首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of genetic population structure and genetic diversity are often critical components of endangered species conservation and management plans. Genetic studies are thus particularly important for amphibians, which are in global decline. We studied genetic variation and population structure among 276 individuals from approximately half of the known localities of the endangered Sonora tiger salamander, Ambystoma mavortium stebbinsi, using ten microsatellite loci. Allelic diversity was generally low (2.7 alleles per locus per population) and overall observed heterozygosity (0.191) was significantly lower than expected (0.332). Most populations showed significant departures from Hardy–Weinberg equilibrium, which are likely due to inbreeding. In addition, evidence of recent bottlenecks was suggested by shifted allele frequency distributions in 5 of 16 populations, and ratios of allele number to allele size range (M) values lower than critical values in all populations. A high degree of genetic subdivision (θ = 0.133) was found over all populations, and nearly all pairwise population combinations were genetically subdivided. Thus, gene flow is limited even over small distances, perhaps because high desert grassland throughout the study area limits the efficacy of inter-pond movement of salamanders. Further, population sizes and gene flow of Sonora tiger salamanders are likely compromised by several contemporary ecological threats, including: frequent die-offs due to an infectious virus, introductions of non-native species, and continuing cattle grazing. Overall, these genetic data support the endangered status of the Sonora tiger salamander and suggest the subspecies exists in small, inbred populations.  相似文献   

2.
Emerging infectious diseases are implicated in the declines and extinctions of amphibians worldwide. Ranaviruses in the family Iridoviridae are a global concern and have caused amphibian die-offs in wild populations in North America, Europe, South America, and in commercial populations in Asia and South America. The movement of amphibians for bait, food, pets, and research provides a route for the introduction of ranaviruses into naive and potentially endangered species. In this report, we demonstrate that the California tiger salamander, Ambystoma californiense, is susceptible to Ambystoma tigrinum virus (ATV). This virus has not been previously reported in California tiger salamander, but observed mortality in experimentally infected animals suggests that California tiger salamander populations could be adversely affected by an ATV introduction.  相似文献   

3.
Estimates of quantitative trait loci (QTL) effects derived from complete genome scans are biased, if no assumptions are made about the distribution of QTL effects. Bias should be reduced if estimates are derived by maximum likelihood, with the QTL effects sampled from a known distribution. The parameters of the distributions of QTL effects for nine economic traits in dairy cattle were estimated from a daughter design analysis of the Israeli Holstein population including 490 marker-by-sire contrasts. A separate gamma distribution was derived for each trait. Estimates for both the α and β parameters and their SE decreased as a function of heritability. The maximum likelihood estimates derived for the individual QTL effects using the gamma distributions for each trait were regressed relative to the least squares estimates, but the regression factor decreased as a function of the least squares estimate. On simulated data, the mean of least squares estimates for effects with nominal 1% significance was more than twice the simulated values, while the mean of the maximum likelihood estimates was slightly lower than the mean of the simulated values. The coefficient of determination for the maximum likelihood estimates was five-fold the corresponding value for the least squares estimates.  相似文献   

4.
Population viability has often been assessed by census of reproducing adults. Recently this method has been called into question and estimation of the effective population size (Ne) proposed as a complementary method to determine population health. We examined genetic diversity in five populations of chinook salmon (Oncorhynchus tshawytscha) from the upper Fraser River watershed (British Columbia, Canada) at 11 microsatellite loci over 20 years using DNA extracted from archived scale samples. We tested for changes in genetic diversity, calculated the ratio of the number of alleles to the range in allele size to give the statistic M, calculated Ne from the temporal change in allele frequency, used the maximum likelihood method to calculate effective population size (NeM), calculated the harmonic mean of population size, and compared these statistics to annual census estimates. Over the last two decades population size has increased in all five populations of chinook examined; however, Ne calculated for each population was low (81-691) and decreasing over the time interval measured. Values of NeM were low, but substantially higher than Ne calculated using the temporal method. The calculated values for M were generally low (M < 0.70), indicating recent population reductions for all five populations. Large-scale historic barriers to migration and development activities do not appear to account for the low values of Ne; however, available spawning area is positively correlated with Ne. Both Ne and M estimates indicate that these populations are potentially susceptible to inbreeding effects and may lack the ability to respond adaptively to stochastic events. Our findings question the practice of relying exclusively on census estimates for interpreting population health and show the importance of determining genetic diversity within populations.  相似文献   

