首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the estimation of chlorophyll turnover in wheat leaves is presented. This is based on the inhibition of chlorophyll synthesis by treatment of the cut leaves with laevulinic acid (LA), a competitive inhibitor of δ-aminolaevulinic acid dehydratase. The turnover of chlorophyll in young, greening leaves, given short periods of light was a relatively rapid process. However, in seedlings exposed to light for longer periods the turnover became progressively slower, and was measured in days rather than hours.  相似文献   

2.
We have investigated the importance of the long wavelength absorbing spectral forms (red forms) of Photosystem I in photosynthetic light harvesting by leaves. To this end leaf spectra were simulated by using a linear combination of absorption (OD) spectra of purified Photosystem I, Photosystem II and LHC II, multiplied by an empirical multiple scattering chloroplast/leaf conversion function. In this way it is demonstrated that while the PS I red forms account for only about 4–5% of light absorption in a normal daylight environment, in different shadelight environments these long wavelength pigments may be responsible for up to 40% of total photon capture. In the context of maximising the photosynthetic quantum efficiency under the low light conditions of shadelight, this relative increase in the absorption cross section of PS I can be understood by considering the increased synthesis of the major PS II antenna complex, LHC II, known to occur in plants growing under these light conditions. It is demonstrated that for plants in a moderate to deep shadelight regime the PS II cross section needs to increase by 50% to 100% via LHC II synthesis to balance the increased PS I absorption by the red forms. The possibility that under shade light conditions the increased PS I cross section may serve in cyclic phosphorylation is also discussed.  相似文献   

3.
Lipoxygenase (LOG) in protein fractions isolated from the leaves of substituted wheat lines was investigated. Three molecular forms of the enzyme were detected. A water deficiency caused the induction of a membrane-bound form (mLOG) and resulted in a decrease in the activity of "soluble" enzymes (s1LOG) and (s2LOG) in most genotypes. A correlation analysis demonstrated the dependence between the level of enzymatic activity and indices of resistance to drought. A genetic control of the s 1 LOG and s2LOG activity at an optimal water supply level was associated with chromosomes 1A, 1D, 3A, 5A, 5B, and 5D, while under the conditions of the modeled soil drought, it was associated with chromosomes 1B and 1D.  相似文献   

4.
Lipoxygenase (LOG) in protein fractions isolated from the leaves of substituted wheat lines was investigated. Three molecular forms of the enzyme were detected. A water deficiency caused the induction of a membrane-bound form (mLOG) and resulted in a decrease in the activity of “soluble” enzymes (s1LOG) and (s2LOG) in most genotypes. A correlation analysis demonstrated the dependence between the level of enzymatic activity and indices of resistance to drought. A genetic control of the s1LOG and s2LOG activity at an optimal water supply level was associated with chromosomes 1A, 1D, 3A, 5A, 5B, and 5D, while under the conditions of the modeled soil drought, it was associated with chromosomes 1B and 1D.  相似文献   

5.
Red light (R) pretreatment of etiolated cucumber seedlings ( Cucumis sativus L. var. Elem) followed by prolonged dark incubation prior to white light (WL) exposure, had an adverse effect on the greening of the cotyledons. The effect was photoreversible by far-red (FR) light. Cotyledons which were dark incubated for 24 h following the R pulse greened more rapidly when exposed to WL than did the controls, while total chlorophyll (Chl) accumulation after 24 h in the light was about the same in both. However, after 48 h post-R dark incubation greening of the treated cotyledons was delayed, and their amount of Chl which accumulated after 24 h WL was about one half of that in non-treated seedlings. As the length of the post-R dark incubation period was extended Chl production became slower, so that after 96 h post-R dark incubation the Chl level in the treated cotyledons after 24 h WL was approximately 20% of the controls. No significant differences in amounts of protochlorophyll could be detected between seedlings preilluminated with R or R followed by FR. Seedlings 4-, 5- and 6-days-old at the time of R treatment showed similar degrees of impaired Chl synthesis following prolonged post-R dark incubation.  相似文献   

