共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Identification of binding partners is the crucial first step towards understanding the biological function of a protein. Many protein-protein interactions occur via modular domains that recognize short peptide motifs in their target proteins. Here we describe a chemical/bioinformatics approach for predicting the binding partners of modular domains. The optimal binding motif(s) of a protein domain is identified by screening a combinatorial peptide library. The resulting consensus sequence is used to search protein and genomic databases for potential binding proteins, which are subsequently confirmed (or disproved) by conventional protein binding assays (e.g. pull-down and co-immunoprecipitation). 相似文献
3.
4.
5.
Computational methods play an important role at all stages of the process of determining protein-protein interactions. They are used to predict potential interactions, to validate the results of high-throughput interaction screens and to analyze the protein networks inferred from interaction databases. 相似文献
6.
S Beeckmans 《Methods (San Diego, Calif.)》1999,19(2):278-305
Proteins and enzymes are now generally thought to be organized within the cell to form clusters in a dynamic and versatile way, and heterologous protein-protein interactions are believed to be involved in virtually all cellular events. Therefore we need appropriate tools to detect and study such interactions. Chromatographic techniques prove to be well suited for this kind of investigation. Real complexes formed between proteins can be studied by classic gel filtration. When enzymes are studied, active enzyme gel chromatography is a useful alternative. A variant of classic gel filtration is gel filtration equilibrium analysis, which is similar to equilibrium dialysis. When the association formed is only dynamic and equilibrates very rapidly, either the Hummel-Dryer method of equilibrium gel filtration or large-zone equilibrium filtration sometimes allows the interactions to be analyzed, both qualitatively and quantitatively. Very often, however, interactions between enzymes and proteins can only be evidenced in vitro in media that mimic the intracellular situation. Immobilized proteins are excellent tools for this type of research. Several examples are indeed known where the immobilization of an enzyme on a solid support does not affect its real properties, but rather changes its environment in such a way that the diffusion becomes limiting. Affinity chromatography using immobilized proteins allows the analysis of heterologous protein-protein interactions, both qualitatively and quantitatively. A useful alternative appears to be affinity electrophoresis. The latter technique, however, is exclusively qualitative. All these techniques are described and illustrated with examples taken from the literature. 相似文献
7.
Recently, developments have been made in predicting the structure of docked complexes when the coordinates of the components are known. The process generally consists of a stage during which the components are combined rigidly and then a refinement stage. Several rapid new algorithms have been introduced in the rigid docking problem and promising refinement techniques have been developed, based on modified molecular mechanics force fields and empirical measures of desolvation, combined with minimisations that switch on the short-range interactions gradually. There has also been progress in developing a benchmark set of targets for docking and a blind trial, similar to the trials of protein structure prediction, has taken place. 相似文献
8.
Protein-protein interactions are involved in many biological processes ranging from DNA replication, to signal transduction, to metabolism control, to viral assembly. The understanding of those interactions would allow the effective design of new drugs and further manipulation of those interactions. Several useful analytical methods are available for the study of protein-protein binding, and among them, electrophoresis is commonly used. We describe two types of electrophoresis: gel electrophoresis and capillary electrophoresis. Gel electrophoresis is a well-established method used to study protein-protein interactions and includes overlay gel electrophoresis, charge shift method, band shift assay, countermigration electrophoresis, affinophoresis, affinity electrophoresis, rocket immunoelectrophoresis, and crossed immunoelectrophoresis. These techniques are briefly described along with their advantages and limitations. Capillary electrophoresis, on the other hand, is a relatively new method and affinity capillary electrophoresis has demonstrated its value in the measurement of binding constants, the estimation of kinetic rate constants, and the determination of stoichiometry of biomolecular interactions. It offers short analysis time, requires minute amounts of protein samples, usually involves no radiolabeled compounds, and, most importantly, is carried out in solution. We summarize the principles of affinity capillary electrophoresis for studying protein-protein interactions along with current limitations and describe in depth its application to the determination of stoichiometries of tight and weak binding protein-protein interactions. The protocol presented in the experimental section details the use of affinity capillary electrophoresis for the determination of stoichiometry of protein complexes. 相似文献
9.