5.
Estimates of effective population size (Ne) are required to predict the impacts of genetic drift and inbreeding on the evolutionary dynamics of populations. How the ratio of Ne to the number of sexually mature adults (N) varies in natural vertebrate populations has not been addressed. We examined the sensitivity of Ne/N to fluctuations of N and determined the major variables responsible for changing the ratio over a period of 17 years in a population of steelhead trout (Oncorhynchus mykiss) from Washington State. Demographic and genetic methods were used to estimate Ne. Genetic estimates of Ne were gained via temporal and linkage disequilibrium methods using data from eight microsatellite loci. DNA for genetic analysis was amplified from archived smolt scales. The Ne/N from 1977 to 1994, estimated using the temporal method, was 0.73 and the comprehensive demographic estimate of Ne/N over the same time period was 0.53. Demographic estimates of Ne indicated that variance in reproductive success had the most substantial impact on reducing Ne in this population, followed by fluctuations in population size. We found increased Ne/N ratios at low N, which we identified as genetic compensation. Combining the information from the demographic and genetic methods of estimating Ne allowed us to determine that a reduction in variance in reproductive success must be responsible for this compensation effect. Understanding genetic compensation in natural populations will be valuable for predicting the effects of changes in N (i.e. periods of high population density and bottlenecks) on the fitness and genetic variation of natural populations.  相似文献   

6.
We estimated current and long-term effective population size (Ne) of two Anopheles gambiae (savanna cytotype) populations in Kenya. Temporal variation at nine microsatellite loci in each population sampled 7 and 9 years apart and genetic diversity in each sample were analyzed to answer the following questions. (1) Do bottlenecks occur in Kenyan populations of A. gambiae? (2) How variable are different populations with respect to their current and long-term Ne values? (3) What are the implications of these results on population structure and history? The estimates of Ne of Asembo and Jego were 6,359 and 4,258, respectively, and the lower 95% limits were 2,455 and 1,669, respectively. Thus, despite the typical observation of low density at the village level during the dry season, large populations are maintained annually. Large current Ne is consistent with previous studies showing low differentiation across the continent, especially under Wright's isolation-by-distance model. Current Ne in Asembo was 1.5-fold higher than in Jego, but this difference was not significant. Long-term Ne in Asembo (22,667) was 2.9-fold higher than that in Jego (7,855) based on the stepwise mutation model. The difference between populations was significant at both time points regardless of whether long-term Ne values were calculated based on the stepwise mutation model or the infinite-alleles model. Heterozygosity in Jego declined significantly between 1987 (59%) and 1996 (54%), whereas heterozygosity in Asembo was stable (66%-65%). Despite the relatively high and significant differentiation between Asembo and Jego (FST = 0.072-0.10, RST = 0.037- 0.038), all alleles in Jego were found in Asembo but not vice versa. All of these findings suggest that lower Ne in Jego magnifies differentiation between the two populations. The long-term Ne was biased downward, because its calculation was based on an upper bound estimate of microsatellite mutation rate. Ne values based on mtDNA and allozymes were an order of magnitude higher. Long-term Ne therefore, is probably measured in hundreds of thousands and hence does not support a recent expansion of this species from a small population.   相似文献   