6.
盐胁迫对植物伤害机理受到普遍关注。本试验以‘西旱3号’小麦幼苗为材料,通过比较钠盐(150 mmol·L-1)、钙盐(5、30 mmol·L-1)单独及其复合胁迫对叶片渗透调节和光合特性的影响,揭示不同盐胁迫对小麦的伤害机理。结果表明: 钠盐或钙盐单独胁迫显著抑制了小麦幼苗根、茎的生长,使叶片可溶性糖和脯氨酸含量、调节性能量耗散电子产量、非光化学猝灭及玉米黄质相对含量均显著增加,而叶绿素a和叶绿素b含量、最大光化学效率、PSⅡ实际光化学效率、光化学猝灭及光合电子传递效率均显著下降。此外,钙盐对小麦幼苗生长的抑制作用更强,钠盐处理下叶片叶绿素含量减少和叶绿素荧光参数降低更显著。除了可溶性蛋白、叶黄素和玉米黄质相对含量以外,低浓度钙盐有效缓解了钠盐诱导其他各指标的变化,而高浓度钙盐进一步增大了钠盐处理小麦幼苗各参数的变化幅度。总之,钠盐和钙盐显著抑制了小麦幼苗的生长,低浓度钙盐能有效缓解钠盐对小麦幼苗的伤害,而高浓度钙盐加剧了钠盐的毒害作用。这均与叶片光合色素含量、光能捕获及光合电子传递的改变有关。此外,渗透调节物质在增强钠盐或钙盐环境中小麦幼苗的抗性方面发挥着重要作用。  相似文献   

7.
The amounts of protochlorophyllide (P650) and protohaem were measured in ageing dark-grown barley leaves. Maximum amounts of P650 and protohaem were found in 6- to 8-day-old material after which P650 declined rapidly and protohaem more slowly. In leaves exposed to light maximum chlorophyll was produced in 6-day-old material with progressively less the older the leaves. Haem concentrations increased in seedlings of all ages exposed to light. A lag phase was observed for both chlorophyll and haem formation in leaves given a light treatment. Haem, however, showed a slight yet sig nificant decline as chlorophyll production commenced. The results indicate that chlorophyll and haem synthesis share a common pool of δ-aminolae vulinic acid (ALA). At a certain stage of development, the magnesium porphyrin pathway diverts precursors away from haem synthesis. It is only when the ALA synthesising system is well developed that the production of ALA can satisfy pathways to both haem and chlorophyll. The observed changes in haem under certain conditions suggest that, as in animal systems, haem levels may regulate porphyrin formation (chlorophylls) by controlling the supply of ALA.  相似文献   

8.
The red laser-induced chlorophyll-fluorescence induction kinetics of predarkened leaf samples were registered simultaneously in the 690 and 730 nm regions i.e., in the region of the two chlorophyll fluorescence emission maxima. From the induction kinetics the chlorophyll fluorescence ratio F690/F730 was calculated. The ratio F690/F730 shows to be dependent on the chlorophyll content of leaves. It is significantly higher in needles of damaged spruces (values of 0.45–0.9) than in normal green needles of healthy trees (values of 0.35–0.5). During development and greening of maple leaves the ratio F690/F730 decreases with increasing chlorophyll content. Determination of the ratio F690/F730 can be a suitable method of monitoring changes in chlorophyll content in a non-destructive way in the same leaves during development or the yellowish-green discolouration of needles of damaged spruces in the Black Forest with the typical tree decline symptoms.Abbreviations F690/F730 ratio of the fluorescence yield at the two fluorescence-emission maxima in the 690 and 730 nm regions - Fm maximum fluorescence - Fs steady-state fluorescence  相似文献   

9.
The three major chlorophyll-proteins of spinach chloroplasts were solubilized with digitonin and isolated by electrophoresis with deoxycholate. The gel bands were identified from their absorption and fluorescence spectra measured at 77 K. The slowest moving band was a Photosystem I complex (CPI); the second, a Photosystem II complex (Cpa); and the third, a chlorophyll a-b, antenna complex (LHCP). When absorption spectra (630–730 nm) of the bands were added in the proportions found in the gel, the sum closely matched the absorption of the chloroplasts both before and after solubilization. Thus these spectra represent the native absorption of the major antenna chlorophyll-proteins of green plants. Each of these spectra was resolved with a computer assisted, curve-fitting program into 8 mixed Gaussian-Lorentzian shaped components. The major, Chl a components in the 3 fractions were different both in peak positions and bandwidths. This result suggests that each chlorophyll-protein has its own unique set of chlorophyll a spectral forms or components.Abbreviations Chl chlorophyll - CPI Photosystem I Chl-protein - CPa Photosystem II Chl-protein - LHCP light-harvesting Chl a-b protein - DOC sodium deoxycholate - SDS sodium dodecylsulfate CIW-DPB No. 819  相似文献   

