首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 467 毫秒
1.
2.
Reporter-based studies support inhibition of translation at the level of initiation as a substantial component of the miRNA mechanism, yet recent global analyses have suggested that they predominantly act through decreasing target mRNA stability. Cells commonly coexpress several processing isoforms of an mRNA, which may also differ in their regulatory untranslated regions (UTR). In particular, cancer cells are known to express high levels of short 3' UTR isoforms that evade miRNA-mediated regulation, whereas longer 3' UTRs predominate in nontransformed cells. To test whether mRNA isoform diversity can obscure detection of miRNA-mediated control at the level of translation, we assayed the responses of 11 endogenous let-7 targets to inactivation of this miRNA in HeLa cells, an intensively studied model system. We show that translational regulation in many cases appears to be modest when measuring the composite polysome profile of all extant isoforms of a given mRNA by density ultracentrifugation. In contrast, we saw clear effects at the level of translation initiation for multiple examples when selectively profiling mRNA isoforms carrying the 5' or 3' untranslated regions that were actually permissive to let-7 action, or when let-7 and a second targeting miRNA were jointly manipulated. Altogether, these results highlight a caveat to the mechanistic interpretation of data from global miRNA target analyses in transformed cells. Importantly, they reaffirm the importance of translational control as part of the miRNA mechanism in animal cells.  相似文献   

3.
4.
Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation   总被引:47,自引:0,他引:47  
MicroRNAs (miRNAs) are approximately 22 nucleotide RNAs that negatively regulate the expression of protein-coding genes. In a present model of miRNA function in animals, miRNAs that form imperfect duplexes with their targets inhibit protein expression without affecting mRNA levels. Here, we report that in C. elegans, regulation by the let-7 miRNA results in degradation of its lin-41 target mRNA, despite the fact that its 3'UTR regulatory sequences can only partially base-pair with the miRNA. Furthermore, lin-14 and lin-28 are targets of the lin-4 miRNA, and we show that the mRNA levels for these protein-coding genes significantly decrease in response to lin-4 expression. This study reveals that mRNAs containing partial miRNA complementary sites can be targeted for degradation in vivo, raising the possibility that regulation at the level of mRNA stability may be more common than previously appreciated for the miRNA pathway.  相似文献   

5.
A whole-genome RNAi Screen for C. elegans miRNA pathway genes   总被引:1,自引:0,他引:1  
Parry DH  Xu J  Ruvkun G 《Current biology : CB》2007,17(23):2013-2022
BACKGROUND: miRNAs are an abundant class of small, endogenous regulatory RNAs. Although it is now appreciated that miRNAs are involved in a broad range of biological processes, relatively little is known about the actual mechanism by which miRNAs downregulate target gene expression. An exploration of which protein cofactors are necessary for a miRNA to downregulate a target gene should reveal more fully the molecular mechanisms by which miRNAs are processed, trafficked, and regulate their target genes. RESULTS: A weak allele of the C. elegans miRNA gene let-7 was used as a sensitized genetic background for a whole-genome RNAi screen to detect miRNA pathway genes, and 213 candidate miRNA pathway genes were identified. About 2/3 of the 61 candidates with the strongest phenotype were validated through genetic tests examining the dependence of the let-7 phenotype on target genes known to function in the let-7 pathway. Biochemical tests for let-7 miRNA production place the function of nearly all of these new miRNA pathway genes downstream of let-7 expression and processing. By monitoring the downregulation of the protein product of the lin-14 mRNA, which is the target of the lin-4 miRNA, we have identified 19 general miRNA pathway genes. CONCLUSIONS: The 213 candidate miRNA pathway genes identified could act at steps that produce and traffic miRNAs or in downstream steps that detect miRNA::mRNA duplexes to regulate mRNA translation. The 19 validated general miRNA pathway genes are good candidates for genes that may define protein cofactors for sorting or targeting miRNA::mRNA duplexes, or for recognizing the miRNA base-paired to the target mRNA to downregulate translation.  相似文献   

