首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
U.V.-enhanced reactivation (UVER) of both U.V.-irradiated and gamma-irradiated human adenovirus type 2 (Ad 2) was examined following the infection of a variety of Cockayne Syndrome (CS) and Xeroderma pigmentosum (XP) fibroblast strains which had been pre-irradiated with U.V. light. U.V.-irradiated or non-irradiated fibroblasts were infected with either non-irradiated or irradiated Ad2, and at 48 hours after infection cells were examined for the presence of viral structural antigens (Vag) using immunofluorescent staining. Normal levels of UVER (i.e. 2-4 fold) of U.V.- and of gamma-irradiated Ad 2 were detected in 2 CS strains (CS IBE and CS 3BE), 2 XP complementation group A strains (XP 12BE and XP 25RO), and 2 XP complementation group D strains (XP 5BE and XP 6BE), although the U.V. doses to these mutant cells which resulted in peak UVER values (0 . 2 Jm-2 for XP 25RO, 0 . 14 Jm-2 for XP 12BE, 0 . 8 Jm-2 for XP 5BE and XP 6BE, and 1 . 6-5 . 0 Jm-2 for CS 1BE and CS 3BE) were considerably lower than those yielding peak UVER in normal strains (10-15 Jm-2). XP variant strains (XP 4BE and XP 115LO), however, showed substantially lower levels of UVER than normal strains.  相似文献   

2.
An enhanced reactivation (UVER) of U.V.-irradiated as well as of gamma-irradiated human adenovirus type 2 (Ad 2) was detected following infection of normal human fibroblasts which had been pre-irradiated with U.V. light. U.V.-irradiated or non-irradiated fibroblasts were infected with either non-irradiated or irradiated Ad 2, and at 48 hours after infection cells were examined for the presence of viral structural antigens (Vag) using immunofluorescent staining. Results obtained using 5 different normal fibroblast strains showed that irradiation of host monolayers with 10J/m2 immediately prior to infection gave a U.V. enhanced reactivation (UVER) factor +/- standard error equal to 3 . 1 +/- 1 . 2 for virus U.V.-irradiated with 1 . 2 x 10(3) J/m2, and 2 . 1 +/- 0 . 5 for virus gamma-irradiated with 2 x 10(4) Gy. For a fixed survival of about 5 . 9 x 10(-2) for irradiated virus, the efficiency of UVER for gamma-irradiated virus was about 0 . 18, slightly less than the value of about 0 . 24 obtained for U.V.-irradiated virus. The results of time course experiments indicated that while U.V.-irradiation of normal host monolayers prior to infection gave rise to an increased rate of Vag formation for infection by unirradiated Ad 2, U.V.-irradiation of the cells increased the proportion of cells able to repair U.V.-damaged virus as well as allowing an earlier onset and/or increased rate of synthesis of Vag from a U.V.-damaged template. Similar experiments involving gamma-ray enhanced reactivation (gamma-RER) of irradiated Ad 2 indicated that gamma-RER and UVER may operate, in part at least, by different mechanisms in normal human cells.  相似文献   

3.
An enhanced reactivation of UV-irradiated adenovirus type 2 (Ad 2) was detected following irradiation of the host cells with γ-rays prior to infection. Non-irradiated and γ-irradiated normal human fibroblasts were infected immediately after irradiation with either non-irradiated or UV-irradiated Ad 2. At 48h after infection, cultures were examined by indirect immunofluorescence to determine the number cells in which the viral function of viral structural antigen (Vag) was expressed. Pre-irradiation of cells with 1 krad resulted in a 2–3-fold increase in the survival of this viral function following different UV doses to the virus up to 1.75 × 103 J/m2. For a fixed UV dose of 1.0 × 103 J/m2 to the virus this enhancement increased with preirradiation dose to the cells up to a maximum factor of 2–3 for a dose of 1 krad. An examination of Vag expression at various times after infection indicates that pre-irradiation of the cells with γ-rays prior to infection with UV-irradiated virus leads to an earlier onset and/or increased rate of Vag synthesis. This enhancement of Vag production from a UV-damaged template may result from an inducible DNA-repair mechanism in human fibroblasts which may or may not be error-prone.  相似文献   