7.
1. Urbanisation represents a significant threat to semi‐aquatic amphibian populations, especially stream‐dwelling salamanders. Although studies of urbanisation effects on amphibians have been conducted, there is an urgent need to follow populations over longer time periods, account for imperfect detection and determine the response time to urbanisation. Consequently, we used a before‐after control‐impact (BACI) study design to estimate changes in abundances of larval and adult salamanders in streams affected by urbanisation. 2. From 2005 to 2009, we used standard sampling techniques to obtain a count of salamanders in 13 first‐order streams that underwent urbanisation of their catchments after the first year of sampling. Simultaneously, we counted salamanders in 17 streams that experienced no disturbance within stream catchments. Additionally, we measured environmental variables at each stream. 3. We used Royle’s binomial mixture model to estimate annual mean abundances and individual detection probabilities, and Bayesian inference was used to estimate population parameters for each stage and species. 4. Although mean abundance estimates varied among years in control and urbanised streams, we found that urbanisation had a negative effect on larval and adult salamander abundances. Larval salamander abundances at sites 1 year after urbanisation were significantly lower than abundances from control sites. Abundances of adult two‐lined salamanders (Eurycea cirrigera) at urbanised sites were lower than abundances at control sites 2 years post‐urbanisation, and adult dusky salamander (Desmognathus fuscus) abundances at urbanised sites were lower than abundances at control sites 3 years post‐urbanisation. Maximum conductivity, sedimentation level and maximum stream channel width differed between urban and non‐urban streams. 5. Our results suggest that stream‐dwelling salamanders exhibit little resistance to urbanisation. Our study also highlights the use of the BACI design to study how urbanisation affects populations in semi‐aquatic habitats. We emphasise that inferences regarding urbanisation effects on population response may be compromised unless urban populations are compared to populations in control sites, especially for species in which populations fluctuate.  相似文献   

8.
Predicting leatherjacket population frequencies in Northern Ireland   总被引:1,自引:0,他引:1  
Annual surveys of leatherjacket (Tipula spp. larvae) were made in Northern Ireland to provide warning of the likelihood of damage to spring sown cereals after grass. A climate-based multiple regression model was developed to estimate mean annual populations. Ades distributions were fitted to the annual data of leatherjacket counts to provide common estimates of parameters r and r. These values were then held constant to provide yearly estimates of A, the third parameter. The relationship between A and the sample mean was established so that a frequency distribution could be generated for any estimated mean population density. The ability of these models to predict leatherjacket frequency distributions was validated by using weather data for 1985–1988 to predict the number of fields with populations in excess of thresholds of 0.5,0.75 and 1 times 105ha-1. It is concluded that the predictions were of sufficient accuracy to substitute for the annual leatherjacket survey.  相似文献   

9.
A comparison has been made between the estimates obtained from maximum likelihood estimation of gamma, inverse normal, and normal distribution models for stage-frequency data. Results have been compared for six of sets of test data, and from many sets of simulated data. It is concluded that (1) some estimates may differ substantially between the models, (2) estimates from the correct model have little bias, and estimated standard errors are generally close to theoretical values, (3) there are problems in determining degrees of freedom for chi-squared goodness of fit tests, so that it is best to compare test statistics with simulated distributions, and (4) goodness of fit tests may not discriminate well between the three models.  相似文献   

10.
Crawford AJ 《Molecular ecology》2003,12(10):2525-2540
Molecular genetic data were used to investigate population sizes and ages of Eleutherodactylus (Anura: Leptodactylidae), a species-rich group of small leaf-litter frogs endemic to Central America. Population genetic structure and divergence was investigated for four closely related species surveyed across nine localities in Costa Rica and Panama. DNA sequence data were collected from a mitochondrial gene (ND2) and a nuclear gene (c-myc). Phylogenetic analyses yielded concordant results between loci, with reciprocal monophyly of mitochondrial DNA haplotypes for all species and of c-myc haplotypes for three of the four species. Estimates of genetic differentiation among populations (FST) based upon mitochondrial data were always higher than nuclear-based FST estimates, even after correcting for the expected fourfold lower effective population size (Ne) of the mitochondrial genome. Comparing within-population variation and the relative mutation rates of the two genes revealed that the Ne of the mitochondrial genome was 15-fold lower than the estimate of the nuclear genome based on c-myc. Nuclear FST estimates were approximately 0 for the most proximal pairs of populations, but ranged from 0.5 to 1.0 for all other pairs, even within the same nominal species. The nuclear locus yielded estimates of Ne within localities on the order of 105. This value is two to three orders of magnitude larger than any previous Ne estimate from frogs, but is nonetheless consistent with published demographic data. Applying a molecular clock model suggested that morphologically indistinguishable populations within one species may be 107 years old. These results demonstrate that even a geologically young and dynamic region of the tropics can support very old lineages that harbour great levels of genetic diversity within populations. The association of high nucleotide diversity within populations, large divergence between populations, and high species diversity is also discussed in light of neutral community models.  相似文献   