6.
7.
The influenza virus (IV) triggers a series of signalling events inside host cells and induces complex cellular responses. Studies have suggested that host factors play an essential role in IV replication. MicroRNAs (miRNAs) represent a class of small non-coding RNAs that target mRNAs, triggering either translation repression or RNA degradation. Emerging research suggests that host-derived cellular miRNAs are involved in mediating the host-IV interaction. Using miRNA microarrays, we identified several miRNAs aberrantly expressed in IV-infected human lung epithelial cells (A549). Specifically, miR-let-7c was highly up-regulated in IV-infected A549 cells. PITA and miRanda database screening indicated that the let-7c seed sequence is a perfect complementary sequence match to the 3' untranslated region (UTR) of viral gene M1 (+) cRNA, but not to PB2 and PA. As detected by a luciferase reporter system, let-7c directly targeted the 3'-UTR of M1 (+) cRNA, but not PB2 and PA. To experimentally identify the function of cellular let-7c, precursor let-7c was transfected into A549 cells. Let-7c down-regulated IV M1 expression at both the (+) cRNA and protein levels. Furthermore, transfection with a let-7c inhibitor enhanced the expression of M1. Therefore, let-7c may reduce IV replication by degrading M1 (+) cRNA. This is the first report indicating that cellular miRNA regulates IV replication through the degradation of viral gene (+) cRNA by matching the 3'-UTR of the viral cRNA. These findings suggest that let-7c plays a role in protecting host cells from the virus in addition to its known cellular functions.  相似文献   

8.
Potent effect of target structure on microRNA function   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are small noncoding RNAs that repress protein synthesis by binding to target messenger RNAs. We investigated the effect of target secondary structure on the efficacy of repression by miRNAs. Using structures predicted by the Sfold program, we model the interaction between an miRNA and a target as a two-step hybridization reaction: nucleation at an accessible target site followed by hybrid elongation to disrupt local target secondary structure and form the complete miRNA-target duplex. This model accurately accounts for the sensitivity to repression by let-7 of various mutant forms of the Caenorhabditis elegans lin-41 3' untranslated region and for other experimentally tested miRNA-target interactions in C. elegans and Drosophila melanogaster. These findings indicate a potent effect of target structure on target recognition by miRNAs and establish a structure-based framework for genome-wide identification of animal miRNA targets.  相似文献   

9.
10.
The Puf family of RNA-binding proteins directs cell fates by regulating gene expression at the level of translation and RNA stability. Here, we report that the Caenorhabditis elegans pumilio homolog, puf-9, controls the differentiation of epidermal stem cells at the larval-to-adult transition. Genetic analysis reveals that loss-of-function mutations in puf-9 enhance the lethality and heterochronic phenotypes caused by mutations in the let-7 microRNA (miRNA), while suppressing the heterochronic phenotypes of lin-41, a let-7 target and homolog of Drosophila Brat. puf-9 interacts with another known temporal regulator hbl-1, the Caenorhabditis elegans ortholog of hunchback. We present evidence demonstrating that puf-9 is required for the 3'UTR-mediated regulation of hbl-1, in both the hypodermis and the ventral nerve cord. Finally, we show that this regulation is dependent on a region of the hbl-1 3'UTR that contains putative Puf family binding sites as well as binding sites for the let-7 miRNA family, suggesting that puf-9 and let-7 may mediate hypodermal seam cell differentiation by regulating common targets.  相似文献   

11.
In the nematode Caenorhabditis elegans, the let-7 microRNA (miRNA) controls the timing of key developmental events and terminal differentiation in part by directly regulating lin-41. C. elegans lin-41 mutants display precocious cell cycle exit and terminal differentiation of epidermal skin cells. lin-41 orthologues are found in more complex organisms including both mice and humans, but their roles are not known. We generated Mlin41 mouse mutants to ascertain a functional role for Mlin41. Strong loss of function Mlin41 gene-trap mutants demonstrated a striking neural tube closure defect during development, and embryonic lethality. Like C. elegans lin-41, Mlin41 also appears to be regulated by the let-7 and mir-125 miRNAs. Since Mlin41 is required for neural tube closure and survival it points to human lin-41 (HLIN41/TRIM71) as a potential human development and disease gene.  相似文献   

