首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The inheritance of heat-stable resistance to the root-knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood, was studied in crosses between different accessions and clones of Lycopersicon peruvianum L. F1, F2 and BC1 generations were evaluated for their index of resistance based on numbers of eggs and infective second-stage juveniles (J2) per gram of root, and the segregation ratios were determined in experiments carried out at constant soil temperatures of 25 °C and 30 °C. L. peruvianum P.I. 270435 clones 3 MH and 2R2 and P.I. 126443 clone 1 MH, all heatstable resistant, were crossed with L. peruvianum P.I. 126440 clone 9 MH, which is susceptible at both 25 °C and 30 °C. All F1 progeny were resistant at 25 °C and 30 °C; F2 and BC1 generations at 25 °C gave resistant: susceptible (RS) ratios of 151 and 31, respectively, which suggests that resistance is conditioned by two independently assorting genes. However, at 30 °C, RS ratios of 31 and 11 were observed for the F2 and BC1 generations, respectively. These results indicate that heat-stable resistance is conferred by a single dominant gene expressed at 30 °C, while the second resistance gene is heat unstable and not expressed at 30 °C. P.I. 270435 clones 2R2 and 3 MH and P.I. 126443 clone 1 MH were crossed with P.I. 128657 clone 3 R4 (source of gene Mi), which is resistant at 25 °C but susceptible at 30 °C. All of the F1 progeny were resistant at 25 °C and 30 °C.TC1 progeny of 270435-2 R2 x 128657-3 R4, 270435-3 MH x 128657-3 R4 and 126443-1 MH x 128657-3 R4 crossed with susceptible 126440-9 MH were all resistant at 25 °C and segregated in a 11 ratio at 30 °C. These results also suggest that the heat-stable resistance is monogenic and that it is non-allelic to gene Mi. The non-segregation of TC1 progenies at 25 °C, suggests that the heat-unstable resistance factor in L. peruvianum P.I. 270435 clones 2 R2 and 3 MH and in P.I. 126443 clone 1 MH is allelic to or the same as gene Mi. We propose the symbol Mi-2 for the gene in P.I. 270435 that confers heat-stable resistance to M. incognita.  相似文献   

2.
Comparative analyses of bacterial community successions in the composting materials were done for a conventional windrow post-treatment (WPOT) process with the hyperthermophilic pre-treatment (HTPRT) and simple windrow composting (SWC; without the HTPRT). Multidimensional scaling profiles based on data of terminal restriction fragment length polymorphisms of the bacterial population in the samples of every 7 days composting material and analyses of the 16S rRNA gene-based clone library of the 7 and 21 days composting materials suggested that bacterial communities of the composting materials differed much between these two processes until the 35 days of composting, whereas that they were closely related to each other at the final composting stage (42 days of composting). Detailed phylogenetic analysis clarified that all WPOT clone libraries contained many clones of the lineages of aerobic bacteria (for example, bacilli). However, the most abundant clones retrieved from all SWC materials were affiliated with a clone cluster closely related to identified and classified members of the phylum Firmicutes that have strictly anaerobic metabolism pathways. From these results, we conclude that the HTPRT process contributed to easily establish an aerobic ecosystem from the early stage to the final stage of WPOT composting with plowing the materials only once a week.  相似文献   

3.
To investigate the biomass and phylogenetic diversity of the microbial community inhabiting the deep aquifer of the Great Artesian Basin (GAB), geothermal groundwater gushing out from the aquifer was sampled and analyzed. Microbial cells in the groundwater were stained with acridine orange and directly counted by epifluorescence microscopy. Microbial cells were present at a density of 108–109 cells per liter of groundwater. Archaeal and bacterial small-subunit rRNA genes (rDNAs) were amplified by PCR with Archaea- and Bacteria-specific primer sets, and clone libraries were constructed separately. A total of 59 clones were analyzed in archaeal and bacterial 16S rDNA libraries, respectively. The archaeal 16S rDNA clones were divided into nine operated taxonomic units (OTUs) by restriction fragment length polymorphism. These OTUs were closely related to the methanogenic genera Methanospirillum and Methanosaeta, the heterotrophic genus Thermoplasma, or miscellaneous crenarchaeota group. More than one-half of the archaeal clones (59% of total 59 clones) were placed beside phylogenetic clusters of methanogens. The majority of the methanogen-related clones (83%) was closely related to a group of hydrogenotrophic methanogens (genus Methanospirillum). The bacterial OTUs branched into seven phylogenetic clusters related to hydrogen-oxidizing thermophiles in the genera Hydrogenobacter and Hydrogenophilus, a sulfate-reducing thermophile in the genus Thermodesulfovibrio, chemoheterotropic bacteria in the genera Thermus and Aquaspirillum, or the candidate division OP10. Clones closely related to the thermophilic hydrogen-oxidizers in the genera Hydrogenobacter and Hydrogenophilus were dominant in the bacterial clone library (37% of a total of 59 clones). The dominancy of hydrogen-users strongly suggested that H2 plays an important role as a primary substrate in the microbial ecosystem of this deep geothermal aquifer.  相似文献   

