首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A 3.7-kilobase (kb) XbaI fragment harboring the cryIVB gene (L. Thorne, F. Garduno, T. Thompson, D. Decker, M. A. Zounes, M. Wild, A. M. Walfield, and T. J. Pollock, J. Bacteriol. 166:801-811, 1986) which encoded a 130-kilodalton (kDa) mosquitocidal toxin from a 110-kb plasmid of Bacillus thuringiensis subsp. israelensis 4Q2-72 was cloned into pUC12 and transformed into Escherichia coli. The clone with a recombinant plasmid (designated pBT8) was toxic to Aedes aegypti larvae. The fragment (3.7 kb) was ligated into pBC16 (tetracycline resistant [Tcr]) and transformed by the method of protoplast transformation into Bacillus sphaericus 1593 and 2362, which were highly toxic to Anopheles and Culex mosquito larvae but less toxic to Aedes larvae. After cell regeneration on regeneration medium, the Tcr plasmids from transformants (pBTC1) of both strains of B. sphaericus were prepared and analyzed. The 3.7-kb XbaI fragment from the B. thuringiensis subsp. israelensis plasmid was shown to be present by agarose gel electrophoresis and Southern blot hybridization. In addition, B. sphaericus transformants produced a 130-kDa mosquitocidal toxin which was detected by Western (immuno-) blot analysis with antibody prepared against B. thuringiensis subsp. israelensis 130-kDa mosquitocidal toxin. The 50% lethal concentrations of the transformants of strains 1593 and 2362 against A. aegypti larvae were 2.7 X 10(2) and 5.7 X 10(2) cells per ml, respectively. This level of toxicity was comparable to the 50% lethal concentration of B. thuringiensis subsp. israelensis but much higher than that of B. sphaericus 1593 and 2362 (4.7 X 10(4) cells per ml) against A. aegypti larvae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A 3.7-kilobase (kb) XbaI fragment harboring the cryIVB gene (L. Thorne, F. Garduno, T. Thompson, D. Decker, M. A. Zounes, M. Wild, A. M. Walfield, and T. J. Pollock, J. Bacteriol. 166:801-811, 1986) which encoded a 130-kilodalton (kDa) mosquitocidal toxin from a 110-kb plasmid of Bacillus thuringiensis subsp. israelensis 4Q2-72 was cloned into pUC12 and transformed into Escherichia coli. The clone with a recombinant plasmid (designated pBT8) was toxic to Aedes aegypti larvae. The fragment (3.7 kb) was ligated into pBC16 (tetracycline resistant [Tcr]) and transformed by the method of protoplast transformation into Bacillus sphaericus 1593 and 2362, which were highly toxic to Anopheles and Culex mosquito larvae but less toxic to Aedes larvae. After cell regeneration on regeneration medium, the Tcr plasmids from transformants (pBTC1) of both strains of B. sphaericus were prepared and analyzed. The 3.7-kb XbaI fragment from the B. thuringiensis subsp. israelensis plasmid was shown to be present by agarose gel electrophoresis and Southern blot hybridization. In addition, B. sphaericus transformants produced a 130-kDa mosquitocidal toxin which was detected by Western (immuno-) blot analysis with antibody prepared against B. thuringiensis subsp. israelensis 130-kDa mosquitocidal toxin. The 50% lethal concentrations of the transformants of strains 1593 and 2362 against A. aegypti larvae were 2.7 X 10(2) and 5.7 X 10(2) cells per ml, respectively. This level of toxicity was comparable to the 50% lethal concentration of B. thuringiensis subsp. israelensis but much higher than that of B. sphaericus 1593 and 2362 (4.7 X 10(4) cells per ml) against A. aegypti larvae.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
The maximum recovery period following topical ocular instillation and intraperitoneal injection of two preparations of Bacillus thuringiensis ssp. israelensis de Barjac and two preparations of Bacillus sphaericus 2362 was evaluated in rabbits and mice. B. sphaericus 2362 persisted for 8 wk after administration to the conjunctival cul-de-sac of rabbits; B. thuringiensis ssp. israelensis persisted for 1 wk. Infection was not evident, but both entomopathogens were recovered from flushed and unflushed eyes. High doses of B. sphaericus 2362 (greater than or equal to 10(8) colony-forming units) were toxic to CD-1 mice, and the toxic factor was heat stable. Injection of 10(7) colony-forming units of B. sphaericus 2362 resulted in clearance from the spleens of euthymic and athymic mice. Recovery occurred up to 67 d after injection. Mice failed to remove one preparation of B. thuringiensis ssp. israelensis from their spleen, and a constant number of colony-forming units were recovered for 80 d. B. sphaericus 2362 and B. thuringiensis ssp. israelensis were recovered from heart blood; their disappearance from heart blood coincided with their clearance from the spleen. There was no evidence that either organism was infectious. We conclude that these organisms can be used safely in environments where human exposure might occur.  相似文献   

