首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the 25 years since the observation that chronic exposure to nicotine could regulate the number and function of high affinity nicotine binding sites in the brain there has been a major effort to link alterations in nicotinic acetylcholine receptors (nAChRs) to nicotine-induced behaviors that drive the addiction to tobacco products. Here we review the proposed roles of various nAChR subtypes in the addiction process, with emphasis on how they are regulated by nicotine and the implications for understanding the cellular neurobiology of addiction to this drug.  相似文献   

2.
The activation of cholinergic pathways by nicotine elicits various physiological and pharmacological effects in mammals. For example, the stimulation of nicotinic acetylcholine receptors (nAChRs) leads to an antinociceptive effect. However, it remains to be elucidated which subtypes of nAChR are involved in the antinociceptive effect of nicotine on nerve injury-induced allodynia and the underlying cascades of the nAChR-mediated antiallodynic effect. In this study, we attempted to characterize the actions of nicotine at the spinal level against mechanical allodynia in an animal model of neuropathic pain, tibial nerve transection (TNT) in rats. It was found that the intrathecal injection of nicotine, RJR-2403, a selective alpha4beta2 nAChR agonist, and choline, a selective alpha7 nAChR agonist, produced an antinociceptive effect on the TNT-induced allodynia. The actions of nicotine were almost completely suppressed by pretreatment with mecamylamine, a non-selective nicotinic antagonist, or dihydro-beta-erythroidine, a selective alpha4beta2 nAChR antagonist, and partially reversed by pretreatment with methyllycaconitine, a selective alpha7 nAChR antagonist. Furthermore, pretreatment with strychnine, a glycine receptor antagonist, blocked the antinociception induced by nicotine, RJR-2403, and choline. On the other hand, the GABAA antagonist bicuculline did not reverse the antiallodynic effect of nicotine. Together, these results indicate that the alpha4beta2 and alpha7 nAChR system, by enhancing the activities of glycinergic neurons at the spinal level, exerts a suppressive effect on the nociceptive transduction in neuropathic pain.  相似文献   

3.
4.
Synaptic plasticity and nicotine addiction   总被引:17,自引:0,他引:17  
Dani JA  Ji D  Zhou FM 《Neuron》2001,31(3):349-352
Nicotine, the main addictive component of tobacco, activates and desensitizes nicotinic acetylcholine receptors (nAChRs). In that way, nicotine alters normal nicotinic cholinergic functions. Among the myriad of psychopharmacological effects that underlie the addiction process, nicotine influences nAChR participation in synaptic plasticity. This influence has particular importance in the mesocorticolimbic dopamine system, which serves during the reinforcement of rewarding behaviors.  相似文献   

5.
Ca2+ permeability of central nicotinic acetylcholine receptors (nAChRs), especially the alpha7 subunits, are exceptionally high and this important feature provide a special functional importance for these receptors at the system level. Although studies at the cellular level extensively characterized the molecular properties of Ca2+ influx following nAChR activation, much less is known about the time-related Ca2+ dynamics during nicotine administration in integration units of neurons. Such studies are of particular relevance to understanding in situ nonsynaptic actions of nicotine. Puff ejection of drugs produce a rapid drug delivery and elimination from the cell surface allowing the activation of extrasynaptic receptors within desensitization time-frame. In this report we provide evidence that rapid nicotine application is able to produce irregular Ca2+ transients in the dendrites of stratum radiatum interneurons in the hippocampal CA1 region. Potential components and mechanisms of nAChR-mediated Ca2+ influx are discussed in details to demonstrate the unique feature of activation of nAChRs involved in nonsynaptic function in interneurons as compared to other types of nicotinic activity.  相似文献   