4.
Summary Two Trifolium repens clones from natural meadows at 600 m and 2030 m above sea level, and with differing dependence on temperature of their rate of apparent photosynthesis, were grown under controlled environments. Radioactive products in detached leaves were examined after 20 and 40 s periods of steady state photosynthesis in 14CO2 at 3° C and 24° C. Glycine and serine were hardly labeled at 3° C. At 24° C, the leaves of the alpine clone showed significantly, (P<0.025) more activity in these amino acids than those from the low altitude clone. It is suggested that the alpine clone has a higher photorespiration. This is supported by the labeling pattern of glucose, fructose, sucrose, and glucose-6-phosphate.The high altitude clone requires lower temperatures for photosynthesis than the low altitude clone. It is suggested, that this is caused by its higher photorespiration, which reduces net photosynthesis at high temperatures. The lower photorespiration activity of the low altitude clone can be interpreted as an adaptation to its warmer habitat.  相似文献   

5.
Bacterial diversity in surface sediments from the Pacific Arctic Ocean   总被引:5,自引:0,他引:5  
In order to assess bacterial diversity within four surface sediment samples (0–5 cm) collected from the Pacific Arctic Ocean, 16S ribosomal DNA clone library analysis was performed. Near full length 16S rDNA sequences were obtained for 463 clones from four libraries and 13 distinct major lineages of Bacteria were identified (α, β, γ, δ and ε-Proteobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, Actinobacteria, Firmicutes, Planctomycetes, Spirochetes, and Verrucomicrobia). α, γ, and δ-Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria were common phylogenetic groups from all the sediments. The γ-Proteobacteria were the dominant bacterial lineage, representing near or over 50% of the clones. Over 35% of γ-Proteobacteria clones of four clone library were closely related to cultured bacterial isolates with similarity values ranging from 94 to 100%. The community composition was different among sampling sites, which potentially was related to geochemical differences.  相似文献   

6.
Metabolic and phylogenetic diversity of cultivated anaerobic microorganisms from acidic continental hot springs and deep-sea hydrothermal vents was studied by molecular and microbiological methods. Anaerobic organotrophic enrichment cultures growing at pH 3.5–4.0 and 60 or 85°C with organic energy sources were obtained from samples of acidic hot springs of Kamchatka Peninsula (Pauzhetka, Moutnovski Volcano, Uzon Caldera) and Kunashir Island (South Kurils) as well as from the samples of chimneys of East Pacific Rise (13°N). The analyses of clone libraries obtained from terrestrial enrichment cultures growing at 60°C revealed the presence of archaea of genus Thermoplasma and bacteria of genus Thermoanaerobacter. Bacterial isolates from these enrichments were shown to belong to genera Thermoanaerobacter and Thermoanaerobacterium, being acidotolerant with the pH optimum for growth at 5.5–6.0 and the pH minimum at 3.0. At 85°C, domination of thermoacidophilic archaea of genus Acidilobus in terrestrial enrichments was found by both molecular and microbiological methods. Five isolates belonging to this genus possessed some phenotypic features that were new for this genus, such as flagellation or the ability to grow on monosaccharides or disaccharides. Analyses of clone libraries from the deep-sea thermoacidophilic enrichment cultures showed that the representatives of the genus Thermococcus were present at both 60 and 85°C. From the 60°C deep-sea enrichment, a strain belonging to Thermoanaerobacter siderophilus was isolated. It grew optimally at pH 6.0 with the minimum pH for growth at 3.0 and with salinity optimum at 0–2.5% NaCl and the maximum at 7%, thus differing significantly from the type strain. These data show that fermentative degradation of organic matter may occur at low pH and wide temperature range in both terrestrial and deep-sea habitats and can be performed by acidophilic or acidotolerant thermophilic prokaryotes.  相似文献   

