首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The detachment of biomass from suspended biofilm pellets in three-phase internal loop airlift reactors was investigated under nongrowth conditions and in the presence of bare carrier particles. In different sets of experiments, the concentrations of biofilm pellets and bare carrier particles were varied independently. Gas hold-up, bubble size, and general flow pattern were strongly influenced by changes in volume fractions of biofilm pellets and bare carrier particles. In spite of this, the rate of biomass detachment was found to be linear with both the concentration of biofilm pellets and the bare carrier concentration up to a solids hold-up of 30%. This implies that the detachment rate was dominated by collisions between biofilm pellets and bare carrier particles. These collisions caused an on-going abrasion of the biofilm pellets, leading to a reduction in pellet volume. Breakage of the biofilm pellets was negligible. The biofilm pellets were essentially ellipsoidal, which made three-dimensional size determination necessary. Calculating particle volumes from two-dimensional image analysis measurements and assuming a spherical shape led to serious errors. The abrasion rate was not equal on all sides of the biofilm pellets, resulting in an increasing flattening of the pellets. This flattening was oriented with the basalt carrier inside the biofilm and independent of the absolute abrasion rate. These observations suggest that the collisions causing abrasion are somehow oriented. The internal structure of the biofilms showed two layers, a cell-dense outer layer and an interior with a low biomass density. Taking this density gradient into account, the washout of detached biomass matched observed changes in volume of the biofilm pellets. No gradient in biofilm strength with biofilm depth was indicated. (c) 1997 John Wiley & Sons, Inc.  相似文献   

2.
In three-phase internal loop airlift reactors, the detachment of biomass from suspended biofilm pellets in the presence of bare carrier particles was investigated under nongrowth conditions. The detachment rate was dominated by collisions between bare carrier particles and biofilm pellets. The concentration of bare carrier particles and the carrier roughness strongly influenced the detachment rate. A change in flow regime from bubbling to slug flow considerably increased the detachment rate. Otherwise, the superficial gas velocity did not directly affect the detachment rate. The influence of particle size was not clear. The bottom clearance did not affect the detachment rate within the tested range. Other aspects of reactor geometry might be important. The main detachment processes were abrasion and breakage of biofilm pellets. During the detachment process, two phases could be distinguished. In the first phase the detachment was relatively high, and both breakage and abrasion of biofilm pellets occurred. During the second phase, breakage dominated and the detachment rate was lower. The two-phase behavior is explained by differences in strength between the inner and outer biofilm layers, possibly caused by variations in local growth rates during biofilm formation. Differences in growth history might also explain the various detachment rates observed with different biofilm batches. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
In this article, the conditions for aerobic biofilm formation on suspended particles, the dynamics of biofilm formation, and the biomass production during the start-up of a Biofilm Airlift Suspension reactor (BAS reactor) have been studied. The dynamics of biofilm formation during start up in the biofilm airlift suspension reactor follows three consecutive stages: bare carrier, microcolonies or patchy biofilms on the carrier, and biofilms completely covering the carrier. The effect of hydraulic retention time and of substrate loading rate on the formation of biofilms were investigated. To obtain in a BAS reactor a high biomass concentration and predominantly continuous biofilms, which completely surround the carrier, the hydraulic retention time must be shorter than the inverse of the maximum growth rate of the suspended bacteria. At longer hydraulic retention times, a low amount of attached biomass can be present on the carrier material as patchy biofilms. During the start-up at short hydraulic retention times the bare carrier concentration decreases, the amount of biomass per biofilm particle remains constant, and biomass increase in the reactor is due to increasing numbers of biofilm particles. The substrate surface loading rate has effect only on the amount of biomass on the biofilm particle. A higher surface load leads to a thicker biofilm.A strong nonlinear increase of the concentration of attached biomass in time was observed. This can be explained by a decreased abrasion of the biofilm particles due to the decreasing concentration of bare carriers. The detachment rate per biofilm area during the start-up is independent of the substrate loading rate, but depends strongly upon the bare carrier concentration.The Pirt-maintenance concept is applicable to BAS reactors. Surplus biomass production is diminished at high biomass concentrations. The average maximal yield of biomass on substrate during the experiments presented in this article was 0.44 +/- 0.08 C-mol/C-mol, the maintenance value 0.019 +/- 0.012 C-mol/(C-mol h). The lowest actual biomass yield measured in this study was 0.15 C-mol/C-mol. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
5.
Nanoparticles provide an ideal remedy to the usually contradictory issues encountered in the optimization of immobilized enzymes: minimum diffusional limitation, maximum surface area per unit mass, and high effective enzyme loading. In addition to the promising performance features, the unique solution behaviors of the nanoparticles also point to a transitional region between the heterogeneous (with immobilized enzymes) and homogeneous (with soluble free enzymes) catalysis. The particle mobility, which is related to particle size and solution viscosity through Stokes-Einstein equation, may impact the reaction kinetics according to the collision theory. The mobility-activity relationship was examined through experimental studies and theoretical modeling in the present work. Polystyrene particles with diameters ranging from 110-1000 nm were prepared. A model enzyme, alpha-chymotrypsin, was covalently attached to the nanoparticles up to 6.6 wt%. The collision theory model was found feasible in correlating the catalytic activities of particles to particle size and solution viscosity. Changes in the size of particles and the viscosity of reaction media, which all affect the mobility of the enzyme catalyst, evidently altered the intrinsic activity of the particle-attached enzyme. Compared to K(M), k(cat) appeared to be less sensitive to particle size and viscosity.  相似文献   