6.
7.
Nicotine, the causative agent of addiction to tobacco, can also be a neuroprotectant. Nicotine-induced neuroprotection against different toxins is imparted through pharmacologically distinct neuronal nicotinic acetylcholine receptors (nAChR) where protection against chronic N-methyl-d-aspartic acid (NMDA) exposure is through nAChRalpha7 but protection against the toxic peptide of amyloid precursor protein, Abeta25-35, is through nAChRalpha4beta2. The inflammatory cytokine tumor necrosis factor alpha (TNFalpha) is also neuroprotective, however, in the presence of nicotine, neuroprotection against NMDA is abolished. The specificity of nicotine-TNFalpha antagonism was further refined using a mouse transgenic dominant negative of nAChRalpha7 in which nicotine failed to induce neuroprotection against NMDA and antagonism of TNFalpha was absent. However, nicotine-mediated neuroprotection against Abeta25-35 was unaffected and, therefore, did not require the expression of functional nAChRalpha7s. The mechanism of TNFalpha-mediated neuroprotection and antagonism by nicotine was independent of caspase 8 activation or nuclear factor kappa B translocation in neurons but C6-ceramide addition to neuronal cultures subsequently exposed to NMDA mimicked the neuroprotective effect of TNFalpha and, like TNFalpha, it was antagonized by cotreatment with nicotine. Therefore, the neuroprotective effects of nicotine against differing toxic assaults requires distinct nAChR subtypes and proceeds through intracellular pathways that overlap with similarly different mechanisms initiated by pro-inflammatory cytokines. These results provide insight into how nicotine imparts neuroprotection and modulates inflammatory responses.  相似文献   

8.
Habitual chewing of "betel nut" preparations constitutes the fourth most common human self-administration of a psychoactive substance after alcohol, caffeine, and nicotine. The primary active ingredient in these preparations is arecoline, which comes from the areca nut, the key component of all such preparations. Arecoline is known to be a relatively non-selective muscarinic partial agonist, accounting for many of the overt peripheral and central nervous system effects, but not likely to account for the addictive properties of the drug. We report that arecoline has activity on select nicotinic acetylcholine receptor (nAChR) subtypes, including the two classes of nAChR most related to the addictive properties of nicotine: receptors containing α4 and β2 subunits and those which also contain α6 and β3 subunits. Arecoline is a partial agonist with about 6–10% efficacy for the α4* and α6* receptors expressed in Xenopus oocytes. Additionally, arecoline is a silent agonist of α7 nAChR; while it does not activate α7 receptors when applied alone, it produces substantial activation when co-applied with the positive allosteric modulator PNU-120696. Some α7 silent agonists are effective inhibitors of inflammation, which might account for anti-inflammatory effects of arecoline. Arecoline''s activity on nAChR associated with addiction may account for the habitual use of areca nut preparations in spite of the well-documented risk to personal health associated with oral diseases and cancer. The common link between betel and tobacco suggests that partial agonist therapies with cytisine or the related compound varenicline may also be used to aid betel cessation attempts.  相似文献   

9.
Many smokers attempt to quit smoking but few are successful in the long term. The heritability of nicotine addiction and smoking relapse have been documented, and research is focused on identifying specific genetic influences on the ability to quit smoking and response to specific medications. Research in genetically modified cell lines and mice has identified nicotine acetylcholine receptor subtypes that mediate the pharmacological and behavioral effects of nicotine sensitivity and withdrawal. Human genetic association studies have identified single nucleotide polymorphisms (SNPs) in genes encoding nicotine acetylcholine receptor subunits and nicotine metabolizing enzymes that influence smoking cessation phenotypes. There is initial promising evidence for a role in smoking cessation for SNPs in the β2 and α5/α3/β4 nAChR subunit genes; however, effects are small and not consistently replicated. There are reproducible and clinically significant associations of genotypic and phenotypic measures of CYP2A6 enzyme activity and nicotine metabolic rate with smoking cessation as well as response to nicotine replacement therapies and bupropion. Prospective clinical trials to identify associations of genetic variants and gene–gene interactions on smoking cessation are needed to generate the evidence base for both medication development and targeted therapy approaches based on genotype.  相似文献   

10.
Nicotine binds to and activates a family of ligand-gated ion channels, neuronal nicotinic acetylcholine receptors (nAChRs). Chronic nicotine exposure alters the expression of various nAChR subtypes, which likely contributes to nicotine dependence; however, the underlying mechanisms regulating these changes remain unclear. A growing body of evidence indicates that microRNAs (miRNAs) may be involved in nAChR regulation. Using bioinformatics, miRNA library screening, site-directed mutagenesis, and gene expression analysis, we have identified a limited number of miRNAs that functionally interact with the 3′-untranslated regions (3′ UTRs) of mammalian neuronal nAChR subunit genes. In silico analyses revealed specific, evolutionarily conserved sites within the 3′ UTRs through which the miRNAs regulate gene expression. Mutating these sites disrupted miRNA regulation confirming the in silico predictions. In addition, the miRNAs that target nAChR 3′ UTRs are expressed in mouse brain and are regulated by chronic nicotine exposure. Furthermore, we show that expression of one of these miRNAs, miR-542-3p, is modulated by nicotine within the mesocorticolimbic reward pathway. Importantly, overexpression of miR-542-3p led to a decrease in the protein levels of its target, the nAChR β2 subunit. Bioinformatic analysis suggests that a number of the miRNAs play a general role in regulating cholinergic signaling. Our results provide evidence for a novel mode of nicotine-mediated regulation of the mammalian nAChR gene family.  相似文献   