7.
We analyzed the phylogenetic composition of bacterioplankton assemblages in 11 Arctic Ocean samples collected over three seasons (winter-spring 1995, summer 1996, and summer-fall 1997) by sequencing cloned fragments of 16S rRNA genes. The sequencing effort was directed by denaturing gradient gel electrophoresis (DGGE) screening of samples and the clone libraries. Sequences of 88 clones fell into seven major lineages of the domain Bacteria: α (36%)-, γ (32%)-, δ (14%)-, and (1%)-Proteobacteria; Cytophaga-Flexibacter-Bacteroides spp. (9%); Verrucomicrobium spp. (6%); and green nonsulfur bacteria (2%). A total of 34% of the cloned sequences (excluding clones in the SAR11 and Roseobacter groups) had sequence similarities that were <94% compared to previously reported sequences, indicating the presence of novel sequences. DGGE fingerprints of the selected samples showed that most of the bands were common to all samples in all three seasons. However, additional bands representing sequences related to Cytophaga and Polaribacter species were found in samples collected during the summer and fall. Of the clones in a library generated from one sample collected in spring of 1995, 50% were the same and were most closely affiliated (99% similarity) with Alteromonas macleodii, while 50% of the clones in another sample were most closely affiliated (90 to 96% similarity) with Oceanospirillum sp. The majority of the cloned sequences were most closely related to uncultured, environmental sequences. Prominent among these were members of the SAR11 group. Differences between mixed-layer and halocline samples were apparent in DGGE fingerprints and clone libraries. Sequences related to α-Proteobacteria (dominated by SAR11) were abundant (52%) in samples from the mixed layer, while sequences related to γ-proteobacteria were more abundant (44%) in halocline samples. Two bands corresponding to sequences related to SAR307 (common in deep water) and the high-G+C gram-positive bacteria were characteristic of the halocline samples.  相似文献   

8.
Samples of sediments and surrounding soda soils (SS) from the extremely saline and alkaline lakes of the Wadi el Natrun in the Libyan Desert, Egypt, were obtained in October 2000. Anaerobic enrichment cultures were grown from these samples, DNA isolated, and the bacterial diversity assessed by 16S rRNA gene clone analysis. Clones derived from lake sediments (LS) most closely matched Clostridium spp., Natronoincola histidinovorans, Halocella cellulolytica, Bacillus spp., and the CytophagaFlexibacterBacteroides group. Similar clones were identified in the SS, but Bacillus spp. predominated. Many of the clones were most closely related to organisms already identified in alkaline or saline environments. Two genomic DNA libraries were made from the pooled LS enrichments and a single SS-enrichment sample. A novel cellulase activity was identified and characterized in each. The lake cellulase ORF encoded a protein of 1,118 amino acids; BLASTP analysis showed it was most closely related to an endoglucanase from Xanthomonas campestris. The soil-cellulase ORF encoded a protein of 634 amino acids that was most closely related to an endoglucanase from Fibrobacter succinogenes.  相似文献   

9.
Archaeal 16S rRNA gene clone libraries using PCR amplicons from eight different layers of the MD06-3051 core were obtained from the tropical Western Pacific sediments. A total of 768 clones were randomly selected, and 264 representative clones were sequenced by restriction fragment length polymorphism. Finally, 719 valid clones and 104 operational taxonomic units were identified after chimera-check and ≥97% similarity analysis. The phylogenetic analysis of 16S rDNA sequences obtained from sediment samples were very diverse and showed stratification with depth. Majority of the members were most closely related to uncultivated groups and physiologically uncharacterized assemblages. All phylotypes were affiliated with Crenarchaeota (76%) and Euryarchaeota (24%), respectively. Deep-sea archaeal group (DSAG, 41% of total clones) and miscellaneous crenarchaeotic group (MCG, 29% of total clones) belonging to Crenarchaeota were the most predominant archaeal 16S rDNA phylotypes in clone libraries. Phylotypes in this study shared high similarity with those in subsurface sediments from Peru Margin sites, which indicated that different geographical zones might host similar members of archaeal populations based on similar sedimentary environments. In our study, members of DSAG and MCG seemed to dominate certain layers of the nonhydrate sediments, suggesting a wide ecophysiological adaptation than previously appreciated. The spatial distribution and community structure of these groups might vary with the different geochemical gradients of the environment.  相似文献   