11.
The endangered Chinese giant salamander (Andrias davidianus) is endemic to mainland China. Genetic divergence among six populations of the species was investigated by means of isozyme electrophoresis and mitochondrial DNA (mtDNA) sequences. Forty allozyme loci were resolved for all populations; the amount of genetic divergence among populations was comparable to that in other amphibians. mtDNA sequences showed a similar level of divergence. The population from Huangshan is distinct from other populations, indicating the existence of localized divergence. Both allozyme and mtDNA data failed to associate the populations into a pattern corresponding to the three Chinese river systems, which may be the consequence of human relocation. Conservation policies should emphasize the protection of localized populations and cessation of human-facilitated introductions. Future studies should focus on investigating the divergence among localized populations from isolated mountain regions, particularly using more fine-grained techniques such as microsatellite DNA.  相似文献   

12.
Waples RS 《Molecular ecology》2005,14(11):3335-3352
Although most genetic estimates of contemporary effective population size (Ne) are based on models that assume Ne is constant, in real populations Ne changes (often dramatically) over time, and estimates (Ne) will be influenced by Ne in specific generations. In such cases, it is important to properly match Ne to the appropriate time periods (for example, in computing Ne/N ratios). Here I consider this problem for semelparous species with two life histories (discrete generations and variable age at maturity--the 'salmon' model), for two different sampling plans, and for estimators based on single samples (linkage disequilibrium, heterozygote excess) and two samples (temporal method). Results include the following. Discrete generations: (i) Temporal samples from generations 0 and t estimate the harmonic mean Ne in generations 0 through t - 1 but do not provide information about Ne in generation t; (ii) Single samples provide an estimate of Ne in the parental generation, not the generation sampled; (iii) single-sample and temporal estimates never provide information about Ne in exactly the same generations; (iv) Recent bottlenecks can downwardly bias estimates based on linkage disequilibrium for several generations. Salmon model: (i) A pair of single-cohort (typically juvenile) samples from years 0 and t provide a temporal estimate of the harmonic mean of the effective numbers of breeders in the two parental years (N b(0) and N b(t)), but adult samples are more difficult to interpret because they are influenced by Nb in a number of previous years; (ii) For single-cohort samples, both one-sample and temporal methods provide estimates of Nb in the same years (contrast with results for discrete generation model); (iii) Residual linkage disequilibrium associated with past population size will not affect single-sample estimates of Nb as much as in the discrete generation model because the disequilibrium diffuses among different years of breeders. These results lead to some general conclusions about genetic estimates of Ne in iteroparous species with overlapping generations and identify areas in need of further research.  相似文献   

13.
Most predictions of how populations and species of ectotherms will respond to global warming are based on estimates of the temperature at which organisms lose motor control (i.e., CTmax - the Critical Thermal Maximum). Here, we describe a non-lethal protocol and ethograms to estimate the relative tolerance of amphibians to increasing temperatures. These methods—suitable for field or laboratory conditions—are replicable, inexpensive and applicable to both post-metamorphic stages and organisms with direct development. We illustrate the use of this standardized protocol for four amphibians from a tropical cloud forest in Veracruz, Mexico with contrasting life histories: a lungless salamander (Aquiloeurycea cafetalera: Plethodontidae), a leaf-litter frog (Craugastor rhodopis: Craugastoridae), a semiaquatic frog (Lithobates berlandieri: Ranidae), and a tree frog (Rheohyla miotympanum: Hylidae). We identified four behavioral responses preceding CTmax for all amphibians included in this study: 1) Optimal Activity Range, 2) Supra-optimal Activity Range, 3) Heat Stress Range, and 4) Involuntary Movements Range. Additionally, we identified a fifth parameter associated with resilience to heat shock: 5) Recovery Stage after reaching CTmax. We conclude that the behavioral responses preceding the Critical Thermal Maximum are as informative as CTmax. Using behavioral responses to estimate thermal tolerance has the additional advantage of reducing the risk of injury or death of amphibians during physiological experiments.  相似文献   