6.
We investigated attachment processes of hydrophobic and hydrophilic particles (diameter = 1 microm) to mature biofilms grown on clay marbles in a sequencing batch biofilm reactor. During a treatment cycle with filtered wastewater containing different fluorescent beads, the progression of particle density in various biofilm compartments (carrier biofilm, basic biofilm layer, biofilm flocs, and sessile ciliates) was determined by flow cytometry, confocal laser scanning microscopy and automated image analysis. Particles were almost completely removed from wastewater by typical processes of particle retention: up to 58% of particles attached to clay marbles, up to 15% were associated with suspended flocs, and up to 10% were ingested by sessile ciliates. Ingestion of particles by ciliates was exceptionally high immediately after wastewater addition (1,200 particles grazer(-1) x h(-1)) and continued until approximately 14% of the water had been cleared by ciliate filter feeding. Most probably, ciliate bioturbation increases particle sorption to the basic biofilm. Backwashing of the reactor detached pieces of biofilm and thus released approximately 50% of the particles into rinsing water. Clay marbles in the upper part of the reactor were more efficiently abraded than in the lower part. No indications for selective attachment of the applied hydrophobic and hydrophilic beads were found. As a consequence of interception patterns, organisms at elevated biofilm structures are probably major profiteers of wastewater particles; among them, ciliates may be of major importance because of their highly active digestive food vacuoles.  相似文献   

7.
The purpose of this study was to investigate the effect of pelletization aids, i.e., microcrystalline cellulose (MCC) and cross-linked polyvinyl pyrrolidone (XPVP), and filler, i.e., lactose, particle size on the surface roughness of pellets. Pellets were prepared from powder blends containing pelletization aid/lactose in 1:3 ratio by extrusion–spheronization. Surface roughness of pellets was assessed quantitatively and qualitatively using optical interferometry and scanning electron microscopy, respectively. Both quantitative and qualitative surface studies showed that surface roughness of pellets depended on the particle size of XPVP and lactose used in the formulation. Increase in XPVP or lactose particle size resulted in rougher pellets. Formulations containing MCC produced pellets with smoother surfaces than those containing XPVP. Furthermore, surface roughness of the resultant pellets did not appear to depend on MCC particle size. Starting material particle size was found to be a critical factor for determining the surface roughness of pellets produced by extrusion–spheronization. Smaller particles can pack well with lower peaks and valleys, resulting in pellets with smoother surfaces. Similar surface roughness of pellets containing different MCC grades could be due to the deaggregation of MCC particles into smaller subunits with more or less similar sizes during wet processing. Hence, for starting materials that deaggregate during the wet processing, pellet surface roughness is influenced by the particle size of the material upon deaggregation.  相似文献   