4.
The host-cell reactivation of V antigen production for irradiated adenovirus was examined in fibroblasts from 5 unrelated patients with Cockayne's syndrome (CS) and 2 CS heterozygotes. The fibroblast cultures were infected with either irradiated or non-irradiated adenovirus and subsequently examined for the presence of viral structural antigens using immunofluorescent staining. All CS-homozygous strains showed a reduced host-cell reactivation (HCR) of this viral function for both UV- and γ-irradiated virus. For UV-irradiation of the virus, D37 values expressed as a percentage of that obtained on normal strains, ranged from 14 to 35%. For γ-irradiation of the virus these values ranged from 61 to 80%. These results indicate some defect in the repair of both UV- and γ-ray-induced DNA damage for CS. 1 CS-heterozygote strain tested also showed a reduced HCR for UV-irradiated adenovirus intermediate between that of the patient strain and normal, whereas another CS-heterozygote strain showed an apparently normal HCR level.  相似文献   

5.
UV survival curves of adenovirus 2 using fused, complementing xeroderma pigmentosum (XP) fibroblast strains as virus hosts showed a component with an inactivation slope identical to that given by normal cells. This component was not observed when the fibroblasts were not fused or when fusion involved strains in the same complementation group. Extrapolation of this component indicated that at zero dose 3% of the viral plaque-forming units had infected cells capable of normal repair. These results suggest that 3% of the cells were complementing heterokaryons, a value similar to that actually observed by autoradiographic analysis of UV-induced unscheduled DNA synthesis. Thus, heterokaryons formed from XP fibroblasts belonging to different complementation groups are as capable of restoring biological activity to UV-damaged adenovirus 2 as are normal cells.  相似文献   

6.
An enhanced reactivation of γ-irradiated human adenovirus type 2 (Ad 2) was detected following the infection of normal human fibroblasts which had been pre-irradiated with γ-rays. γ-irradiated or non-irradiated fibroblasts were infected with either non-irradiated or γ-irradiated Ad 2, and at 48 hours after infection cells were examined for the presence of viral structural antigens (Vag) using immunofluorescent staining. Pre-irradiation of the cells with 1 Krad immediately prior to infection resulted in a 5 to 15 fold increase in the survival of this viral function following different γ doses to the virus up to 3 Mrad. For a fixed γ dose of 2 Mrad to the virus this enhancement increased with pre-irradiation dose to the cells up to a maximum factor of 5 to 30 for a dose of 2 Krad. When infection was delayed until 48 hours after irradiation of the cells, this enhancement was reduced to about half the level found for immediate infection.  相似文献   

7.
Human adenovirus type 2 (Ad 2) was irradiated with 137Cs gamma rays in the liquid state at 0 degree C. DNA breaks were correlated with the inactivation of several viral functions and compared to results obtained previously for irradiation of Ad 2 under frozen conditions at -75 degrees C. Irradiation at 0 degree C induced 170 +/- 20 single-strand breaks and 2.6 +/- 0.4 double-strand breaks/Gy/10(12) Da in the viral DNA. Viral adsorption to human KB cells was inactivated with a D0 of 9.72 +/- 1.18 kGy, whereas the inactivation of Ad 2 plaque formation had a D0 of 0.99 +/- 0.14 or 1.1 +/- 0.29 kGy when corrected for the effect of radiation on virus adsorption. For the adsorbed virus, an average of 4.3 +/- 1.7 single-strand and 0.065 +/- 0.02 double-strand breaks were induced in the viral DNA per lethal hit. In contrast, irradiation of Ad 2 at -75 degrees C results in 2.6- to 3.4-fold less DNA breakage per Gy and a 5.6-fold increase in D0 for plaque formation of the adsorbed virus. Furthermore, although host cell reactivation (HCR) of Ad 2 viral structural antigen production for irradiated virus was substantially reduced in the xeroderma pigmentosum fibroblast strain (XP25RO) compared to normal strains for irradiation at -75 degrees C (57% HCR), it was only slightly reduced compared to normal for irradiation at 0 degree C (88% HCR). These results indicate that the spectrum of DNA damage is both quantitatively and qualitatively different for the two conditions of irradiation.  相似文献   

