首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The aryl hydrocarbon receptor (AHR) is well known for mediating the toxic effects of TCDD and has been a subject of intense research for over 30 years. Current investigations continue to uncover its endogenous and regulatory roles in a wide variety of cellular and molecular signaling processes. A zebrafish line with a mutation in ahr2 (ahr2(hu3335)), encoding the AHR paralogue responsible for mediating TCDD toxicity in zebrafish, was developed via Targeting Induced Local Lesions IN Genomes (TILLING) and predicted to express a non-functional AHR2 protein. We characterized AHR activity in the mutant line using TCDD and leflunomide as toxicological probes to investigate function, ligand binding and CYP1A induction patterns of paralogues AHR2, AHR1A and AHR1B. By evaluating TCDD-induced developmental toxicity, mRNA expression changes and CYP1A protein in the AHR2 mutant line, we determined that ahr2(hu3335) zebrafish are functionally null. In silico modeling predicted differential binding of TCDD and leflunomide to the AHR paralogues. AHR1A is considered a non-functional pseudogene as it does not bind TCCD or mediate in vivo TCDD toxicity. Homology modeling, however, predicted a ligand binding conformation of AHR1A with leflunomide. AHR1A-dependent CYP1A immunohistochemical expression in the liver provided in vivo confirmation of the in silico docking studies. The ahr2(hu3335) functional knockout line expands the experimental power of zebrafish to unravel the role of the AHR during development, as well as highlights potential activity of the other AHR paralogues in ligand-specific toxicological responses.  相似文献   

6.
7.
8.
9.
The aromatic hydrocarbon receptor (AHR) and AHR nuclear translocator protein (ARNT) mediate the toxic effects of a wide variety of halogenated and polycyclic aromatic hydrocarbons. While it can be assumed that AHR has an endogenous function, its role in reproduction is currently undefined. The present study seeks to examine the regulation of AHR and ARNT mRNAs in liver and ovarian tissues across the rat estrous cycle. Message for hepatic AHR was increased significantly on the morning of proestrus, and decreased dramatically by the evening of proestrus; while hepatic ARNT mRNA was significantly decreased between diestrus and the morning of proestrus, and between the evening of proestrus and the morning of estrus. Ovarian AHR mRNA was unchanged from diestrus to proestrus, and was decreased on the evening of proestrus. Changes in the expression of ARNT mRNA mirrored changes in the liver. To assess interaction between the AHR- and estrogen-receptor (ER)-signaling pathways and to test the hypothesis that estrogen regulates AHR mRNA, 25-day-old female rats were injected with either 17beta-estradiol, the ER antagonist ICI 182 780, or with vehicle, and hepatic AHR mRNA was measured. Treatment with estrogen or the estrogen antagonist did not alter the abundance of AHR mRNA in the liver. These data suggest that while estrogen may not be the key regulator of AHR mRNA expression, a factor associated with the rat reproductive cycle may be important in regulating the expression of both the AHR and ARNT genes in the ovary and liver.  相似文献   

10.
The aryl hydrocarbon receptor (AHR) mediates numerous toxic effects following exposure of vertebrate animals to certain aromatic environmental contaminants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). To investigate possible effects of TCDD on invertebrates, a cDNA encoding an AHR homologue was cloned from the soft-shell clam, Mya arenaria. The predicted amino acid sequence contains regions characteristic of vertebrate AHRs: basic helix-loop-helix (bHLH) and PER-ARNT-SIM (PAS) domains and a glutamine-rich region. Phylogenetic analysis shows that the clam AHR sequence groups within the AHR subfamily of the bHLH-PAS family, in a clade containing AHR homologues from Drosophila melanogaster and Caenorhabditis elegans. AHR mRNA expression was detected in all tissue types tested: adductor muscle, digestive gland, foot, gill, gonad, mantle, and siphon. The in vitro-expressed clam AHR exhibited sequence-specific interactions with a mammalian xenobiotic response element (XRE). Velocity sedimentation analysis using either in vitro-expressed clam AHR or clam cytosolic proteins showed that this AHR homologue binds neither [(3)H]TCDD nor [(3)H]beta-naphthoflavone (BNF). Similarly, in vitro-expressed D. melanogaster and C. elegans AHR homologues lacked specific binding of these compounds. Thus, the absence of specific, high-affinity binding of the prototypical AHR ligands TCDD and BNF, is a property shared by known invertebrate AHR homologues, distinguishing them from vertebrate AHRs. Comparative studies of phylogenetically diverse organisms may help identify an endogenous ligand(s) and the physiological role(s) for this protein.  相似文献   

