content in yeast coding sequences. The model also accounted for the different patterns of GC variations observed in the genes of Candida species that exhibit a variety of sexual lifestyles, and hence a wide range of meiotic recombination rates. Finally, the variations of the average GC3 content of human and chicken coding sequences could also be fitted by the model. These results suggest the existence of a widespread pattern of GC variation in eukaryotic genes due to meiotic recombination, which would imply the generality of two features of meiotic recombination: its association with GC-biased gene conversion and the quasi-exclusion of meiotic double-strand breaks from coding sequences. Moreover, the model points out to specific constraints on protein fragments encoded by exon terminal sequences, which are the most affected by the GC bias.  相似文献   

7.
In situ hybridization to human meiotic metaphase I (MI) preparations, using the labeled minisatellite core sequence lambda 33.15, showed clustering of autoradiographic grains principally at or around chiasmata, autosomal sites where crossing-over had occurred. For the XY bivalent, the pairing region formed between the terminal regions of the two short arms (Xpter Ypter), was also a principal site of labeling; in addition, the terminal region of the X long arm (Xqter) was labeled. Control experiments using a member of the human Alu family of dispersed repeated DNA sequences showed a much more randomized grain distribution, with clustering over chiasmata being far less obvious. The data provide support for the suggestion that polymorphic minisatellite regions within the human genome might play a significant role in pairing and/or recombination.  相似文献   

8.
9.
Davis ES  Shafer BK  Strathern JN 《Genetics》2000,155(3):1019-1032
Meiotic ectopic recombination occurs at similar frequencies among many sites in the yeast genome, suggesting that all loci are similarly accessible to homology searching. In contrast, we found that his3 sequences integrated in the RDN1 (rDNA) locus were unusually poor participants in meiotic recombination with his3 sequences at other sites. We show that the low rate of meiotic ectopic recombination resulted from the poor ability of RDN1::his3 to act as a donor sequence. SIR2 partially repressed interchromosomal meiotic ectopic recombination at RDN1, consistent with its role in regulating recombination, gene expression, and retrotransposition within RDN1. We propose that RDN1 is physically sequestered from meiotic homology searching mechanisms.  相似文献   

10.
Comparative studies of major histocompatibility complex (MHC) genes across vertebrate species can reveal the evolutionary processes that shape the structure and function of immune regulatory proteins. In this study, we characterized MHC class I sequences from six frog species representing three anuran families (Hylidae, Centrolenidae and Ranidae). Using cDNA from our focal species, we amplified a total of 79 unique sequences spanning exons 2-4 that encode the extracellular domains of the functional alpha chain protein. We compared intra- and interspecific nucleotide and amino-acid divergence, tested for recombination, and identified codon sites under selection by estimating the rate of non-synonymous to synonymous substitutions with multiple codon-based maximum likelihood methods. We determined that positive (diversifying) selection was acting on specific amino-acid sites located within the domains that bind pathogen-derived peptides. We also found significant signals of recombination across the physical distance of the genes. Finally, we determined that all the six species expressed two or three putative classical class I loci, in contrast to the single locus condition of Xenopus laevis. Our results suggest that MHC evolution in anurans is a dynamic process and that variation in numbers of loci and genetic diversity can exist among taxa. Thus, the accumulation of genetic data for more species will be useful in further characterizing the relative importance of processes such as selection, recombination and gene duplication in shaping MHC loci among amphibian lineages.  相似文献   

11.
We studied the rate and pattern of recombinations within the extended major histocompatibility complex (MHC) locus of the human embryos obtained during preimplantation genetic diagnosis (PGD) for HLA compatibility. Recombinant allele frequency was on average 5.33?%, and recombination rate was 0.44?cM/Mb in the 12.2?Mb of the extended MHC locus. Recombination rate varied up to 14-fold (0.19–2.73?cM/Mb) between cases, and maternal recombination rate was on average 3.8 times higher than paternal alleles. More than 69?% of the recombination hot spots were clustered within the extended class II region where the recombination rate was 5.4 times more than that in extended class I region. These findings indicate the potential of PGD to study the mechanisms of linkage disequilibrium within MHC locus of human embryos, demonstrate the recombination characteristics within extended MHC loci of human embryos in comparison to sperm and family studies, and point to the significance of design and interpretation of PGD for HLA compatibility to avoid misdiagnosis because of meiotic recombinations.  相似文献   

12.
Meiotic recombination is initiated by the introduction of DNA double-strand breaks (DSBs) at recombination hotspots. DSB ends are resected to yield ssDNA, which is used in a homology search. Sae2p, which is involved in the resection of DSB ends, is phosphorylated by the Mec1p and Tel1p kinases during meiosis. To clarify the role of Sae2p phosphorylation in meiotic recombination, three mutants with alanine substitutions (at two putative Mec1/Tel1 phosphorylation sites near the N terminus, at three sites near the C terminus or at all five sites) were constructed. Analysis of DSB ends during meiotic recombination demonstrated that phosphorylation of the three C-terminal phosphorylation sites is necessary for DSB end resection and that phosphorylation of the two N-terminal phosphorylation sites is required for the efficient initiation of DSB end resection. Sae2p was localized on meiotic chromosomes in the rad50S and mre11-H125R mutants, which accumulate DSB ends. Alanine substitutions of all phosphorylation sites did not affect localization of Sae2p on meiotic chromosomes. Although colocalization of Sae2p with Mre11p and recombinant formation were observed in the N-terminally mutated and the C-terminally mutated strains, these processes were drastically impaired in the quintuple mutant. These results indicate that phosphorylation of Sae2p is required to initiate resection and to improve the efficiency of resection through cooperation with the Mre11-Rad50-Xrs2 complex.  相似文献   