10.
Resistance to Meloidogyne incognita (Kofoid and White) Chitwood in clones of Lycopersicon peruvianum (L.) Mill. PI 126443-1MH, 270435-2R2 and 2704353MH, their F1, a field-produced F2, and their test-cross (TC1) populations, was evaluated based on egg masses and eggs produced on root systems. Reactions to M. incognita isolates differing in virulence to gene Mi were determined at 25°C (Mi expressed) and 32°C (Mi not expressed). PI 126443-1MH, 270435-2R2, 270435-3MH, and their F1 progenies were resistant to Mi-virulent and Mi-avirulent isolates. At 32°C with a Mi-avirulent isolate and at 25°C with a Mi-virulent isolate, four TC1 generations segregated into resistant: susceptible (RS) ratios close to 31. These results indicated resistance to Mi-(a)virulent M. incognita isolates is conferred by different non-allelic dominant genes in PI 126443-1MH, 270435-2R2 and 270435-3MH. The F2 progeny of PI 126443-1MH x EPP-1, challenged with Mi-avirulent M. incognita at 32°C and with Mi-virulent M. incognita at both 25°C and 32°C, segregated with a ratio of 31 (RS), indicating expression of a single dominant resistance gene in PI 126443-1MH in each case. In dual screenings on clones of the same individual plants from the TC1 and F2 segregating populations, some individual plants were susceptible at 32°C to a Mi-avirulent isolate but resistant to the Mi-virulent isolate, and vice versa, suggesting that different but linked genes confer heat-stable resistance to Mi-avirulent M. incognita and resistance to Mi-virulent M. incognita. We propose the symbol Mi-5 for the gene in PI 126443 clone 1MH and the symbol Mi-6 for the gene in PI 270435 clone 3MH which both confer resistance to Mi-avirulent M. incognita isolates at high temperature. We propose the symbol Mi-7 for the gene in PI 270435 clone 3MH and the symbol Mi-8 for the gene in PI 270435 clone 2R2 that both confer resistance to the Mi-virulent M. incognita isolate 557R at moderate (25°C) temperature. The novel resistance genes are linked and reside in a genomic region in each parental clone that is independent from the Mi locus.  相似文献   

11.
The microflora of a self-heating aerobic thermophilic sequencing batch reactor (AT-SBR) treating swine waste was investigated by a combination of culture and culture-independent techniques. The temperature increased quickly in the first hours of the treatment cycles and values up to 72°C were reached. Denaturing gradient gel electrophoresis of the PCR-amplified V3 region of 16S rDNA (PCR-DGGE) revealed important changes in the bacterial community during 3-day cycles. A clone library was constructed with the near-full-length 16S rDNA amplified from a mixed-liquor sample taken at 60°C. Among the 78 non-chimeric clones analysed, 20 species (here defined as clones showing more than 97% sequence homology) were found. In contrast to other culture-independent bacterial analyses of aerobic thermophilic wastewater treatments, species belonging to the Bacilli class were dominant (64%) with Bacillus thermocloacae being the most abundant species (38%). The other Bacilli could not be assigned to a known species. Schineria larvae was the second most abundant species (14%) in the clone library. Four species were also found among the 19 strains isolated, cultivated and identified from samples taken at 40°C and 60°C. Ten isolates showed high 16S rDNA sequence homology with the dominant bacterium of a composting process that had not been previously isolated.An erratum to this article can be found at  相似文献   