14.
Estimation of effective population sizes from data on genetic markers   总被引:9,自引:0,他引:9  
The effective population size (Ne) is an important parameter in ecology, evolutionary biology and conservation biology. It is, however, notoriously difficult to estimate, mainly because of the highly stochastic nature of the processes of inbreeding and genetic drift for which Ne is usually defined and measured, and because of the many factors (such as time and spatial scales, systematic forces) confounding such processes. Many methods have been developed in the past three decades to estimate the current, past and ancient effective population sizes using different information extracted from some genetic markers in a sample of individuals. This paper reviews the methodologies proposed for estimating Ne from genetic data using information on heterozygosity excess, linkage disequilibrium, temporal changes in allele frequency, and pattern and amount of genetic variation within and between populations. For each methodology, I describe mainly the logic and genetic model on which it is based, the data required and information used, the interpretation of the estimate obtained, some results from applications to simulated or empirical datasets and future developments that are needed.  相似文献   

15.
Keller MC  Visscher PM  Goddard ME 《Genetics》2011,189(1):237-249
Inbreeding depression, which refers to reduced fitness among offspring of related parents, has traditionally been studied using pedigrees. In practice, pedigree information is difficult to obtain, potentially unreliable, and rarely assessed for inbreeding arising from common ancestors who lived more than a few generations ago. Recently, there has been excitement about using SNP data to estimate inbreeding (F) arising from distant common ancestors in apparently "outbred" populations. Statistical power to detect inbreeding depression using SNP data depends on the actual variation in inbreeding in a population, the accuracy of detecting that with marker data, the effect size, and the sample size. No one has yet investigated what variation in F is expected in SNP data as a function of population size, and it is unclear which estimate of F is optimal for detecting inbreeding depression. In the present study, we use theory, simulated genetic data, and real genetic data to find the optimal estimate of F, to quantify the likely variation in F in populations of various sizes, and to estimate the power to detect inbreeding depression. We find that F estimated from runs of homozygosity (Froh), which reflects shared ancestry of genetic haplotypes, retains variation in even large populations (e.g., SD=0.5% when Ne=10,000) and is likely to be the most powerful method of detecting inbreeding effects from among several alternative estimates of F. However, large samples (e.g., 12,000-65,000) will be required to detect inbreeding depression for likely effect sizes, and so studies using Froh to date have probably been underpowered.  相似文献   

16.
Goldringer I  Bataillon T 《Genetics》2004,168(1):563-568
The effective population size (Ne) is frequently estimated using temporal changes in allele frequencies at neutral markers. Such temporal changes in allele frequencies are usually estimated from the standardized variance in allele frequencies (Fc). We simulate Wright-Fisher populations to generate expected distributions of Fc and of Fc (Fc averaged over several loci). We explore the adjustment of these simulated Fc distributions to a chi-square distribution and evaluate the resulting precision on the estimation of Ne for various scenarios. Next, we outline a procedure to test for the homogeneity of the individual Fc across loci and identify markers exhibiting extreme Fc-values compared to the rest of the genome. Such loci are likely to be in genomic areas undergoing selection, driving Fc to values greater (or smaller) than expected under drift alone. Our procedure assigns a P-value to each locus under the null hypothesis (drift is homogeneous throughout the genome) and simultaneously controls the rate of false positive among loci declared as departing significantly from the null. The procedure is illustrated using two published data sets: (i) an experimental wheat population subject to natural selection and (ii) a maize population undergoing recurrent selection.  相似文献   