10.
叶绿素含量是植物学和农业相关研究领域常用的生理指标.叶绿素含量和叶片光合功能密切相关,但是现有的叶绿素含量的测定方法无法实现叶绿素含量和光合功能的同步测定和关联分析.为解决该问题,本研究通过测定35个小麦品种旗叶的SPAD值和叶绿素荧光诱导动力学曲线,分别使用不同时间的快速叶绿素荧光动力学曲线的荧光值,以及33个常用荧...  相似文献   

11.
Absorption maximum positions of three LW Chl forms in pea chloroplasts were estimated using 77 K excitation spectra of fluorescence detected in their maxima (720, 732 and 746 nm). The 705, 714 and 723 nm components were revealed in the second derivative plots of the excitation spectra. The same maxima were found in normalized excitation spectra obtained with dividing excitation spectra by absorption spectrum. It was confirmed that the observed maxima belong to absorption of LW fluorescing Chl forms. The same maxima were displayed in an action spectrum of P700 oxidation measured at room temperature. It confirms the energy transfer from LW Chl forms to P700. Close to 50% efficiency of bulk Chl forms in both excitation of LW fluorescence and P700 oxidation was found. Analysis of the shape of normalized excitation spectra suggests that there is no energy exchange among LW Chl forms. Their location and physiological role are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
13.
追施氮肥时期对冬小麦旗叶叶绿素荧光特性的影响   总被引:28,自引:1,他引:27  
在大田条件下,研究了不同追氮时期对小麦旗叶叶绿素荧光特性、光合速率及籽粒产量的影响.结果表明,拔节期追肥较起身期或挑旗期追肥,改善了小麦旗叶PSⅡ的活性(Fv/Fo)、光化学最大效率(Fv/Fm)、光化学猝灭系数(qP)、实际量子产量(ΦPSⅡ)及光合速率,降低了籽粒灌浆中前期非辐射能量耗散,有利于叶片所吸收的光能较充分地用于光合作用,提高了籽粒灌浆后期非辐射能量的耗散,减缓了叶片光抑制程度和衰老进程.拔节期追肥可显著增加穗粒数和千粒重,提高产量.  相似文献   

14.
不同形态氮素对高蛋白小麦幼苗叶绿素荧光特性的影响   总被引:5,自引:1,他引:4  
不同形态的氮素 (NO- 3 和 NH+ 4 )培养对 2组产量水平相近而蛋白质含量有较大差异的 4个小麦品种幼苗叶绿素荧光特性在不同的测定光强下产生不同的影响 :低光强下 ,NH+ 4和 NO- 3 培养的幼苗 Fv/Fm在品种间和处理间均无明显差异。饱和光强下 Fv/Fm下降 ,下降程度 CK>NH+ 4 >NO- 3 ,NH+ 4 处理中的 Fv/Fm与 CK差异达到显著性水平 ;NO- 3 处理达到极显著水平 ,对同产量水平的品种来说 ,Fv/Fm下降的程度低蛋白品种高于高蛋白品种。低光强下各品种的 ΦPS CK>NH+ 4 >NO- 3 ,而强光下的变化趋势正好相反 ,NO- 3 处理的 ΦPS 最高。在这两种光强下 ,NH+ 4 处理的 ΦPS 与对照相比 ,差异达到显著性水平 ,而 NO- 3 处理达极显著水平。差异显著性分析表明 ,不同形态的氮素对光系统的影响和作用是不同的  相似文献   