13.
14.
In C. elegans and D. melanogaster, specialized sites have an important role in meiotic recombination. Recent evidence has shown that these sites in C. elegans have a role in synapsis. Here we compare the initiation of synapsis in organisms with specialized sites and those without. We propose that, early in prophase, synapsis requires an initiator to overcome inhibitory factors that function to prevent synaptonemal complex (SC) formation between nonhomologous sequences. These initiators of SC formation can be stimulated by crossover sites, possibly other types of recombination sites and also specialized sites where recombination does not occur.  相似文献   

15.
We have previously shown that several multicopy gene families within the major histocompatibility complex (MHC) arose from a process of segmental duplication. It has also been observed that retroelements play a role in generating diversity within these duplicated segments. The objective of this study was to compare the genomic organization of a gene duplication within another multicopy gene family outside the MHC. Using new continuous genomic sequence encompassing the APOE-CII gene cluster, we show that APOCI and its pseudogene, APOCI′, are contained within large duplicated segments which include sequences from the hepatic control region (HCR). Flanking Alu sequences are observed at both ends of the duplicated unit, suggesting a possible role in the integration of these segments. As observed previously within the MHC, the major differences between the segments are the insertion of sequences (approximately 200–1000 bp in length), consisting predominantly of Alu sequences. Ancestral retroelements also contribute to the generation of sequence diversity between the segments, especially within the 3′ poly(A) tract of Alu sequences. The exonic and regulatory sequences of the APOCI and HCR loci show limited sequence diversity, with exon 3 being an exception. Finally, the typing of pre- and postduplication Alus from both segments indicates an estimated time of duplication of approximately 37 million years ago (mya), some time prior to the separation of Old and New World monkeys. Received: 17 July 1999 / Accepted: 6 November 1999  相似文献   

16.
17.
Alu repeats are the most common type of repetitive DNA sequences dispersed throughout the human genome. Technical advances in the field of cytogenetics and molecular biology have facilitated the analysis of epithelial tumors and hematologic malignancies which has led to the observation of Alu elements in and near sites often involved in chromosomal rearrangements. Repair mechanisms of double strand breaks (DSB) such as homol-ogous recombination (HR) may rely on the sequence homology of Alu repeats, potentially leading to chromosomal rearrange-ments. Databases have confirmed the strong association between Alu repeats, specifically the 26 bp consensus sequence and chro-mosomal regions involved in deletions and translocations. Although the Alu repetitive sequence is a potential "hotspot" during homologous recombination, there are other cellular mech-anisms that may play a more prominent role in the initiation of chromosomal rearrangements.  相似文献   

18.
L M Erickson  H S Kim  N Maeda 《Genomics》1992,14(4):948-958
To investigate the nature of the recombination that generated the haptoglobin three-gene cluster in Old World primates, we sequenced the region between the second gene (HPR) and the third gene (HPP) in chimpanzees (15 kb), as well as the region 3' to the cluster in humans (14 kb). Comparison to the previously sequenced human haptoglobin (HP) and HPR genes showed that the junction point between HP and HPR in humans (junction 1) was not identical to the junction point between the HPR and HPP genes of the chimpanzee (junction 2). An Alu sequence was found at each junction, but both Alu sequences lacked short direct repeats of the flanking genomic DNA. The lack of direct repeats implies that both junction Alu sequences are the products of recombination between different Alu elements. In addition, other insertion and deletion events are clustered in the regions near the junction Alu sequences. The observation that Alu sequences define the junctions between genes in the haptoglobin gene cluster emphasizes the importance of Alu sequences in the evolution of multigene families.  相似文献   

19.
Multiple mutations of the insulin receptor (INSR) gene have been identified in individuals with extreme insulin resistance. These mutations have included recombination events between Alu repeat units in the tyrosine kinase-encoding beta-chain region of the gene. To evaluate the influence of Alu and dinucleotide repetitive sequences on recombination events within the insulin receptor gene, I examined the degree of linkage disequilibrium between RFLP pairs spanning the gene. I established 228 independent haplotypes for seven RFLPs (two each for PstI, RsaI, and SstI and one for MspI and 172 independent haplotypes which included an additional RFLP with BglII) from 19 pedigrees. These RFLPs span > 130 kb of this gene, and my colleagues and I previously demonstrated that multiple Alu sequences separate RFLP pairs. Observed haplotype frequencies deviated significantly from those predicted. Pairwise analysis of RFLP showed high levels of linkage disequilibrium among RFLP in the beta-chain region of the insulin receptor, but not between alpha-chain RFLPs and those of the beta-chain. Disequilibrium was present among beta-chain RFLPs, despite separation by one or more Alu repeat sequences. The very strong linkage disequilibrium which was present in sizable regions of the INSR gene despite the presence of both Alu and microsatellite repeats suggested that these regions do not have a major impact on recombinations at this locus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号