17.
This study examines the use of codominant restriction fragment length polymorphism (RFLP) markers to estimate the number of sibling families found within and among oviposition sites used by the mosquito Aedes aegypti (L) (Diptera: Culicidae). Estimates were made using pairwise relatedness (rxy) calculations based on alleles shared between individuals. Genotypes for eight laboratory mosquito families were determined at six RFLP loci and the observed allele frequencies were used to generate simulated distributions of rxy from full-sibling and unrelated pairs of individuals. The midpoint (mp) between the means of the pairwise rxy distributions was used to discriminate full-sibling families from unrelated families. Clusters of individuals with rxy values higher than the mp value were grouped as putative sibling families. This method was tested by calculating actual rxy for all pairwise comparisons of the known laboratory full-sibling and paternal half-sibling families, followed by upgma cluster analysis to group sibling families. The technique was then used for sibling estimations on wild caught mosquitoes collected at three locations in Trinidad, West Indies. From field populations, 35 families were estimated among 122 individuals tested with an average of 6.2 families per container. Members of 19 predicted families clustered as groups across multiple containers, providing molecular evidence for skip-oviposition behaviour in Ae. aegypti females, whereby individual females oviposit in more than one container.  相似文献   

18.
Carrier frequencies for the allele(s) causing Sandhoff disease have been estimated for the U.S. Jewish and non-Jewish populations. The estimates have been made directly, with data from 22,043 Jewish and 32,342 non-Jewish individuals measured for total serum hexosaminidase activity and the heat-labile fraction. These values have been shown to identify potential carriers of the Sandhoff allele(s) with 95% sensitivity. Subsequent leukocyte assays of total hexosaminidase activity and the heat-labile fraction in those identified in serum tests have been shown to provide a much finer discrimination between those who carry the allele(s) and those who do not. Results from such assays were used to generate these carrier frequency estimates. Carrier frequency estimates have also been made indirectly from Sandhoff disease incidence data collected during the period 1979-84. These estimates are in agreement with data for the Jewish population under analysis, but in the non-Jewish population the estimate derived from data on screened individuals is greater than the estimate derived from incidence figures. The possible causes for such a difference are discussed. In a study of non-Jewish individuals each of whose grandparents derives from a single country of origin, the distribution of countries among Sandhoff disease carriers differs significantly from that in the non-Jewish sample under analysis, indicating possible ethnic groups with increased or decreased carrier frequencies. These analyses suggest an increased Sandhoff disease carrier frequency among Mexican and Central-American populations and a decreased carrier frequency among non-Jewish German populations.  相似文献   

19.
MOTIVATION: Population allele frequencies are correlated when populations have a shared history or when they exchange genes. Unfortunately, most models for allele frequency and inference about population structure ignore this correlation. Recent analytical results show that among populations, correlations can be very high, which could affect estimates of population genetic structure. In this study, we propose a mixture beta model to characterize the allele frequency distribution among populations. This formulation incorporates the correlation among populations as well as extending the model to data with different clusters of populations. RESULTS: Using simulated data, we show that in general, the mixture model provides a good approximation of the among-population allele frequency distribution and a good estimate of correlation among populations. Results from fitting the mixture model to a dataset of genotypes at 377 autosomal microsatellite loci from human populations indicate high correlation among populations, which may not be appropriate to neglect. Traditional measures of population structure tend to overestimate the amount of genetic differentiation when correlation is neglected. Inference is performed in a Bayesian framework. CONTACT: fur@ohsu.edu.  相似文献   

20.
Molecular parentage permits studies of selection and evolution in fecund species with cryptic mating systems, such as fish, amphibians, and insects. However, there exists no method for estimating the number of offspring that must be assigned parentage to achieve robust estimates of reproductive success when only a fraction of offspring can be sampled. We constructed a 2-stage model that first estimated the mean (μ) and variance (v) in reproductive success from published studies on salmonid fishes and then sampled offspring from reproductive success distributions simulated from the μ and v estimates. Results provided strong support for modeling salmonid reproductive success via the negative binomial distribution and suggested that few offspring samples are needed to reject the null hypothesis of uniform offspring production. However, the sampled reproductive success distributions deviated significantly (χ(2) goodness-of-fit test p value < 0.05) from the known simulated reproductive success distribution at rates often >0.05 and as high as 0.24, even when hundreds of offspring were assigned parentage. In general, reproductive success patterns were less accurate when offspring were sampled from cohorts with larger numbers of parents and greater variance in reproductive success. Our model can be reparameterized with data from other species and will aid researchers in planning reproductive success studies by providing explicit sampling targets required to accurately assess reproductive success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号