8.
We investigated attachment processes of hydrophobic and hydrophilic particles (diameter = 1 μm) to mature biofilms grown on clay marbles in a sequencing batch biofilm reactor. During a treatment cycle with filtered wastewater containing different fluorescent beads, the progression of particle density in various biofilm compartments (carrier biofilm, basic biofilm layer, biofilm flocs, and sessile ciliates) was determined by flow cytometry, confocal laser scanning microscopy and automated image analysis. Particles were almost completely removed from wastewater by typical processes of particle retention: up to 58% of particles attached to clay marbles, up to 15% were associated with suspended flocs, and up to 10% were ingested by sessile ciliates. Ingestion of particles by ciliates was exceptionally high immediately after wastewater addition (1,200 particles grazer−1 h−1) and continued until approximately 14% of the water had been cleared by ciliate filter feeding. Most probably, ciliate bioturbation increases particle sorption to the basic biofilm. Backwashing of the reactor detached pieces of biofilm and thus released approximately 50% of the particles into rinsing water. Clay marbles in the upper part of the reactor were more efficiently abraded than in the lower part. No indications for selective attachment of the applied hydrophobic and hydrophilic beads were found. As a consequence of interception patterns, organisms at elevated biofilm structures are probably major profiteers of wastewater particles; among them, ciliates may be of major importance because of their highly active digestive food vacuoles.  相似文献   

9.
This work explored the importance of packability of component particles in the different wet processing steps of extrusion–spheronization and investigated different processing and formulation approaches for enhancing packing of component particles during extrusion–spheronization to produce spherical pellets with high yield and narrow size distribution. Various cross-linked polyvinyl pyrrolidone (XPVP) and lactose grades with different particle sizes were used as pelletization aid and filler in 1:3 binary powder blends. Loosely packed extrudates obtained from coarse XPVP/lactose blends possessed low cohesive strength and produced irregular shaped pellets with low yield whereas tightly packed, rigid extrudates obtained from XPVP/fine lactose grades possessed high cohesive strength and produced elongated pellets. Adjustment of spheronization tip speed to provide sufficient forces generated by the rotating frictional base plate for facilitating packing by rearrangement of component particles improved pellet quality. Double extrusion, decreasing particle size of the formulation component(s), and/or widening particle size distribution of the powder blend are approaches applicable to improve cohesiveness of moistened mass by closer packing of component particles for production of good quality pellets.  相似文献   

10.
The production of Cephalosporin C was investigated in a lab-scale 1.4 l air-lift reactor (ALR), using various immobilization modes. Bioparticles were developed by forming biofilm of growing hyphae around an inorganic siran particle which contained spores of the organism. Silk sachet was the other immobilization matrix. The maximum specific growth rate of the Cephalosporium acremonium, free cells, pellets, siran carrier and silk sachets were 0.037, 0.003, 0.047, and 0.035 h(-1), and specific antibiotic productivities (as compared to 100% for free cells) were 180, 150, and 125% for siran carrier, silk sachets and pellets, respectively. Immobilization modes exhibited enhanced volumetric oxygen transfer coefficient and well-controlled, three-phase hydrodynamics.  相似文献   

11.
During wastewater treatment, biofilm-coated sand particles stratified in a fluidized bed bioreactor (FBB); particles coated by thicker biofilm segregated toward the top of the bed. Stratification was so well developed that at least two co-existing regions of significantly different mean biofilm thickness were visually distinct within the operating FBB. The observed stratification is attributed to differences in forces of drag, buoyancy, shear, and collisional impact, as well as differences of collision rate within the different regions. Particles with thick biofilm (thickness >100 μm) near the top of the bed consumed substrate at significantly lower rates per unit biomass than particles with thin biofilm (10-20 μm) near the bottom of the bed, thereby suggesting that substrate mass-transfer resistance through biofilm may limit biodegradation rates in the upper portion of the FBB. Large agglomerates of biomass floc and sand, which formed at the top of the fluidized bed, and sand particles with thick biofilm were susceptible to washout from the FBB, causing operational and treatment instability. Radial injection of supplemental liquid feed near the top of the bed increased shear and mixing, thereby preventing formation and washout of agglomerates and thickly coated sand particles. Supplemental liquid injection caused the mean specific biomass loading on the sand to increase and also increased the total biomass inventory in the FBB. Rates of biodegradation in the FBB appeared to be limited by penetration of substrates into the biofilm and absorption of oxygen from air into the wastewater. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