6.
Summary The resistance of 8 strains of Bacillus sphaericus and of 2 strains of Bacillus thuringiensis var. israelensis (B.t.i.) to various antibiotics and antibiotic combinations were tested. All B. sphaericus strains were resistant to streptomycin, lincomycin and bacitracin, and six strains were resistant to combinations of these antibiotics. This antibiotic resistance could be utilised to establish selective media to identify and follow the fate of B. sphaericus and of B.t.i. in the field.  相似文献   

7.
本研究测定了分别表达苏云金芽孢杆菌Cry4Aa、Cry4Ba、Cry11Aa、Cyt1Aa和球形芽孢杆菌二元毒素Bin的转化菌株Bt B60 1、Bt B611、Bt B640、Bt U 30和Bt CW 3全发酵培养物两两或两两以上不同组合对抗性库蚊的毒力 ,分析了杀蚊毒素间的协同作用。结果表明 ,Bin和Cry4Aa、Bin和Cry 4Ba间有明显的协同作用 ,此外 ,Cry4Aa和Cry4Ba、Cry4Aa和Cry11Aa、Cyt1Aa和Cry4Aa之间也有明显的协同作用  相似文献   

8.
It was shown previously that spores and vegetative cells of Bacillus sphaericus (Bf) and Bacillus thuringiensis israelensis (Bti) are very sensitive to osmotic variations. Since spore osmotolerance has been associated with their SASP (small acid soluble spore proteins) content coded by ssp genes, hybridization assays were performed with sspE and sspA genes from B. subtilis as probes and showed that Bti and Bf strains could lack an sspE-like gene. The B. subtilis sspE gene was then introduced into Bti 4Q2 strain; spores were obtained and showed a 65 to 650 times higher level of osmotolerance to NaCl, without affecting other important properties: hypoosmotic resistance in vegetative cells, spore UV resistance, and larvicidal activity against diptera larvae.  相似文献   

9.
V Sekar  B C Carlton 《Gene》1985,33(2):151-158
A transformant of Bacillus megaterium, VB131, was isolated which carries a 6.3-kb XbaI segment of the crystal toxin gene of Bacillus thuringiensis var. israelensis (BTI) cloned in a vector plasmid pBC16 to yield pVB131. The chimeric plasmid DNA from VB131 was introduced into a transformable Bacillus subtilis strain by competence transformation. Both the B. megaterium VB131 strain and the B. subtilis strain harboring the chimeric plasmid produced irregular, parasporal, phase-refractile, crystalline inclusions (Cry+) during sporulation. The sporulated cells as well as the isolated crystal inclusions of the pVB131-containing B. megaterium and B. subtilis strains were highly toxic to the larvae of Aedes aegypti. Also, the solubilized crystal protein preparation from VB131[pVB131] showed clear immuno cross-reaction with antiserum to the BTI crystal toxin. 32P-labeled pVB131 plasmid DNA showed specific hybridization with a 112-kb plasmid DNA of Cry+ strains of BTI, and no hybridization with other plasmid or chromosomal DNA of either Cry+ or Cry- variants. These results are in agreement with our previous findings (González and Carlton, 1984) that the 112-kb plasmid of BTI is associated with the production of the crystal toxin.  相似文献   