10.
Giron-Monzon L Manelyte L Ahrends R Kirsch D Spengler B Friedhoff P 《The Journal of biological chemistry》2004,279(47):49338-49345
Strand discrimination in Escherichia coli DNA mismatch repair requires the activation of the endonuclease MutH by MutL. There is evidence that MutH binds to the N-terminal domain of MutL in an ATP-dependent manner; however, the interaction sites and the molecular mechanism of MutH activation have not yet been determined. We used a combination of site-directed mutagenesis and site-specific cross-linking to identify protein interaction sites between the proteins MutH and MutL. Unique cysteine residues were introduced in cysteine-free variants of MutH and MutL. The introduced cysteines were modified with the cross-linking reagent 4-maleimidobenzophenone. Photoactivation resulted in cross-links verified by mass spectrometry of some of the single cysteine variants to their respective Cys-free partner proteins. Moreover, we mapped the site of interaction by cross-linking different combinations of single cysteine MutH and MutL variants with thiol-specific homobifunctional cross-linkers of varying length. These results were used to model the MutH.MutL complex and to explain the ATP dependence of this interaction. 相似文献
11.
Mapping protein-protein interactions in solution by NMR spectroscopy. 总被引:10,自引:0,他引:10
Erik R P Zuiderweg 《Biochemistry》2002,41(1):1-7
NMR is very well suited to the study of especially weak protein-protein interactions, as no crystallization is required. The available NMR methods to this end are reviewed and illustrated with applications from the recent biochemical literature: intermolecular NOEs, cross-saturation, chemical shift perturbation, dynamics and exchange perturbation, paramagnetic methods, and dipolar orientation. Most of these methods are now routinely applied for complexes with total molecular mass of 60 kDa and can likely be applied to systems up to 1000 kDa. A substantial fraction of complexes studied show distinct effects of induced fit affecting structural and dynamical properties beyond the contact interface. 相似文献
12.
Phage-displayed peptide libraries have been used to identify specific ligands for peptide-binding domains that mediate intracellular protein-protein interactions. These studies have provided significant insights into the specificities of particular domains. For PDZ domains that recognize C-terminal sequences, the information has proven useful in identifying natural binding partners from genomic databases. For SH3 domains that recognize internal proline-rich motifs, the results of database searches with phage-derived ligands have been compared with the results of yeast-two-hybrid experiments to produce overlap networks that reliably predict natural protein-protein interactions. In addition, libraries of phage-displayed PDZ and SH3 domains have been used to identify the residues responsible for ligand recognition, and also to engineer domains with altered specificities. 相似文献
13.
Boger DL 《Bioorganic & medicinal chemistry》2003,11(8):1607-1613
A short personal perspective on the development of an approach to the solution-phase synthesis of combinatorial libraries for modulating cellular signaling by inhibiting, promoting, or mimicking protein-protein or protein-DNA interactions is provided. 相似文献
14.
Abe R Caaveiro JM Kozuka-Hata H Oyama M Tsumoto K 《The Journal of biological chemistry》2012,287(20):16477-16487
Iron is an essential nutrient for the proliferation of Staphylococcus aureus during bacterial infections. The iron-regulated surface determinant (Isd) system of S. aureus transports and metabolizes iron porphyrin (heme) captured from the host organism. Transportation of heme across the thick cell wall of this bacterium requires multiple relay points. The mechanism by which heme is physically transferred between Isd transporters is largely unknown because of the transient nature of the interactions involved. Herein, we show that the IsdC transporter not only passes heme ligand to another class of Isd transporter, as previously known, but can also perform self-transfer reactions. IsdA shows a similar ability. A genetically encoded photoreactive probe was used to survey the regions of IsdC involved in self-dimerization. We propose an updated model that explicitly considers self-transfer reactions to explain heme delivery across the cell wall. An analogous photo-cross-linking strategy was employed to map transient interactions between IsdC and IsdE transporters. These experiments identified a key structural element involved in the rapid and specific transfer of heme from IsdC to IsdE. The resulting structural model was validated with a chimeric version of the homologous transporter IsdA. Overall, our results show that the ultra-weak interactions between Isd transporters are governed by bona fide protein structural motifs. 相似文献
15.