8.
Host-cell reactivation (HCR) of UV-irradiated herpes simplex virus type 2 (HSV-2), capacity of UV-irradiated cells to support HSV-2 plaque formation and UV-enhanced reactivation (UVER) of UV-irradiated HSV-2 were examined in fibroblasts from 4 patients with Cockayne syndrome (CS), 5 with xeroderma pigmentosum and 5 normals. All UV-survival curves for HSV-2 plaque formation showed 2 components. HCR was similar to normal for the XP variant strain and the 2 CS strains tested, but substantially reduced in the 4 excision-deficient XP strains. The capacity of UV-irradiated fibroblasts to support HSV-2 plaque formation was determined by UV-irradiating fibroblast monolayers with various doses of UV and 48 h later, infecting the monolayers with unirradiated HSV-2. The D37 values for the delayed-capacity curves so obtained were in the range 8.6-12.4 J/m2 for the normal strains, 2.8-3.2 J/m2 for the CS strains, 6.7 J/m2 for an XP variant strain and between 0.3 and 1.5 for the XP excision-deficient strains tested. These results indicate that delayed capacity for HSV-2 plaque formation is a more sensitive assay than HCR in the detection of cellular DNA-repair deficiency for XP and CS. For the examination of UVER, fibroblasts were irradiated with various UV doses and subsequently infected with either unirradiated or UV-irradiated HSV and scored for plaque formation 2 days later. UVER expression was maximum when the delay between UV-irradiation of the cells and HSV infection was 48 h. The magnitude of UVER expression was also found to be dependent on the UV dose to the cells and increased with increasing UV dose to the virus. Using a UV dose to the virus resulting in a plaque survival of about 10(-2) on unirradiated cells, the the maximum UVER factor had a mean value of 1.3 for the normal strains following a dose of 15 J/m2 to the cells. Somewhat higher UVER values were found for all the patient strains tested and resulted from lower UV doses to the cells than for normal strains. Maximum UVER factors for the CS strains ranged from 2.2 to 3.3 at a dose of 5 J/m2 to the cells, for the XP excision-deficient strains; 2.1 to 2.6 at doses of 0.5 to 2.5 J/m2 to the cells and for the XP variant strain tested; 2.5 at UV dose of 10 J/m2 to the cells.  相似文献   

9.
Benzo(a)pyrene diol-epoxide I (r-7,t-8,dihydroxy-t-9,10 oxy-7,8,9,10 tetrahydrobenzo(a)pyrene) was used to treat either human adenovirus 5 or cultures of human fibroblasts. The survival of diol-epoxide I treated adenovirus was greater when infecting fibroblasts from normal persons than when infecting fibroblasts from patients with xeroderma pigmentosum (XP). One diol-epoxide I molecule bound per viral genome correlated with one lethal hit as measured using XP fibroblasts.

Normal fibroblasts blocked in semi-conservative DNA synthesis incorporated into their DNA more [3H]thymidine in response to diol-epoxide I treatment than did XP fibroblasts, and also excised more diol-epoxide I from their DNA. All of the effects described above were similar to those obtained when the inactivating agent was ultraviolet light rather than benzo(a)pyrene diol-epoxide I.  相似文献   


10.
A sensitive host-cell reactivation technique was used to examine the DNA repair ability of fibroblasts from two patients with classical progeria. Fibroblasts were infected with either non-irradiated or gamma-irradiated adenovirus type 2 and at 48 hrs after infection cells were examined for the presence of viral structural antigens using immunofluorescent staining. The production of viral structural antigens was considerably reduced in the progeria lines as compared to normal fibroblasts when gamma-irradiated virus was used, indicating a defect in the repair of gamma ray damaged DNA in the progeria cells.  相似文献   

11.
Benzo(a)pyrene diol-epoxide I (r-7,t-8,dihydroxy-t-9,10 oxy-7,8,9,10 tetrahydrobenzo(a)pyrene) was used to treat either human adenovirus 5 or cultures of human fibroblasts. The survival of diol-epoxide I treated adenovirus was greater when infecting fibroblasts from normal persons than when infecting fibroblasts from patients with xeroderma pigmentosum (XP). One diol-epoxide I molecule bound per viral genome correlated with one lethal hit as measured using XP fibroblasts.Normal fibroblasts blocked in semi-conservative DNA synthesis incorporated into their DNA more [3H]thymidine in response to diol-epoxide I treatment than did XP fibroblasts, and also excised more diol-epoxide I from their DNA. All of the effects described above were similar to those obtained when the inactivating agent was ultraviolet light rather than benzo(a)pyrene diol-epoxide I.  相似文献   

12.
DNA repair after UV exposure was studied in multinucleate cells, obtained after fusion of excision-defective and variant xeroderma pigmentosum fibroblasts. Optimal fusion conditions were determined, facilitating the measurement of DNA replication in heterokaryons. In unirradiated multikaryons, entry into the S phase was depressed, when compared with unfused cells. The extent of the depression of S phase entry was dependent on the fusion conditions. In heterokaryons obtained after fusion of XP variant (6 different strains) with excision-defective XP (three cell strains from complementation groups A, C and D) both unscheduled DNA synthesis and postreplication repair after UV irradiation were restored to normal levels. In contrast, complementation was not observed after pairwise fusion of the XP variant cell strains. These results suggest that the XP variants comprise a single complementation group, different from complementation groups A, C and D.  相似文献   