12.
Prokaryotic Diversity in Zostera noltii-Colonized Marine Sediments   总被引:2,自引:0,他引:2       下载免费PDF全文
The diversity of microorganisms present in a sediment colonized by the phanerogam Zostera noltii has been analyzed. Microbial DNA was extracted and used for constructing two 16S rDNA clone libraries for Bacteria and Archaea. Bacterial diversity was very high in these samples, since 57 different sequences were found among the 60 clones analyzed. Eight major lineages of the Domain Bacteria were represented in the library. The most frequently retrieved bacterial group (36% of the clones) was δ-Proteobacteria related to sulfate-reducing bacteria. The second most abundant group (27%) was γ-Proteobacteria, including five clones closely related to S-oxidizing endosymbionts. The archaeal clone library included members of Crenarchaeota and Euryarchaeota, with nine different sequences among the 15 analyzed clones, indicating less diversity when compared to the Bacteria organisms. None of these sequences was closely related to cultured Archaea organisms.  相似文献   

13.
We investigated the diversity and distribution of archaeal and bacterial 16S rRNA gene sequences in deep aquifers of mid‐ to late Miocene hard shale located in the northernmost region of the Japanese archipelago. A major fault in the north‐west–south‐east (NW–SE) direction runs across the studied area. We collected three groundwater samples from boreholes on the south‐west (SW) side of the fault at depths of 296, 374 and 625 m below ground level (m.b.g.l.) and one sample from the north‐east (NE) side of the fault at a depth of 458 m.b.g.l. The groundwater samples were observed to be neutral and weakly saline. The total microbial counts after staining with acridine orange were in the order 105?106 cells mL?1 and 103 cells mL?1 in the aquifers to the SW and to the NE of the fault, respectively. A total of 407 archaeal and bacterial 16S rRNA gene sequences (204 and 203 sequences, respectively) were determined for clone libraries constructed from all groundwater samples. Phylogenetic analyses showed that the libraries constructed from the SW aquifers were generally coherent but considerably different from those constructed from the NE aquifer. All of the archaeal clone libraries from the SW aquifers were predominated by a single sequence closely related to the archaeon Methanoculleus chikugoensis, and the corresponding bacterial libraries were mostly predominated by the sequences related to Bacteroidetes, Firmicutes and δ‐Proteobacteria. In contrast, the libraries from the NE aquifer were dominated by uncultured environmental archaeal clones with no methanogen sequences and by β‐proteobacterial clones with no sequences related to Bacteroidetes and δ‐Proteobacteria. Hence, the possible coexistence of methanogens and sulphate reducers in Horonobe deep borehole (HDB) on the SW side is suggested, particularly in HDB‐6 (374 m.b.g.l.). Moreover, these organisms might play an important geochemical role in the groundwater obtained from the aquifers.  相似文献   

14.
Maras salterns are located 3,380 m above sea level in the Peruvian Andes. These salterns consist of more than 3,000 little ponds which are not interconnected and act as crystallizers where salt precipitates. These ponds are fed by hypersaline spring water rich in sodium and chloride. The microbiota inhabiting these salterns was examined by fluorescence in situ hybridization (FISH), 16S rRNA gene clone library analysis, and cultivation techniques. The total counts per milliliter in the ponds were around 2 × 106 to 3 × 106 cells/ml, while the spring water contained less than 100 cells/ml and did not yield any detectable FISH signal. The microbiota inhabiting the ponds was dominated (80 to 86% of the total counts) by Archaea, while Bacteria accounted for 10 to 13% of the 4′,6′-diamidino-2-phenylindole (DAPI) counts. A total of 239 16S rRNA gene clones were analyzed (132 Archaea clones and 107 Bacteria clones). According to the clone libraries, the archaeal assemblage was dominated by microorganisms related to the cosmopolitan square archaeon “Haloquadra walsbyi,” although a substantial number of the sequences in the libraries (31% of the 16S rRNA gene archaeal clones) were related to Halobacterium sp., which is not normally found in clone libraries from solar salterns. All the bacterial clones were closely related to each other and to the γ-proteobacterium “Pseudomonas halophila” DSM 3050. FISH analysis with a probe specific for this bacterial assemblage revealed that it accounted for 69 to 76% of the total bacterial counts detected with a Bacteria-specific probe. When pond water was used to inoculate solid media containing 25% total salts, both extremely halophilic Archaea and Bacteria were isolated. Archaeal isolates were not related to the isolates in clone libraries, although several bacterial isolates were very closely related to the “P. halophila” cluster found in the libraries. As observed for other hypersaline environments, extremely halophilic bacteria that had ecological relevance seemed to be easier to culture than their archaeal counterparts.  相似文献   