11.
12.
The aryl hydrocarbon receptor (AHR) and AHR repressor (AHRR) proteins regulate gene expression in response to some halogenated aromatic hydrocarbons and polycyclic aromatic hydrocarbons. The Atlantic killifish is a valuable model of the AHR signaling pathway, but antibodies are not available to fully characterize AHR and AHRR proteins. Using bacterially expressed AHRs, we developed specific and sensitive polyclonal antisera against the killifish AHR1, AHR2, and AHRR. In immunoblots, these antibodies recognized full-length killifish AHR and AHRR proteins synthesized in rabbit reticulocyte lysate, proteins expressed in mammalian cells transfected with killifish AHR and AHRR constructs, and AHR proteins in cytosol preparations from killifish tissues. Killifish AHR1 and AHR2 proteins were detected in brain, gill, kidney, heart, liver, and spleen. Antisera specifically precipitated their respective target proteins in immunoprecipitation experiments with in vitro-expressed proteins. Killifish ARNT2 co-precipitated with AHR1 and AHR2. These sensitive, specific, and versatile antibodies will be valuable to researchers investigating AHR signaling and other physiological processes involving AHR and AHRR proteins.  相似文献   

13.
14.
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of planar halogenated aromatic hydrocarbons (PHAHs). Bony fishes exposed to PHAHs exhibit a wide range of developmental defects. However, functional roles of fish AHR are not yet fully understood, compared with those of mammalian AHRs. To investigate the potential sensitivity to PHAHs toxic effects, an AHR cDNA was initially cloned and sequenced from red seabream (Pagrus major), an important fishery resource in Japan. The present study succeeded in identifying two highly divergent red seabream AHR cDNA clones, which shared only 32% identity in full-length amino acid sequence. The phylogenetic analysis revealed that one belonged to AHR1 clade (rsAHR1) and another to AHR2 clade (rsAHR2). The rsAHR1 encoded a 846-residue protein with a predicted molecular mass of 93.2 kDa, and 990 amino acids and 108.9 kDa encoded rsAHR2. In the N-terminal half, both rsAHR genes included bHLH and PAS domains, which participate in ligand binding, AHR/ARNT dimerization and DNA binding. The C-terminal half, which is responsible for transactivation, was poorly conserved between rsAHRs. Quantitative analyses of both rsAHRs mRNAs revealed that their tissue expression profiles were isoform-specific; rsAHR1 mRNA expressed primarily in brain, heart, ovary and spleen, while rsAHR2 mRNA was observed in all tissues examined, indicating distinct roles of each rsAHR. Furthermore, there appeared to be species-differences in the tissue expression profiles of AHR isoforms between red seabream and other fish. These results suggest that there are isoform- and species-specific functions in piscine AHRs.  相似文献   

15.
16.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most toxic congener of a large class of manmade pollutants that persist in the environment. TCDD exerts its toxic effects, in part, by binding to its receptor known as the aromatic hydrocarbon receptor (AHR). TCDD is estrogen modulatory and in some systems its receptor associates directly with estrogen receptors via co-activator molecules. TCDD inhibits steroid synthesis in human ovarian granulosa cells and AHR is found in these cells. We have previously shown that AHR is found in whole rhesus monkey ovary, but have yet to establish its location. In the present study, we set out to show that radiolabeled TCDD binds to monkey ovarian follicles and that this binding is receptor mediated. Ovaries from Macaca mulatta were sectioned on a cryostat at 10 micro m; and sections were incubated with either control vehicle, (3)H-TCDD, or (3)H-TCDD plus alpha-naphthoflavone (ANF), a known receptor-blocking agent. Here, we show for the first time specific binding of TCDD to the granulosa cells of antral follicles and other regions of the rhesus monkey ovary. Our data indicate a 60-fold increase in binding with (3)H-TCDD over that of control, and that this binding is reduced to the levels seen in controls with the addition of the competitive antagonist ANF. These findings support the hypothesis that TCDD directly affects primate ovarian function via the AHR.  相似文献   