12.
Adhesion and biofilm formation by Pseudomonas putida was studied using suspended carriers in laboratory airlift reactors. Standard, roughened, hydrophobic, and positively charged glass beads, sand, and basalt grains were used as carriers. The results clearly show that in airlift reactors hydrodynamic conditions and particle collisions control biofilm formation. In the reactors, on surfaces subjected to different shear levels, biofilm formation differed considerably. This could be described by a simple growth and detachment model. Increased surface roughness promoted biofilm accumulation on suspended carriers. The physicochemical surface characteristics of the carrier surface proved to be less important due to the turbulent conditions in the airlift reactors. Adhesion of P. putida to glass beads was poor, and results of an adhesion test under quiescent conditions were not predictive for adhesion and subsequent biofilm formation under reactor conditions. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55:880-889, 1997.  相似文献   

13.
Quinoline degradation by Comamonas acidovorans was investigated in a three phase fluidized bed reactor at dilution rates below and above the critical value (mu(max) = 0.42 h(-1)). Quinoline was used as the sole source of carbon, nitrogen, and energy. Two attachment carriers, polyurethane foam (Bayvitec(R)) and modified cellulose (Aquacel(R)), and a gel entrapment carrier (polyvinyl alcohol) were studied and compared with regard to their effectiveness to immobilize cells. Attachment and biofilm formation was best at higher dilution rates, regardless of carrier type used. Except for the maximum biomass concentration on the carrier, Y(V) (biomass per volume of solid particles), there was no significant difference in reactor performance between the investigated carriers under stationary conditions. The highest value for Y(V) was found for the gel entrapment carrier (Y(V) = 35 g L(-1)). In a long-term run (66 days), the gel entrapment carrier established a permanent biofilm on the surface of the gel beads after 900 h of cultivation time. Complete quinoline mineralization was achieved at a dilution rate of 2.0 h(-1), which is 4.7 times higher than the critical dilution rate. Identical substrate overloads were applied to the gel entrapment and the cellulose carrier by a step increase of the quinoline feed concentration at a dilution rate of 0.8 h(-1) (D approximately 2mu(max)). The cells survived the overload, but the accumulation of quinoline and quinoline degradation products and the degradation efficiency were different for the two systems during the overload, showing the influence of the carrier type on the dynamic performance and stability of the process. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 295-303, 1997.  相似文献   

14.
The objective of this paper was to understand the detachment of multispecies biofilm caused by abrasion. By submitting a biofilm to different abrasion strengths (collision of particles), stratification of biofilm cohesion could be highlighted and related to stratification of biofilm bacterial communities using the PCR-SSCP fingerprint method. The biofilm comprised a thick top layer, weakly cohesive and composed of one dominant species, and a thin basal layer, strongly cohesive and composed of a more diverse population. These observations suggest that microbial composition of biofilms may be an important parameter in understanding biofilm detachment.  相似文献   