10.
Immunofluorescent staining was used with thin sections of paraffin-embedded specimens to detect the development of Bacillus thuringiensis var. israelensis and Bacillus sphaericus in the gut of mosquito larvae. The third- and fourth-instar larvae of Aedes aegypti, Anopheles maculatus, and Culex quinquefasciatus were fed either vegetative cells or spores of the bacteria. Spore germination, multiplication, and sporulation were studied in the larvae of each species. The spores of B. thuringiensis var. israelensis and B. sphaericus strain 2297 could germinate and cells could sporulate in the larval body. The vegetative cells of B. sphaericus strain 810428 were also able to produce spores in the mosquito larval gut, but the germination of spores could not be detected in the larvae. Multiplication of all bacterial species was observed after the larvae died. Growth of the bacteria in distilled water containing crude extracts of larvae made from each species was compared with that in synthetic medium (nutrient broth). They could produce spores and toxins in all the media used and the toxins had larvicidal activity against the target mosquitos Ae. aegypti, An. maculatus, and C. quinquefasciatus.  相似文献   

11.
The genes encoding the toxic determinants of Bacillus sphaericus have been expressed in a nontoxic and a toxic strain of Bacillus thuringiensis subsp. israelensis. In both cases, the B. sphaericus toxin proteins were produced at a high level during sporulation of B. thuringiensis and accumulated as crystalline structures. B. thuringiensis transformants expressing B. sphaericus and B. thuringiensis subsp. israelensis toxins did not show a significant enhancement of toxicity against Aedes aegypti, Anopheles stephensi, and Culex pipiens larvae.  相似文献   

12.
Abstract The genes encoding the CryIVB and CryIVD crystal polypeptides of B. thuringiensis subsp. israelensis were cloned indepently on a stable shuttle vector, and transfered into B. sphaericus 2297. Recombinant cells expressed the B. thuringiensis toxins during sporulation and were shown to be toxic to Aedes aegypti fourth instar larvae, whereas the parental strain was not.  相似文献   

13.
The genes encoding the toxic determinants of Bacillus sphaericus have been expressed in a nontoxic and a toxic strain of Bacillus thuringiensis subsp. israelensis. In both cases, the B. sphaericus toxin proteins were produced at a high level during sporulation of B. thuringiensis and accumulated as crystalline structures. B. thuringiensis transformants expressing B. sphaericus and B. thuringiensis subsp. israelensis toxins did not show a significant enhancement of toxicity against Aedes aegypti, Anopheles stephensi, and Culex pipiens larvae.  相似文献   

14.
球形芽孢杆菌C3-41是我国分离的一株对蚊幼虫有毒杀作用的高毒力菌株,对库蚊、按蚊幼虫的毒性高于2362菌株,Southern杂交证明C3-41总DNA中3.5KbHindIII片段上带有41.9和51.4kD二元毒素基因。  相似文献   

15.
将编码cyt1Aa基因和 p2 0蛋白基因的DNA片段分别克隆连接于两个不同的穿梭载体 pBU 4和pMK 3上 ,构建了重组质粒 pBA 30和 pMA 6,通过电击法 ,将重组质粒分别转化 B .s野生株2 2 97,获得了转化菌株Bs 97 30和Bs 97 6。SDS PAGE和Westernblot分析证实了cyt1Aa基因在转化菌株Bs 97 30中获得了表达 ,而在转化菌株Bs 97 6中未检测到cyt1Aa基因表达的蛋白。转化菌株Bs 97 30中 ,cyt1Aa基因与B .s二元毒素基因同步于菌体生长的对数期起始表达 ,并持续至芽孢形成。生测结果表明 ,转化菌株Bs 97 30中cyt1Aa基因的表达并未明显增强其对敏感和抗性致倦库蚊幼虫的毒力。其原因可能是弱毒性的 cyt1Aa蛋白在转化菌株中的表达量不高。  相似文献   

16.
Acidity is an important environmental condition encountered by lactobacilli during food fermentation. In this report we show that triggering the stationary-phase acid tolerance response (ATR) in L. acidophilus CRL 639 depends on the final growth pH. In free-pH fermentation runs (final pH = 4.5), the cells were completely resistant to acid stress, whereas cells from cultures under controlled pH (pH = 6.0) were very sensitive. The relationship between the final pH and the development of cross-resistance to different kinds of environmental stress was also evaluated. The study of protein profiles showed the overexpression of 16 proteins from 6.5 to 70.9 kDa in stationary phase cells. Seven of these proteins (26.3, 41.4, 48.7, 49.3, 54.5, 56.1, and 70.9 kDa) were expressed as result of the stationary phase itself, while nine proteins (14.1, 18.6, 21.5, 26.9, 29.3, 41.9, 42.6, 49.6, and 56.2 kDa) were exclusively induced as a result of the drop in culture pH during free fermentation runs. These results strongly suggest the involvement of these proteins in cell adaptation to environmental changes. Received: 5 June 2000 / Accepted: 5 July 2000  相似文献   