17.
18.
Aryl hydrocarbon receptors: diversity and evolution   总被引:3,自引:0,他引:3  
Animals have evolved inducible enzymatic defenses to facilitate the biotransformation and elimination of toxic compounds encountered in the environment. The sensory component of this system consists of soluble receptors that regulate the expression of certain isoforms of cytochrome P450, other enzymes, and transporters in response to environmental chemicals. These receptors include several members of the steroid/nuclear receptor superfamily as well as the aryl hydrocarbon receptor (AHR), a member of the bHLH-PAS gene superfamily. In addition to its adaptive functions, the AHR serves poorly understood physiological roles; interference with those roles by dioxins and related chemicals causes toxicity. One approach to understanding the physiological significance of the AHR is to characterize its structure, function, and regulation in diverse species, including mammals, birds, fish, and invertebrates. These animal groups include model species with unique features that can be exploited to broaden our understanding of AHR function. Studies carried out in diverse species also provide phylogenetic information that allows inferences about the evolutionary history of the AHR. This review summarizes the current understanding of AHR diversity among animal species and the evolution of the AHR signaling pathway, as inferred from molecular studies in vertebrate and invertebrate animals. The AHR gene has undergone duplication and diversification in vertebrate animals, resulting in at least three members of an AHR gene family: AHR1, AHR2, and AHR repressor. The inability of invertebrate AHR homologs to bind dioxins and related chemicals, along with other evidence, suggests that the adaptive role of the AHR as a regulator of xenobiotic metabolizing enzymes may have been a vertebrate innovation. The physiological functions of the AHR during development appear to be ancestral to the adaptive functions. Sensitivity to the developmental toxicity of dioxins and related chemicals may have had its origin in the evolution of dioxin-binding capacity of the AHR in the vertebrate lineage.  相似文献   

19.
20.
Identification of novel splice variants of ARNT and ARNT2 in the rat   总被引:1,自引:0,他引:1  
Most of the biochemical and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are mediated by the bHLH/PAS protein AH receptor (AHR). For regulation of gene activities, AHR dimerizes with another member of the bHLH/PAS protein family, AHR nuclear translocator (ARNT). A substrain of Wistar rats, Han/Wistar (Kuopio) (H/W), is about 1000-fold more resistant to the acute lethality of TCDD than other strains, exemplified by Long-Evans (Turku/AB) (L-E); the LD50 values for these two strains are >9600 and 10-20 microg/kg, respectively. Previous studies have demonstrated that the major reason for the exceptional TCDD resistance of H/W rats lies in their AHR, which is remodeled at its C-terminal transactivation domain, but there appears to be another contributing gene product. The present study set out to compare the primary structure of ARNT and the closely related ARNT2 proteins in H/W and L-E rats by cDNA cloning. To our surprise, we found several isoforms of these proteins only one of which has previously been reported in rats. All of the isoforms appeared to arise from alternative splicing. For ARNT, isoforms with deletions at exon 5, 3(') end of exon 6 or 5(') end of exon 11, or with an insertion at 5(') end of exon 20 were discovered. There was also interindividual variation in the number of glutamine-encoding codons at 5(') end of exon 16. The most exciting new variant was revealed for ARNT2, because the insertion found at 5(') end of exon 19 disrupts the functionally critical transactivation domain in the protein, implying a dominant negative role for this isoform. The relative expression levels of the variants did not differ in the two rat strains, nor did TCDD modify the ratios, suggesting that the variants do not contribute to TCDD resistance. However, the regulation of ARNT and ARNT2 activities may be more intricate than previously assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号