11.
Abstract: For a study of the underlying mechanisms of a possible interaction between ethanol and nicotinic receptors during ethanol dependence, the aim of this work was to investigate the effect of chronic ethanol exposure on nicotinic receptor subtypes in a transfected fibroblast cell line (M10 cells) stably expressing α4β2 nicotinic receptor subtype and an SH-SY5Y neuroblastoma cell line expressing α3, α5, α7, β2, and β4 nicotinic acetylcholine receptor (nAChR) subunits. A significant dose-related decrease (−30–80%) in number of [3H]nicotine binding sites was observed in ethanol-treated (25–240 m M ) compared with untreated M10 cells. Similarly, 4-day treatment with ethanol in concentrations relevant to chronic alcoholism (100 m M ) decreased the number of nicotinic receptor binding sites in the SH-SY5Y cells when measured using [3H]epibatidine. When M10 cells were chronically treated with nicotine, ethanol partly inhibited the up-regulation of nicotinic receptors when present in the cells together with nicotine. Chronic treatment for 4 days with 100 m M ethanol significantly decreased the mRNA level for the α3 nAChR subunit (−39%), while the mRNA levels for the α7 (+30%) and α4 (+22%) subunits were significantly increased. Chronic ethanol treatment did not affect the mRNA levels for the β2 nAChR subunit. Changes in the levels of nAChR protein and mRNA may have adaptive significance and be involved in the development of dependence, tolerance, and addiction to chronic ethanol and nicotine exposure. They also may be targets for therapeutic strategies in the treatment of ethanol and nicotine dependence.  相似文献   

12.
In this study, the inhibitory effect of L-theanine, an amino acid derivative of tea, on the rewarding effects of nicotine and its underlying mechanisms of action were studied. We found that L-theanine inhibited the rewarding effects of nicotine in a conditioned place preference (CPP) model of the mouse and reduced the excitatory status induced by nicotine in SH-SY5Y cells to the same extent as the nicotine receptor inhibitor dihydro-beta-erythroidine (DH??E). Further studies using high performance liquid chromatography, western blotting and immunofluorescence staining analyses showed that L-theanine significantly inhibited nicotine-induced tyrosine hydroxylase (TH) expression and dopamine production in the midbrain of mice. L-theanine treatment also reduced the upregulation of the ??4, ??2 and ??7 nicotine acetylcholine receptor (nAChR) subunits induced by nicotine in mouse brain regions that related to the dopamine reward pathway, thus decreasing the number of cells that could react to nicotine. In addition, L-theanine treatment inhibited nicotine-induced c-Fos expression in the reward circuit related areas of the mouse brain. Knockdown of c-Fos by siRNA inhibited the excitatory status of cells but not the upregulation of TH induced by nicotine in SH-SY5Y cells. Overall, the present study showed that L-theanine reduced the nicotine-induced reward effects via inhibition of the nAChR-dopamine reward pathway. These results may offer new therapeutic strategies for treatment of tobacco addiction.  相似文献   

13.
Long-term potentiation of excitatory inputs to brain reward areas by nicotine   总被引:34,自引:0,他引:34  
Mansvelder HD  McGehee DS 《Neuron》2000,27(2):349-357
Nicotine reinforces smoking behavior by activating nicotinic acetylcholine receptors (nAChRs) in the midbrain dopaminergic (DA) reward centers, including the ventral tegmental area (VTA). Although nicotine induces prolonged excitation of the VTA in vivo, the nAChRs on the DA neurons desensitize in seconds. Here, we show that activation of nAChRs on presynaptic terminals in the VTA enhances glutamatergic inputs to DA neurons. Under conditions where the released glutamate can activate NMDA receptors, long-term potentiation (LTP) of the excitatory inputs is induced. Both the short- and the long-term effects of nicotine required activation of presynaptic alpha7 subunit-containing nAChRs. These results can explain the long-term excitation of brain reward areas induced by a brief nicotine exposure. They also show that nicotine alters synaptic function through mechanisms that are linked to learning and memory.  相似文献   