15.
A double infusion flow system and particle sizing technique were developed to study the effect of time and shear rate on adenosine diphosphate-induced platelet aggregation in Poiseuille flow. Citrated platelet-rich plasma, PRP, and 2 microM ADP were simultaneously infused into a 40-microliters cylindrical mixing chamber at a fixed flow ratio, PRP/ADP = 9:1. After rapid mixing by a rotating magnetic stirbar, the platelet suspension flowed through 1.19 or 0.76 mm i.d. polyethylene tubing for mean transit times, t, from 0.1 to 86 s, over a range of mean tube shear rate, G, from 41.9 to 1,000 s-1. Known volumes of suspension were collected into 0.5% buffered glutaraldehyde, and all particles in the volume range 1-10(5) microns 3 were counted and sized using a model ZM particle counter (Coulter Electronics Inc., Hialeah, FL) and a logarithmic amplifier. The decrease in the single platelet concentration served as an overall index of aggregation. The decrease in the total particle concentration was used to calculate the collision capture efficiency during the early stages of aggregation, and aggregate growth was followed by changes in the volume fraction of particles of successively increasing size. Preliminary results demonstrate that both collision efficiency and particle volume fraction reveal important aspects of the aggregation process not indicated by changes in the single platelet concentration alone.  相似文献   

16.
Aims:  To assess the impact of reaerosolization from liquid impingement methods on airborne virus sampling.
Methods and Results:  An AGI-30 impinger containing particles [MS2 bacteriophage or 30-nm polystyrene latex (PSL)] of known concentration was operated with sterile air. Reaerosolized particles as a function of sampling flow rate and particle concentration in the impinger collection liquid were characterized using a scanning mobility particle sizer. Reaerosolization from the impinger was also compared to that from a BioSampler. Results show that reaerosolization increases as flow rate increases. While the increased particle concentration in the impinger collection liquid leads to an increase in the reaerosolization of PSL particles, it does not necessarily lead to an increase in the reaerosolization of virus particles. Reaerosolization of virus particles begins to decrease as the particle concentration in the impinger collection liquid rises above 106 PFU ml−1. This phenomenon results from aggregation of viral particles at high concentrations. Compared with micron-sized particles, nanosized virus particles are easier to aerosolize because of reduced inertia. Reaerosolization from the BioSampler is demonstrated to be significantly less than that from the impinger.
Conclusions:  Reaerosolization from impingement sampling methods is a mode of loss in airborne virus sampling, although it is not as significant a limitation as the primary particle size of the aerosol. Utilizing a BioSampler coupled with short sampling periods to prevent high accumulative concentrations can minimize the impact of reaerosolization.
Significance and Impact of the Study:  This study confirms reaerosolization of virus particles to be a mode of loss in impingement sampling and identifies methods to minimize the loss.  相似文献   

17.
Point-of-use filters containing granular activated carbon (GAC) are an effective method for removing certain chemicals from water, but their ability to remove bacteria and viruses has been relatively untested. Collision efficiencies (alpha) were determined using clean-bed filtration theory for two bacteria (Raoutella terrigena 33257 and Escherichia coli 25922), a bacteriophage (MS2), and latex microspheres for four GAC samples. These GAC samples had particle size distributions that were bimodal, but only a single particle diameter can be used in the filtration equation. Therefore, consistent with previous reports, we used a particle diameter based on the smallest diameter of the particles (derived from the projected areas of 10% of the smallest particles). The bacterial collision efficiencies calculated using the filtration model were high (0.8 < or = alpha < or = 4.9), indicating that GAC was an effective capture material. Collision efficiencies greater than unity reflect an underestimation of the collision frequency, likely as a result of particle roughness and wide GAC size distributions. The collision efficiencies for microspheres (0.7 < or = alpha < or = 3.5) were similar to those obtained for bacteria, suggesting that the microspheres were a reasonable surrogate for the bacteria. The bacteriophage collision efficiencies ranged from > or = 0.2 to < or = 0.4. The predicted levels of removal for 1-cm-thick carbon beds ranged from 0.8 to 3 log for the bacteria and from 0.3 to 1.0 log for the phage. These tests demonstrated that GAC can be an effective material for removal of bacteria and phage and that GAC particle size is a more important factor than relative stickiness for effective particle removal.  相似文献   