Mapping of protein-protein interactions within the DNA-dependent protein kinase complex. 总被引:6,自引:1,他引:6
下载免费PDF全文

In mammalian cells, the Ku and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) proteins are required for the correct and efficient repair of DNA double-strand breaks. Ku comprises two tightly-associated subunits of approximately 69 and approximately 83 kDa, which are termed Ku70 and Ku80 (or Ku86), respectively. Previously, a number of regions of both Ku subunits have been demonstrated to be involved in their interaction, but the molecular mechanism of this interaction remains unknown. We have identified a region in Ku70 (amino acid residues 449-578) and a region in Ku80 (residues 439-592) that participate in Ku subunit interaction. Sequence analysis reveals that these interaction regions share sequence homology and suggests that the Ku subunits are structurally related. On binding to a DNA double-strand break, Ku is able to interact with DNA-PKcs, but how this interaction is mediated has not been defined. We show that the extreme C-terminus of Ku80, specifically the final 12 amino acid residues, mediates a highly specific interaction with DNA-PKcs. Strikingly, these residues appear to be conserved only in Ku80 sequences from vertebrate organisms. These data suggest that Ku has evolved to become part of the DNA-PK holo-enzyme by acquisition of a protein-protein interaction motif at the C-terminus of Ku80. 相似文献
16.
Ensemble non-negative matrix factorization methods for clustering protein-protein interactions 总被引:1,自引:0,他引:1
MOTIVATION: When working with large-scale protein interaction data, an important analysis task is the assignment of pairs of proteins to groups that correspond to higher order assemblies. Previously a common approach to this problem has been to apply standard hierarchical clustering methods to identify such a groups. Here we propose a new algorithm for aggregating a diverse collection of matrix factorizations to produce a more informative clustering, which takes the form of a 'soft' hierarchy of clusters. RESULTS: We apply the proposed Ensemble non-negative matrix factorization (NMF) algorithm to a high-quality assembly of binary protein interactions derived from two proteome-wide studies in yeast. Our experimental evaluation demonstrates that the algorithm lends itself to discovering small localized structures in this data, which correspond to known functional groupings of complexes. In addition, we show that the algorithm also supports the assignment of putative functions for previously uncharacterized proteins, for instance the protein YNR024W, which may be an uncharacterized component of the exosome. 相似文献
17.
18.
19.
Pál G Kouadio JL Artis DR Kossiakoff AA Sidhu SS 《The Journal of biological chemistry》2006,281(31):22378-22385
A novel, quantitative saturation (QS) scanning strategy was developed to obtain a comprehensive data base of the structural and functional effects of all possible mutations across a large protein-protein interface. The QS scan approach was applied to the high affinity site of human growth hormone (hGH) for binding to its receptor (hGHR). Although the published structure-function data base describing this system is probably the most extensive for any large protein-protein interface, it is nonetheless too sparse to accurately describe the nature of the energetics governing the interaction. Our comprehensive data base affords a complete view of the binding site and provides important new insights into the general principles underlying protein-protein interactions. The hGH binding interface is highly adaptable to mutations, but the nature of the tolerated mutations challenges generally accepted views about the evolutionary and biophysical pressures governing protein-protein interactions. Many substitutions that would be considered chemically conservative are not tolerated, while conversely, many non-conservative substitutions can be accommodated. Furthermore, conservation across species is a poor predictor of the chemical character of tolerated substitutions across the interface. Numerous deviations from generally accepted expectations indicate that mutational tolerance is highly context dependent and, furthermore, cannot be predicted by our current knowledge base. The type of data produced by the comprehensive QS scan can fill the gaps in the structure-function matrix. The compilation of analogous data bases from studies of other protein-protein interactions should greatly aid the development of computational methods for explaining and designing molecular recognition. 相似文献