13.
The rate of removal of pyrimidine dimers from DNA of UV (254 nm)-irradiated (1 J/m2) normal and xeroderma pigmentosum (XP) cells maintained in culture as nondividing populations was determined. Several normal and XP strains from complementation groups A, C and D were studied. The excision rates and survival ability of nondividing cells were examined to determine if an abnormal sensitivity was associated with a decreased rate of dimer excision. The results show that all normal strains studied excise pyrimidine dimers at the same rate, with the rate curve characterized by two components. All 'excision-deficient' XP strains excise dimers at a slower-than-normal rate, with the rate curves also characterized by two components. The rate constants for the first components of all of the XP strains (group A, C and D) are the same, one tenth of the normal rate constant, except for XP8LO (group A). XP8LO has a first-component rate constant similar to that of normal strains and a second component rate constant similar to that of other group A strains (XP12BE, XP25RO). Thus, the slower rate of dimer excision in XP8LO is due to a defect in the mechanism responsible for the second component of the excision-rate curve. In general, an abnormal sensitivity of nondividing cells to UV is associated with a reduced dimer-excision rate. A notable exception to this is the group C strain XP1BE which has an initial repair rate similar to that of group A XP12BE but is considerably more resistant when survival is measured.  相似文献   

14.
《Mutation Research Letters》1991,262(3):151-157
The extent of DNA-excision repair was determined in human fibroblast strains from clinically normal and xeroderma pigmentosum complementation group A (XP-A) donors after irradiation with 254-nm ultraviolet (UV) light. Repair was monitored by the use of 1-β-d-arabinofuranosylcytosine (araC), a potent inhibitor of DNA synthesis, and alkaline sucrose velocity sedimentation to quantitate DNA single-strand breaks. In this approach, the number of araC-accumulated breaks in post-UV incubated cultures becomes a measure of the efficiency of a particular strain to perform long-patch excision repair. The maximal rate of removal of araC-detectable DNA lesions equalled ∼ 1.8 sites/108 dalton/h in the normal strains (GM38, GM43), while it was more than 10-fold lower in both XP-A strains (XP4LO, XP12BE) examined. In normal fibroblasts the number of lesions removed during the first 4 h after irradiation saturated at ∼ 10 J/m2. In contrast, the residual amount of repair in the excision-deficient cells increased as a linear function of UV fluence over a range 5–120 J/m2. Thus we conclude that the repair of araC-detectable UV photoproducts in XP group A fibroblasts is limited by availability of damaged regions in the genome to repair complexes.  相似文献   

15.
The extent of DNA-excision repair was determined in human fibroblast strains from clinically normal and xeroderma pigmentosum complementation group A (XP-A) donors after irradiation with 254-nm ultraviolet (UV) light. Repair was monitored by the use of 1-beta-D-arabinofuranosylcytosine (araC), a potent inhibitor of DNA synthesis, and alkaline sucrose velocity sedimentation to quantitate DNA single-strand breaks. In this approach, the number of araC-accumulated breaks in post-UV incubated cultures becomes a measure of the efficiency of a particular strain to perform long-patch excision repair. The maximal rate of removal of araC-detectable DNA lesions equalled approximately 1.8 sites/10(8) dalton/h in the normal strains (GM38, GM43), while it was more than 10-fold lower in both XP-A strains (XP4LO, XP12BE) examined. In normal fibroblasts the number of lesions removed during the first 4 h after irradiation saturated at approximately 10 J/m2. In contrast, the residual amount of repair in the excision-deficient cells increased as a linear function of UV fluence over a range 5-120 J/m2. Thus we conclude that the repair of araC-detectable UV photoproducts in XP group A fibroblasts is limited by availability of damaged regions in the genome to repair complexes.  相似文献   