14.
High-affinity, β2-subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) are essential for nicotine reinforcement; however, these nAChRs are found on both gamma-aminobutyric acid (GABA) and dopaminergic (DA) neurons in the ventral tegmental area (VTA) and also on terminals of glutamatergic and cholinergic neurons projecting from the pedunculopontine tegmental area and the laterodorsal tegmental nucleus. Thus, systemic nicotine administration stimulates many different neuronal subtypes in various brain nuclei. To identify neurons in which nAChRs must be expressed to mediate effects of systemic nicotine, we investigated responses in mice with low-level, localized expression of β2* nAChRs in the midbrain/VTA. Nicotine-induced GABA and DA release were partially rescued in striatal synaptosomes from transgenic mice compared with tissue from β2 knockout mice. Nicotine-induced locomotor activation, but not place preference, was rescued in mice with low-level VTA expression, suggesting that low-level expression of β2* nAChRs in DA neurons is not sufficient to support nicotine reward. In contrast to control mice, transgenic mice with low-level β2* nAChR expression in the VTA showed no increase in overall levels of cyclic AMP response element-binding protein (CREB) but did show an increase in CREB phosphorylation in response to exposure to a nicotine-paired chamber. Thus, CREB activation in the absence of regulation of total CREB levels during place preference testing was not sufficient to support nicotine place preference in β2 trangenic mice. This suggests that partial activation of high-affinity nAChRs in VTA might block the rewarding effects of nicotine, providing a potential mechanism for the ability of nicotinic partial agonists to aid in smoking cessation.  相似文献   

15.
The carotid bodies (CBs) are chemosensory organs that respond to hypoxemia with transmitter neurosecretion, leading to a respiratory reflex response. It has been proposed that acetylcholine is a key regulator of transmitter release through activation of presynaptic nicotinic acetylcholine receptors (nAChRs). In the present work, we studied the identity of such nAChRs and their contribution to catecholamine release from CBs. Neonatal rat CBs were placed in a recording chamber for electrochemical recordings or disassociated for voltage-clamp studies on isolated cells. Fast nicotine superfusion increases catecholamine release from intact CBs. This response was diminished reversibly by the non-selective nAChR blocker hexamethonium, by the selective α7 blocker α-bungarotoxin and by the α4-containing nAChR blocker erysodine. In isolated CB cells the nAChR agonists nicotine, acetylcholine and cytisine all evoke inward currents with similar potencies. The nicotine-evoked current was fully blocked by mecamylamine and partially inhibited by α-bungarotoxin or erysodine. However, the combination of both α-bungarotoxin an erysodine failed to suppress this response. Immunodetection studies confirm the presence of α7 and α4 subunits in isolated dopaminergic CB cells. Our results show that activation of α7 and/or α4-containing nAChR subtypes have the ability to regulate catecholamine release from intact CB due to activation of fast inward currents expressed in chemoreceptor cells. Therefore, our results suggest that both nAChR subtypes contribute to the cholinergic nicotinic regulation of catecholamine signaling in the carotid body system.  相似文献   

16.
We have earlier reported that Aβ were significantly reduced in brains of smoking Alzheimer patients and control subjects compared with non-smokers, as well as in nicotine treated APPsw transgenic mice. To examine the mechanisms by which nicotine modulates APP processing we here measured levels of secreted amyloid precursor protein (sAPPα), total sAPP, Aβ40 and Aβ42 in different cell lines expressing different nicotinic receptor (nAChR) subtypes or no nAChRs. Treatment with nicotine increased release of sAPPα and at the same time lowered Aβ levels in both SH-SY5Y and SH-SY5Y/APPsw cells expressing α3 and α7 nAChR subtypes. These effects could also be evoked by co-treatment with the competitive α7 nAChR antagonists α-bungarotoxin and methyllycaconitine (MLA), and by these antagonists alone, suggesting that binding to the agonist binding site, rather than activation of the receptor, may be sufficient to trigger changes in APP processing. The nicotine-induced increase in sAPPα could only be blocked by co-treatment with the open channel blocker mecamylamine. In addition to nicotine, the agonists epibatidine and cytisine both significantly increased the release of sAPP in M10 cells expressing the α4/β2 nAChR subtype, and this effect was blocked by co-treatment with mecamylamine but not by the α4/β2 competitive antagonist dihydro-β-erythroidine. The lack of effect of nicotine on sAPPα and Aβ levels in HEK 293/APPsw cells, which do not express any nAChRs, demonstrates that the nicotine-induced attenuation of β-amyloidosis is mediated by nAChRs and not by a direct effect of nicotine. Our data show that nicotinic compounds stimulate the non-amyloidogenic pathway and that α4 and α7 nAChRs play a major role in modulating this process. Nicotinic drugs directed towards specific nAChR subtypes might therefore be beneficial for the treatment of AD not only by lowering Aβ production but also by enhance release of neuroprotective sAPPα.  相似文献   