15.
Greater availability of leaf dark respiration (Rdark) data could facilitate breeding efforts to raise crop yield and improve global carbon cycle modelling. However, the availability of Rdark data is limited because it is cumbersome, time consuming, or destructive to measure. We report a non‐destructive and high‐throughput method of estimating Rdark from leaf hyperspectral reflectance data that was derived from leaf Rdark measured by a destructive high‐throughput oxygen consumption technique. We generated a large dataset of leaf Rdark for wheat (1380 samples) from 90 genotypes, multiple growth stages, and growth conditions to generate models for Rdark. Leaf Rdark (per unit leaf area, fresh mass, dry mass or nitrogen, N) varied 7‐ to 15‐fold among individual plants, whereas traits known to scale with Rdark, leaf N, and leaf mass per area (LMA) only varied twofold to fivefold. Our models predicted leaf Rdark, N, and LMA with r2 values of 0.50–0.63, 0.91, and 0.75, respectively, and relative bias of 17–18% for Rdark and 7–12% for N and LMA. Our results suggest that hyperspectral model prediction of wheat leaf Rdark is largely independent of leaf N and LMA. Potential drivers of hyperspectral signatures of Rdark are discussed.  相似文献   

16.
17.
18.
Chlorophyll fluorescence was used to estimate profiles of absorbed light within chlorophyll solutions and leaves. For chlorophyll solutions, the intensity of the emitted fluorescence declined in a log–linear manner with the distance from the irradiated surface as predicted by Beer's law. The amount of fluorescence was proportional to chlorophyll concentration for chlorophyll solutions given epi‐illumination on a microscope slide. These relationships appeared to hold for more optically complex spinach leaves. The profile of chlorophyll fluorescence emitted by leaf cross sections given epi‐illumination corresponded to chlorophyll content measured in extracts of leaf paradermal sections. Thus epifluorescence was used to estimate relative chlorophyll content through leaf tissues. Fluorescence profiles across leaves depended on wavelength and orientation, reaching a peak at 50–70 µm depth. By infiltrating leaves with water, the pathlengthening due to scattering at the airspace : cell wall interfaces was calculated. Surprisingly, the palisade and spongy mesophyll had similar values for pathlengthening with the value being greatest for green light (550 > 650 > 450 nm). By combining fluorescence profiles with chlorophyll distribution across the leaf, the profile of the apparent extinction coefficient was calculated. The light profiles within spinach leaves could be well approximated by an apparent extinction coefficient and the Beer–Lambert/Bouguer laws. Light was absorbed at greater depths than predicted from fibre optic measurements, with 50% of blue and green light reaching 125 and 240 µm deep, respectively.  相似文献   

19.
Benzyladenine (BA) and KCl were applied to detached cucumber ( Cucumis sativus L. cv. Ohio) cotyledons in continuous light or in the dark with subsequent light. BA brought about an increase in fresh weight and in DNA, RNA and carotenoid contents in both treatments. KCl did not cause an increase in fresh weight and cellular constituents in the dark, but it did result in an increased fresh weight and DNA content after illumination or in continuous light. BA + KCl treatment resulted in increased carotenoid and DNA contents in the dark, and in increases in fresh weight and all cellular constituents upon subsequent exposure to light. The effects of BA and BA + KCl on growth and chlorophyll synthesis decreased with cotyledon age.
BA pretreatment in the dark eliminated the lag phase in chlorophyll synthesis and increased the rate of synthesis. Treatment in continuous light had little effect. KCl did not shorten the lag phase in chlorophyll synthesis, but it stimulated the rate of synthesis in the light. Dark pretreatment with BA + KCl markedly increased the effect of BA on chlorophyll synthesis. Chlorophyll content and fresh weight were higher in cotyledons treated with BA followed by KCl than in cotyledons treated in the reverse order. These results suggest that growth and greening in cucumber cotyledons are primarily controlled by BA and that KCl intensifies the BA effect after irradiation.  相似文献   

20.
The contents of Chl a and Chl b in dark-grown leaves of wheat ( Triticum aestivum L. cv. Starke II, Weibull) irradiated for 20 h with light of different wavelengths and intensities have been measured. The amount of Chl b formed revealed a higher maximum in the Chl b /Chl a ratio for light most strongly absorbed by the phytochrome system and giving a high [Pfr]/[Ptot] ratio. This indicates a stronger enhancing effect of Pfr on Chl b formation than on Chl a formation. Similarities between action spectra for Chl a and b formation indicate that Chl b originates from Chl a . A comparatively high effectiveness of light within the wavelength range 500–550 nm as compared to the action spectrum for PChl→Chl phototransformation shows that PChl636, in addition to PChl650, takes part in the greening process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号