18.
The feeding biology of Enchytraeus crypticus and other enchytraeids is poorly understood as is their effect on nematophagous fungi. Because enchytraeids had been associated with nematophagous fungi in the field and had suppressed these fungi in soil microcosms, we tested the hypothesis that exclusion of enchytraeids, largely E. crypticus, would improve establishment of certain nematophagous fungi in field plots. The fungi, Hirsutella rhossiliensis and Monacrosporium gephyropagum, are being studied as potential control agents of plant-parasitic nematodes and were formulated as hyphae in alginate pellets. The pellets were mixed into soil without enchytraeids and placed in cages (PVC pipe, 80 cm3 volume) with fine (20 μm) or coarse (480 μm) mesh; cages were buried 15 cm deep in field plots and then recovered after 6–52 days. When fine mesh was used, enchytraeids were excluded and the fungi increased to large numbers. When coarse mesh was used, enchytraeid numbers in cages increased rapidly and the fungi did poorly. Although mesh also affected other potential fungivores, including collembolans and large dorylaimid nematodes, we suspect that enchytraeids were more important because large numbers were consistently found in cages with coarse mesh soon after the cages were placed in soil. Organisms smaller than enchytraeids (bacteria, fungi, and protozoa) also appeared to be important because the fungi did better in heat-treated soil than in non-heat-treated soil, regardless of mesh size. The rapid increase in enchytraeid numbers in cages with hyphal pellets and coarse mesh was probably caused by movement of enchytraeids toward the pellets with hyphae: increase in enchytraeid numbers was minimal when movement into cages was blocked (or when cages contained pellets without hyphae). Overall, the data were consistent with the hypothesis that enchytraeids, or other meso- or macrofauna, contributed to suppression of nematophagous fungi in our field plots. Received: 22 April 1997 / Accepted: 16 June 1997  相似文献   

19.
The influence of matrix properties and operating conditions on the performance in fluidized-bed adsorption has been studied using Streamline diethyl-aminoethyl (DEAE), an ion exchange matrix based on quartz-weighted agarose, and bovine serum albumin (BSA) as a model protein. Three different particle size fractions (120-160 mum, 120-300 mum, and 250-300 mum) were investigated. Dispersion in the liquid phase was reduced when particles with a wide size distribution were fluidized compared to narrow particle size distributions. When the mean particle diameter was reduced, the breakthrough capacities during frontal adsorption were enlarged due to a shorter diffusion path length within the matrix. At small particle diameters the effect of film mass transfer became more relevant to the adsorption performance in comparison to larger particles. Therefore matrices designed for fluidized-bed adsorption should have small particle diameter and increased mean particle density to ensure small diffusion path length in the particle and a high interstitial velocity to improve film mass transfer. Studies on the influence of sedimented matrix height on axial mixing showed an increased Bodenstein number with increasing bed length. Higher breakthrough capacities were also found for longer adsorbent beds due to reduced dispersion and improved fluid and particle side mass transfer. With increasing bed height the influence of flow rate on breakthrough capacity was reduced. For a settled bed height of 50 cm breakthrough capacities of 80% of the equilibrium capacity for flow rates varying from 3 to 9 cm/min could be achieved. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 54-64, 1997.  相似文献   

20.
The aim of the present study was to investigate the use of different grades of microcrystalline cellulose (MCC) and lactose in a direct pelletization process in a rotary processor. For this purpose, a mixed 2- and 3-level factorial study was performed to determine the influence of the particle size of microcrystalline cellulose (MCC), (≈60 and 105 μm) and lactose (≈30, 40, and 55 μm), as well as MCC type (Avicel and Emcocel) on the pelletization process and the physical properties of the prepared pellets. A 1∶4 mixture of MCC and lactose was applied, and granulation liquid was added until a 0.45 Nm increase in the torque of the friction plate was reached. All combinations of the 3 factors resulted in spherical pellets of a high physical strength. The particle size of MCC was found to have no marked effect on the amount of water required for agglomerate growth or on the size of the resulting pellets. An increasing particle size of lactose gave rise to more spherical pellets of a more narrow size distribution as well as higher yields. The MCC type was found to affect both the release of the model drug from the prepared pellets and the size distribution. Generally, the determined influence of the investigated factors was small, and direct pelletization in a rotary processor was found to be a robust process, insensitive to variations in the particle size and type of MCC and the particle size of lactose. Published: October 24, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号