17.
Nicotine enhances attention and working memory by activating nicotinic acetylcholine receptors (nAChRs). The prefrontal cortex (PFC) is critical for these cognitive functions and is also rich in nAChR expression. Specific cellular and synaptic mechanisms underlying nicotine's effects on cognition remain elusive. Here we show that nicotine exposure increases the threshold for synaptic spike-timing-dependent potentiation (STDP) in layer V pyramidal neurons of the mouse PFC. During coincident presynaptic and postsynaptic activity, nicotine reduces dendritic calcium signals associated with action potential propagation by enhancing GABAergic transmission. This results from a series of presynaptic actions involving different PFC interneurons and multiple nAChR subtypes. Pharmacological block of nAChRs or GABA(A) receptors prevented nicotine's actions and restored STDP, as did increasing dendritic calcium signals with stronger postsynaptic activity. Thus, by activating nAChRs distributed throughout the PFC neuronal network, nicotine affects PFC information processing and storage by increasing the amount of postsynaptic activity necessary to induce STDP.  相似文献   

18.
Nicotine is the principle addictive agent delivered via cigarette smoking. The addictive activity of nicotine is due to potent interactions with nicotinic acetylcholine receptors (nAChRs) on neurons in the reinforcement and reward circuits of the brain. Beyond its addictive actions, nicotine is thought to have positive effects on performance in working memory and short-term attention-related tasks. The brain areas involved in such behaviors are part of an extensive cortico-limbic network that includes relays between prefrontal cortex (PFC) and cingulate cortex (CC), hippocampus, amygdala, ventral tegmental area (VTA) and the nucleus accumbens (nAcc). Nicotine activates a broad array of nAChRs subtypes that can be targeted to pre- as well as peri- and post-synaptic locations in these areas. Thereby, nicotine not only excites different types of neurons, but it also perturbs baseline neuronal communication, alters synaptic properties and modulates synaptic plasticity.In this review we focus on recent findings on nicotinic modulation of cortical circuits and their targets fields, which show that acute and transient activation of nicotinic receptors in cortico-limbic circuits triggers a series of events that affects cognitive performance in a long lasting manner. Understanding how nicotine induces long-term changes in synapses and alters plasticity in the cortico-limbic circuits is essential to determining how these areas interact in decoding fundamental aspects of cognition and reward.  相似文献   

19.
20.
Patients with schizophrenia present with deficits in specific areas of cognition. These are quantifiable by neuropsychological testing and can be clinically observable as negative signs. Concomitantly, they self-administer nicotine in the form of cigarette smoking. Nicotine dependence is more prevalent in this patient population when compared to other psychiatric conditions or to non-mentally ill people. The target for nicotine is the neuronal nicotinic acetylcholine receptor (nAChR). There is ample evidence that these receptors are involved in normal cognitive operations within the brain. This review describes neuronal nAChR structure and function, focusing on both cholinergic agonist-induced nAChR desensitization and nAChR up-regulation. The several mechanisms proposed for the nAChR up-regulation are examined in detail. Desensitization and up-regulation of nAChRs may be relevant to the physiopathology of schizophrenia. The participation of several subtypes of neuronal nAChRs in the cognitive processing of non-mentally ill persons and schizophrenic patients is reviewed. The role of smoking is then examined as a possible cognitive remediator in this psychiatric condition. Finally, pharmacological strategies focused on neuronal nAChRs are discussed as possible therapeutic avenues that may ameliorate the cognitive deficits of schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号