16.
Host-cell reactivation of UV-irradiated double-stranded SV40 DNA was studied in BSC-1 monkey cells, normal human cells, heterozygous Xeroderma pigmentosum (XP) cells, representative cell strains of the five complemention groups of XP and in XP "variant" cells. The following percentages of survival of the plaque-forming ability of double-stranded SV40 DNA were found in XP cells compared with the value found in normal monkey and human cells: group A, 13%; group B, 30%; group C, 18%; group D, 14%; group E, 59%; and in the heterozygous XP cells almost 100%. The survival in XP "variant" cells was 66%. The survival of single-stranded SV40 DNA in BSC-1 cells was much lower than that of double-stranded SV40 DNA in XP cells of complementation group A, which possibly indicates that some repair of UV damage occurs even in XP cells of group A.  相似文献   

17.
Diploid xeroderma pigmentosum (XP) skin fibroblast strains from various XP-complementation groups (B, C, G, and H) were transformed with an origin-defective SV40 early region or with the pSV3 gpt plasmid. In the latter case, transfected cells were selected for their ability to express the dominant xgpt gene. Immortalized cell lines were obtained, from XP-complementation groups C (8CA, 3MA, and 20MA; XP3MA and XP20MA were formerly considered to belong to complementation group I), G (2BI and 3BR), and H (2CS). No immortalized cells could be isolated from complementation group B (11BE). The immortalization frequency of wild-type diploid fibroblasts and diploid cultures from XP patients was not significantly increased by cotransfection with the SV40 early region plus several selected viral and cellular oncogenes. In fact, co-transfection with some of the oncogenes caused a marked decrease of the transformation frequency. The observed immortalization occurred at a frequency of approximately 5 x 10(-8).  相似文献   

18.
The xeroderma pigmentosum fibroblast strains XP2RO, complementation group E, and XP23OS, group F, were compared with normal human primary fibroblasts with regard to repair of damage induced by 254-nm UV. In XP2RO cells, repair DNA synthesis, measured by autoradiography (unscheduled DNA synthesis = UDS), was about 50% of the value found in normal human cells. In these cells also the removal of UV-induced sites recognized by a specific UV-endonuclease proceeds at a reduced rate. By having BUdR incorporated into the repaired regions, followed by the induction of breaks in these patches by 313-nm UV, it was shown that the reduced repair synthesis is not caused by a shorter length of the repair regions in XP2RO, but is solely due to a reduction in the number of sites removed by excision repair. In XP23OS a discrepancy was observed between the level of UDS, which was about 10% of the normal value, and other repair-dependent properties such as UV survival, host-cell reactivation and removal of UV-endonuclease-susceptible sites, which were less reduced than could be expected from the UDS level. However, when UDS was followed over a longer period than the 2 or 3 h normally used in UDS analysis, it appeared that in XP23OS cells, the rate of UDS remained constant whereas the rate decreased in normal control cells. Consequently, the residual level of UDS varies with the period over which it is studied.  相似文献   

19.
Human adenovirus type 5 and temperature-sensitive mutants ts36, ts37, and ts125 induced cellular DNA synthesis in quiescent rodent cells at both permissive and nonpermissive temperatures. Cellular DNA synthesis induced by adenovirus type 5 or by serum required protein synthesis for both initiation and continuation, whereas viral DNA synthesis was not dependent upon continued protein synthesis once it was initiated. Both cellular and viral DNA replication was induced in adenovirus type 5-infected cells in the presence of dibutyryl cyclic AMP at concentrations which inhibited induction by serum which suggested that some of the controls of DNA synthesis in serum-treated and virus-infected cells are different. After adenovirus infection of quiescent cells, there was a decrease in the number of cells with G1 DNA content and an increase in cells with G2 diploid and greater DNA contents. Thus, adenovirus type 5 induces a complete round of cellular DNA replication, but in some cells, it induces a second round without completion of a normal mitosis. These results suggest that adenovirus type 5 is able to alter cell growth cycle controls in a way which may be related to its ability to transform cells.  相似文献   

20.
The relationships between the cytotoxic effect of ultraviolet light and the UV-induced sister-chromatid exchanges (SCEs) were compared among fibroblast cell strains from two unrelated Bloom's syndrome (BS) patients, one xeroderma pigmentosum (XP) patient belonging to complementation group A and two unrelated normal controls. The "net" induced SCEs as a function of UV fluence, obtained by subtracting spontaneous SCEs from observed SCEs, were much higher in both BS cells and XP group A cells than in normal cells. The relative efficiency of induced SCE, defined as the "net" induced SCEs as a function of surviving fraction after UV irradiation, was higher in BS cells than in normal and XP cells, and there was essentially no difference between XP and normal cells. These results imply that in addition to the extremely high frequency of spontaneous SCEs, the increased efficiency in UV induction of SCEs may reflect the intrinsic defect(s) in BS cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号