12.
We have determined the 3D structure of a 34-nt RNA construct, herein named LCS1co, which mimics the interaction of let-7 microRNA (miRNA) to one of its complementary binding sites, LCS1, in the 3′-untranslated region of lin-41 mRNA by solution-state NMR spectroscopy. let-7 miRNAs control the timing of development of the nematode Caenorhabditis elegans and are highly conserved in mammals. The sequence and structure of the two conserved let-7 complementary sites, LCS1 and LCS2, in the 3′-untranslated region of lin-41 mRNA are important for a proper downregulation of lin-41. The high-resolution NMR structure reveals details of the binding of let-7 miRNA to lin-41 mRNA which involves formation of a complex with non-canonical structural elements within the seed region. LCS1co exhibits a stem-loop structure with two stems, an asymmetric internal loop and an adenine bulge. Comparison with the NMR solution-state structure of the let-7:lin-41 complex involving the LCS2-binding site shows that conformational freedom of the asymmetric internal loop of LCS1co correlates with a smaller bend between the upper and lower stems in comparison to the well-defined asymmetric loop of LCS2co.  相似文献   

13.

Background  

The microRNAs (miRNAs) are an extensive class of small noncoding RNAs (18 to 25 nucleotides) with probable roles in the regulation of gene expression. In Caenorhabditis elegans, lin-4 and let-7 miRNAs control the timing of fate specification of neuronal and hypodermal cells during larval development. lin-4, let-7 and other miRNA genes are conserved in mammals, and their potential functions in mammalian development are under active study.  相似文献   

14.
MicroRNAs (miRNAs) were first discovered in genetic screens for regulators of developmental timing in the stem-cell-like seam cell lineage in Caenorhabditis elegans. As members of the heterochronic pathway, the lin-4 and let-7 miRNAs are required in the seam cells for the correct progression of stage-specific events and to ensure that cell cycle exit and terminal differentiation occur at the correct time. Other heterochronic genes such as lin-28 and lin-41 are direct targets of the lin-4 and let-7 miRNAs. Recent findings on the functions of the let-7 and lin-4/mir-125 miRNA families and lin-28 and lin-41 orthologs from a variety of organisms suggest that core elements of the heterochronic pathway are retained in mammalian stem cells and development. In particular, these genes appear to form bistable switches via double-negative feedback loops in both nematode and mammalian stem cell development, the functional relevance of which is finally becoming clear. let-7 inhibits stem cell self-renewal in both normal and cancer stem cells of the breast and acts as a tumor suppressor in lung and breast cancer. let-7 also promotes terminal differentiation at the larval to adult transition in both nematode stem cells and fly wing imaginal discs and inhibits proliferation of human lung and liver cancer cells. Conversely, LIN-28 is a highly specific embryonic stem cell marker and is one of four “stemness” factors used to reprogram adult fibroblasts into induced pluripotent stem cells; furthermore, lin-28 is oncogenic in hepatocellular carcinomas. Therefore, a core module of heterochronic genes—lin-28, lin-41, let-7, and lin-4/mir-125—acts as an ancient regulatory switch for differentiation in stem cells (and in some cancers), illustrating that nematode seam cells mirror miRNA regulatory networks in mammalian stem cells during both normal development and cancer.  相似文献   