17.
Li T  Sun F  Yuan Z  Zhang Y  Yu J  Pang Y 《Current microbiology》2000,40(5):322-326
The cyt1Aa gene of Bacillus thuringiensis subsp. israelensis and binary toxin gene of Bacillus sphaericus C3-41 were introduced into an acrystalliferous strain of B. thuringiensis independently and in combination by using shuttle vector pBU4. SDS-PAGE and Western blot analysis proved that cyt1Aa and binary toxin genes coexpressed during the sporulation of the recombinant. Transformant strain expressing the Cyt1Aa and binary toxin proteins in combination was more toxic to susceptible and resistant Culex pipiens quinquefasciatus than the transformants expressing Cyt1Aa protein or binary toxin proteins independently. It was suggested that large amount of production of Cyt1Aa protein and binary toxin proteins possibly interacted synergistically, thereby increasing its mosquitocidal toxicity significantly. Received: 22 October 1999 / Accepted: 22 November 1999  相似文献   

18.
The crystal delta-endotoxin of Bacillus thuringiensis subsp. israelensis is less toxic to larvae of Anopheles freeborni than to larvae of Aedes aegypti. However, when solubilized crystal was used, larvae from both species showed similar sensitivities. This effect presumably was due to the differences in feeding behavior between the two mosquito larvae when crystal preparations are used. A procedure is described whereby both crystal and solubilized B. thuringiensis subsp. israelensis toxin were emulsified with Freund incomplete adjuvant, with retention of toxicity. The use of Freund incomplete adjuvant also allowed one to assay the solubilized toxin at a low nanogram level. Furthermore, coating the toxin with lipophilic material altered the buoyancy of the toxin and reversed the sensitivities of the two mosquito larvae toward the B. thuringiensis subsp. israelensis toxin. This difference in buoyancy was determined by using an enzyme-linked immunosorbent assay that was specific for the toxic peptides. These data indicate that economically feasible buoyant formulations for the B. thuringiensis subsp. israelensis crystal can be developed.  相似文献   

19.
The crystal delta-endotoxin of Bacillus thuringiensis subsp. israelensis is less toxic to larvae of Anopheles freeborni than to larvae of Aedes aegypti. However, when solubilized crystal was used, larvae from both species showed similar sensitivities. This effect presumably was due to the differences in feeding behavior between the two mosquito larvae when crystal preparations are used. A procedure is described whereby both crystal and solubilized B. thuringiensis subsp. israelensis toxin were emulsified with Freund incomplete adjuvant, with retention of toxicity. The use of Freund incomplete adjuvant also allowed one to assay the solubilized toxin at a low nanogram level. Furthermore, coating the toxin with lipophilic material altered the buoyancy of the toxin and reversed the sensitivities of the two mosquito larvae toward the B. thuringiensis subsp. israelensis toxin. This difference in buoyancy was determined by using an enzyme-linked immunosorbent assay that was specific for the toxic peptides. These data indicate that economically feasible buoyant formulations for the B. thuringiensis subsp. israelensis crystal can be developed.  相似文献   

20.
Site-directed mutagenesis has been used to change individual amino acids of the larvicidal 27,000 Mr delta-endotoxin of Bacillus thuringiensis var. israelensis. Basic and acidic residues have been systematically replaced by alanine, and the resulting mutant polypeptides analysed for cytolytic and larvicidal activity, and binding to phosphatidyl choline liposomes. Replacement of residues at positions 154, 163, 164, 213 and 225 results in proteins which accumulate as inclusions in recombinant Bacillus subtilis cells similar to the wild-type, but have considerably reduced in-vitro and in-vivo toxicity. One mutant (Glu45 to Ala45) results in a protein that has reduced activity in vitro, but retains wild-type larvicidal toxicity. In addition, seven other mutations of charged residues result in proteins which form small or no inclusions in recombinant cells, despite being produced at levels similar to the wild-type in six out of seven cases. In most instances, the toxicity of these aberrantly expressed proteins is considerably less than the wild-type, although one (Lys124 to Ala124) results in a polypeptide with approximately threefold increased activity in vitro. A secondary structural model is proposed to explain these observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号