15.
Summary Confined design combined with use of tolerance ratio was used to compare pollen germination capacity at low and high temperature in Andean and European potato material. Four clones of Solanum tuberosum from the European gene pool were compared with four Andean potato clones derived from the breeding program for frost resistance at the International Potato Center (CIP), Lima, Peru. For each clone, the same pollen lot was used throughout each replication. Pollen were germinated at 9 °C and 21 °C. Fortification of media with potato starch and 14 min preincubation at 25 °C were used as variables. The Andean material maintained its germination capacity better than the European material when temperature was decreased. It was possible significantly to distinguish potato clones with low temperature requirement for pollen germination if incubation proceeded germination at 21 °C, but not at 9 °C. Fortification with starch had no significant effect.  相似文献   

16.
Complementary BAC and BIBAC libraries were constructed from nuclear DNA of sunflower cultivar HA 89. The BAC library, constructed with BamHI in the pECBAC1 vector, contains 107,136 clones and has an average insert size of 140 kb. The BIBAC library was constructed with HindIII in the plant-transformation-competent binary vector pCLD04541 and contains 84,864 clones, with an average insert size of 137 kb. The two libraries combined contain 192,000 clones and are equivalent to approximately 8.9 haploid genomes of sunflower (3,000 Mb/1C), and provide a greater than 99% probability of obtaining a clone of interest. The frequencies of BAC and BIBAC clones carrying chloroplast or mitochondrial DNA sequences were estimated to be 2.35 and 0.04%, respectively, and insert-empty clones were less than 0.5%. To facilitate chromosome engineering and anchor the sunflower genetic map to its chromosomes, one to three single- or low-copy RFLP markers from each linkage group of sunflower were used to design pairs of overlapping oligonucleotides (overgos). Thirty-six overgos were designed and pooled as probes to screen a subset (5.1×) of the BAC and BIBAC libraries. Of the 36 overgos, 33 (92%) gave at least one positive clone and 3 (8%) failed to hit any clone. As a result, 195 BAC and BIBAC clones representing 19 linkage groups were identified, including 76 BAC clones and 119 BIBAC clones, further verifying the genome coverage and utility of the libraries. These BAC and BIBAC libraries and linkage group-specific clones provide resources essential for comprehensive research of the sunflower genome.  相似文献   

17.
Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean   总被引:13,自引:0,他引:13  
We analyzed the phylogenetic composition of bacterioplankton assemblages in 11 Arctic Ocean samples collected over three seasons (winter-spring 1995, summer 1996, and summer-fall 1997) by sequencing cloned fragments of 16S rRNA genes. The sequencing effort was directed by denaturing gradient gel electrophoresis (DGGE) screening of samples and the clone libraries. Sequences of 88 clones fell into seven major lineages of the domain Bacteria: alpha(36%)-, gamma(32%)-, delta(14%)-, and epsilon(1%)-Proteobacteria; Cytophaga-Flexibacter-Bacteroides spp. (9%); Verrucomicrobium spp. (6%); and green nonsulfur bacteria (2%). A total of 34% of the cloned sequences (excluding clones in the SAR11 and Roseobacter groups) had sequence similarities that were <94% compared to previously reported sequences, indicating the presence of novel sequences. DGGE fingerprints of the selected samples showed that most of the bands were common to all samples in all three seasons. However, additional bands representing sequences related to Cytophaga and Polaribacter species were found in samples collected during the summer and fall. Of the clones in a library generated from one sample collected in spring of 1995, 50% were the same and were most closely affiliated (99% similarity) with Alteromonas macleodii, while 50% of the clones in another sample were most closely affiliated (90 to 96% similarity) with Oceanospirillum sp. The majority of the cloned sequences were most closely related to uncultured, environmental sequences. Prominent among these were members of the SAR11 group. Differences between mixed-layer and halocline samples were apparent in DGGE fingerprints and clone libraries. Sequences related to alpha-Proteobacteria (dominated by SAR11) were abundant (52%) in samples from the mixed layer, while sequences related to gamma-proteobacteria were more abundant (44%) in halocline samples. Two bands corresponding to sequences related to SAR307 (common in deep water) and the high-G+C gram-positive bacteria were characteristic of the halocline samples.  相似文献   

