首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
beta-Lipotropin, a pituitary peptide, is a potent stimulator of lipolysis in rabbit adipose tissue in vitro and in vivo. Insulin inhibited the beta-lipotropin (1-100 nM)-stimulated glycerol release from rabbit adipocytes and fat pads significantly at concentrations of 10 and 100 microM. Both these concentrations of insulin also decreased the degradation of beta-lipotropin in intact adipose tissue to the same extent as the lipolytic activity. Furthermore, insulin reduced the degradation of beta-lipotropin in rabbit adipose tissue homogenate. Like insulin, several lysosomotropic agents also decreased significantly the degradation and the lipolytic activity of beta-lipotropin. On the other hand, insulin-like growth factor I in lower concentrations (1-100 nM) did not effect degradation and lipolytic activity of beta-lipotropin in rabbit adipose tissue. Thus, a direct influence of insulin on lysosomal enzymes degrading beta-lipotropin in rabbit adipose tissue can be suggested.  相似文献   

2.
Bacteria-derived human growth hormone (hGH) shows little invitro lipolytic activity in adipose tissue from fed rats. In adipose tissue from fasted rats no lipolytic activity is observed. However, bacteria-derived hGH increased serum free fatty acids after intraperitoneal administration to hypophysectomized rats to the same extent as purified pituitary hGH. The dose response of the bacteria-derived hGH tested for invitro insulin-like activity was very similar to the pituitary extracted material. Thus bacteria-derived hGH behaves in a manner indistinguishable from highly purified preparations of pituitary hGH.  相似文献   

3.
4.
5.
Hydrolysis of triacylglycerols and cholesteryl esters is a key event in energy homeostasis of animals. However, many lipolytic activities still await their molecular identification. Here we report on a novel tool for concomitant analysis of lipases in complex proteomes. Fluorescent activity tags mimicking lipid substrates were used to label the proteome of mouse adipose tissue. Analysis by two-dimensional gel electrophoresis and LC-MS/MS led to the identification of all known intracellular lipases as well as a number of novel candidates. One of them was recently shown to be involved in triacylglycerol mobilization in adipocytes and therefore named adipose triglyceride lipase. Functional characterization of expressed enzymes demonstrated that lipolytic and esterolytic activities could be well discriminated. Thus our results show the first map of the lipolytic proteome of mouse adipose tissue and demonstrate the general applicability of our method for rapid profiling and identification of lipolytic activities in complex biological samples.  相似文献   

6.
7.
8.
We studied eight normal-weight male subjects to examine whether the lipolytic rate of deep subcutaneous and preperitoneal adipose tissues differs from that of superficial abdominal subcutaneous adipose tissue. The lipolytic rates in the superficial anterior and deep posterior subcutaneous abdominal adipose tissues and in the preperitoneal adipose tissue in the round ligament were measured by microdialysis and (133)Xe washout under basal, postabsorptive conditions and during intravenous epinephrine infusion (0.15 nmol. kg(-1). min(-1)). Both in the basal state and during epinephrine stimulation, the superficial subcutaneous adipose tissue had higher interstitial glycerol concentrations than the two other depots. Similarly, the calculated glycerol outputs from the superficial depot were significantly higher than those from the deep subcutaneous and the preperitoneal depots. Thus, it is concluded that the lipolytic rate of the superficial subcutaneous adipose tissue on the anterior abdominal wall is higher than that of the deep subcutaneous adipose tissue on the posterior abdominal wall and that of the preperitoneal adipose tissue in the round ligament.  相似文献   