15.
The let-7 microRNA (miRNA) regulates developmental timing at the larval-to-adult transition in Caenorhabditis elegans. Dysregulation of let-7 results in irregular hypodermal and vulval development. Disrupted let-7 function is also a feature of human lung cancer. However, little is known about the mechanism and co-factors of let-7. Here we demonstrate that ribosomal protein RPS-14 is able to modulate let-7 function in C. elegans. The RPS-14 protein co-immunoprecipitated with the nematode Argonaute homolog, ALG-1. Reduction of rps-14 gene expression by RNAi suppressed the aberrant vulva and hypodermis development phenotypes of let-7(n2853) mutant animals and the mis-regulation of a reporter bearing the lin-41 3′UTR, a well established let-7 target. Our results indicate an interactive relationship between let-7 miRNA function and ribosomal protein RPS-14 in regulation of terminal differentiation that may help in understanding the mechanism of translational control by miRNAs.  相似文献   

16.
《Fly》2013,7(4):306-311
The steroid 20-hydroxy-ecdysone (20-HE) and the sesquiterpenoid Juvenile Hormone (JH) coordinate insect life stage transitions. 20-HE exerts these effects by the sequential induction of response genes. In the nematode Caenorhabditis elegans hormones also play a role in such transitions, but notably, microRNA such as let-7 and lin-4 have likewise been found to help order developmental steps. Little is known about the corresponding function of homologous microRNA in Drosophila melanogaster, and the way microRNA might be regulated by 20-HE in the fly is ambiguous. Here we used Drosophila S2 cells to analyze the effects of 20-HE on D. melanogaster microRNA let-7 and miR-125, the homolog of lin-4. The induction by 20-HE of let-7 and miR-125 in S2 cells is inhibited by RNAi knockdown of the ecdysone receptor and, as previously shown, by knockdown of its cofactor broad-complex C. To help resolve the currently ambiguous role of 20-HE in the control of microRNA, we show that nanomolar concentrations of 20-HE primes cells to subsequently express microRNA when exposed to micromolar levels of 20-HE. We then explore the role microRNA plays in the established relationship between 20-HE and the induction of innate immunity. We show that the 3'UTR of the antimicrobial peptide diptericin has a let-7 binding site and that let-7 represses translation from this site. We conclude that 20-HE facilitates the initial expression of innate immunity while it simultaneously induces negative regulation via microRNA control of antimicrobial peptide translation.  相似文献   

17.
18.
let-7 microRNA (miRNA) regulates heterochronic genes in developmental timing of the nematode Caenorhabditis elegans. Binding of miRNA to messenger RNA (mRNA) and structural features of the complex are crucial for gene silencing. We herein present the NMR solution structure of a model mimicking the interaction of let-7 miRNA with its complementary site (LCS 2) in the 3′ untranslated region (3′-UTR) of the lin-41 mRNA. A structural study was performed by NMR spectroscopy using NOE restraints, torsion angle restraints and residual dipolar couplings. The 33-nt RNA construct folds into a stem–loop structure that features two stem regions which are separated by an asymmetric internal loop. One of the stems comprises a GU wobble base pair, which does not alter its overall A-form RNA conformation. The asymmetric internal loop adopts a single, well-defined structure in which three uracils form a base triple, while two adenines form a base pair. The 3D structure of the construct gives insight into the structural aspects of interactions between let-7 miRNA and lin-41 mRNA.  相似文献   

19.
The microRNA let-7 is a critical regulator of developmental timing events at the larval-to-adult transition in C. elegans. Recently, microRNAs with sequence similarity to let-7 have been identified. We find that doubly mutant animals lacking the let-7 family microRNA genes mir-48 and mir-84 exhibit retarded molting behavior and retarded adult gene expression in the hypodermis. Triply mutant animals lacking mir-48, mir-84, and mir-241 exhibit repetition of L2-stage events in addition to retarded adult-stage events. mir-48, mir-84, and mir-241 function together to control the L2-to-L3 transition, likely by base pairing to complementary sites in the hbl-1 3' UTR and downregulating hbl-1 activity. Genetic analysis indicates that mir-48, mir-84, and mir-241 specify the timing of the L2-to-L3 transition in parallel to the heterochronic genes lin-28 and lin-46. These results indicate that let-7 family microRNAs function in combination to affect both early and late developmental timing decisions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号