18.
The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based clone sequences showed that unclassified bacteria were the most abundant group, representing nearly 62% of all DNA sequences analyzed. Other phylogenetic groups identified included Proteobacteria (20%), Actinobacteria (9%), Cyanobacteria (4%), and Bacteroidetes (2%). The composition of RNA-based libraries (1122 sequences) was similar to the DNA-based libraries with a few notable exceptions: Proteobacteria were more dominant in the RNA clone libraries (i.e., 35% RNA; 20% DNA). Differences in the Proteobacteria composition were also observed; alpha-Proteobacteria was 22 times more abundant in the RNA-based clones while beta-Proteobacteria was eight times more abundant in the DNA libraries. Nearly twice as many DNA operational taxonomic units (OTUs) than RNA OTUs were observed at distance 0.03 (101 DNA; 53 RNA). Twenty-four OTUs were shared between all RNA- and DNA-based libraries (OTU0.03) representing only 18% of the total OTUs, but 81% (1527/1883) of all sequences. Such differences between clone libraries demonstrate the necessity of generating both RNA- and DNA-derived clone libraries to compare these two different molecular approaches for community analyses.  相似文献   

19.
The primary goal of this study was to better understand the microbial composition and functional genetic diversity associated with turkey fecal communities. To achieve this, 16S rRNA gene and metagenomic clone libraries were sequenced from turkey fecal samples. The analysis of 382 16S rRNA gene sequences showed that the most abundant bacteria were closely related to Lactobacillales (47%), Bacillales (31%), and Clostridiales (11%). Actinomycetales, Enterobacteriales, and Bacteroidales sequences were also identified, but represented a smaller part of the community. The analysis of 379 metagenomic sequences showed that most clones were similar to bacterial protein sequences (58%). Bacteriophage (10%) and avian viruses (3%) sequences were also represented. Of all metagenomic clones potentially encoding for bacterial proteins, most were similar to low G+C Gram-positive bacterial proteins, particularly from Lactobacillales (50%), Bacillales (11%), and Clostridiales (8%). Bioinformatic analyses suggested the presence of genes encoding for membrane proteins, lipoproteins, hydrolases, and functional genes associated with the metabolism of nitrogen and sulfur containing compounds. The results from this study further confirmed the predominance of Firmicutes in the avian gut and highlight the value of coupling 16S rRNA gene and metagenomic sequencing data analysis to study the microbial composition of avian fecal microbial communities.  相似文献   

20.
Phylogenetic Analysis of Methanogens in the Pig Feces   总被引:2,自引:0,他引:2  
Mao SY  Yang CF  Zhu WY 《Current microbiology》2011,62(5):1386-1389
In order to assess methanogen diversity in feces of pigs, archaeal 16S rRNA gene clone libraries were constructed from feces of the pig. After the amplification by PCR using primers Met86F and Met1340R, equal quantities of PCR products from each of the five pigs were mixed together and used to construct the library. Sequence analysis showed that the 74 clones were divided into ten phylotypes as defined by RFLP analysis. Phylogenetic analysis showed that three phylotypes were most closely affiliated with the genus Methanobrevibacter (46% of clones). The library comprised 55.4% unidentified euryarchaeal clones. Three phylotypes (LMG4, LMG6, LMG8) were not closely related to any known Euryarchaeota sequences. The phylogenetic analysis indicated that the archaea found in the libraries were all clustered into the Euryarchaeota. The data from the phylogenetic tree showed that those sequences belonged to three monophyletic groups. Phylotypes LGM2 and LGM7 grouped within the genus Methanobrevibacter. Phylotypes LGM4, LGM6, LGM8 and LGM9 grouped within the genus Methanosphaera. Other phylotypes grouped together, and formed a distantly related sister group to Aciduliprofundum boonei and species of the Thermoplasmatales including Thermoplasma volcanium and Thermoplasm acidophilum. Our results showed that methanogens belonging to the genus Methanobrevibacter were predominant in pig feces, and that many unique unknown archaea sequences were also found in the library. Nevertheless, whether these unique sequences represent new taxonomic groups and their role in the pig gut need further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号