9.
10.
11.
12.
13.
Rats anaesthetized with Brevinarcon were placed in a high-temperature chamber (air temperature 50 degrees C, relative humidity 50%) for induction of hyperthermia (rectal temperature 41.0 +/- +/- 0.5 degrees C). The control group comprised rats anaesthetized in the same way but kept at room temperature. In the serum in both groups glucose, free fatty acids, immunoreactive insulin, lipolytic activity and ability to mobilize lipids in vitro were determined. It was shown that the glucose and free fatty acid levels and the activity mobilizing serum lipids in vitro in the rats subjected to hyperthermia were lower than in the control group by 12%, 23% and 150% respectively. The lipolytic activity of the serum of rats subjected to hyperthermia was 42% higher, and the level of immunoreactive insulin rose by about 224% in relation to the control group. These results point to inhibition of lipolysis in the adipose tissue with simultaneous activation of intravascular lipolysis during hyperthermia in rats.  相似文献   

14.
15.
Insulin resistance in adipose tissue increases the release of free fatty acids into the circulation, which likely contributes to impaired insulin action in liver and skeletal muscle associated with obesity. However, reliable assessment of adipose tissue insulin resistance requires performing a hyperinsulinemic-euglycemic clamp procedure in conjunction with a fatty acid tracer infusion to determine insulin-mediated suppression of lipolytic rate. We developed a simpler method for evaluating adipose tissue insulin resistance in vivo, determined as the product of palmitate rate of appearance into the bloodstream and plasma insulin concentration during basal conditions. We validated our Adipose Tissue Insulin Resistance Index (ATIRI) by comparison with an assessment of adipose tissue insulin resistance determined by using the hyperinsulinemic-euglycemic clamp procedure in conjunction with a palmitate tracer infusion in 47 obese nondiabetic subjects (body mass index: 40.1 ± 9.3 kg/m(2)). We found the ATIRI correlated closely with adipose tissue insulin resistance assessed during the clamp procedure (r =-0.854, P < 0.001). These results demonstrate that the ATIRI provides a reliable index of adipose tissue insulin resistance in obese subjects.  相似文献   

16.
In cold acclimated rats, in vitro, NE led to a significant increase in release of FFA and glycerol in denervated IBAT. In vivo, study of arteriovenous differences showed that the denervated BAT loses its full capacity to utilize FFA and glycerol released by NE. After denervation an increase of blood flow in Sulzer's vein was observed. This effect appeared immediately after intervention whereas the effect on fat metabolism appeared later. In cold acclimated rats, the sympathetic nervous system appears to be an important regulator of fatty acid metabolism in BAT.  相似文献   

17.
Previous reports that rabbit adipose tissue does not synthesize fatty acids at significant rates led us to study in detail the pathways of lipogenesis and glyceroneogenesis in this tissue. We found that rabbit adipose tissue has a low capacity for denovo fatty acid synthesis from glucose but a high capacity for synthesis from pyruvate and acetate. The tissue can also convert pyruvate to glyceride-glycerol via the dicarboxylic acid shuttle and gluconeogenic pathways. Experiments with hydroxycitrate, a potent inhibitor of citrate cleavage enzyme, demonstrated that this is an obligatory enzyme in lipogenesis from pyruvate. The lipogenic system of rabbit adipose tissue resembles that of a ruminant in that it is adapted to utilize acetate rather than glucose. However, in contrast to ruminant tissues, the limited ability to convert glucose to fatty acid results not from a deficiency in the enzymes concerned with the transport of acetyl units out of the mitochondria but from a block prior to the level of pyruvate, most likely at the hexokinase and pyruvate kinase reactions.  相似文献   

18.
19.
20.
Short-lasting hypothermia raises the FFA level in the blood and this rise is associated with increased lipid-mobilizing activity and higher lipolytic activity of the serum. Raised FFA level and increased lipid-mobilizing activity of the serum persist even when the degree of general anaesthesia is sufficient for preventing thermogenesis signs (shivering and piloerection) caused by falling body temperature. Beta-adrenergic blockade fails to abolish the effect of lipolysis activation caused by hypothermia. These observations suggest that during hypothermia in the blood of the animals appear factors stimulating lipolysis in the adipose tissue. One of these factors may stimulate tissue lipolysis independently of beta-adrenergic receptors. Insulin blocks significantly lipolytic processes in the adipose tissue of hypothermic animals, but its administration is connected with the danger of hypoglycaemia development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号