首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In this study we have demonstrated that both CD44 (the hyaluronan (HA) receptor) and c-Src kinase are expressed in human ovarian tumor cells (SK-OV-3.ipl cell line), and that these two proteins are physically associated as a complex in vivo. Using a recombinant cytoplasmic domain of CD44 and an in vitro binding assay, we have detected a specific interaction between CD44 and c-Src kinase. Furthermore, the binding of HA to SK-OV-3.ipl cells promotes c-Src kinase recruitment to CD44 and stimulates c-Src kinase activity, which, in turn, increases tyrosine phosphorylation of the cytoskeletal protein, cortactin. Subsequently, tyrosine phosphorylation of cortactin attenuates its ability to cross-link filamentous actin in vitro. In addition, transfection of SK-OV-3.ipl cells with a dominant active form of c-Src (Y527F)cDNA promotes CD44 and c-Src association with cortactin in membrane projections, and stimulates HA-dependent/CD44-specific ovarian tumor cell migration. Finally, overexpression of a dominant-negative mutant of c-Src kinase (K295R) in SK-OV-3.ipl cells impairs the tumor cell-specific phenotype. Taken together, these findings strongly suggest that CD44 interaction with c-Src kinase plays a pivotal role in initiating cortactin-regulated cytoskeleton function and HA-dependent tumor cell migration, which may be required for human ovarian cancer progression.  相似文献   

4.
The glycosaminoglycan hyaluronan (HA) modulates cell proliferation and migration, and it is involved in several human vascular pathologies including atherosclerosis and vascular restenosis. During intima layer thickening, HA increases dramatically in the neointima extracellular matrix. Aging is one of the major risk factors for the insurgence of vascular diseases, in which smooth muscle cells (SMCs) play a role by determining neointima formation through their migration and proliferation. Therefore, we established an in vitro aging model consisting of sequential passages of human aortic smooth muscle cells (AoSMCs). Comparing young and aged cells, we found that, during the aging process in vitro,HA synthesis significantly increases, as do HA synthetic enzymes (i.e. HAS2 and HAS3), the precursor synthetic enzyme (UDP-glucose dehydrogenase), and the HA receptor CD44. In aged cells, we also observed increased CD44 signaling that consisted of higher levels of phosphorylated MAP kinase ERK1/2. Further, aged AoSMCs migrated faster than young cells, and such migration could be modulated by HA, which alters the ERK1/2 phosphorylation. HA oligosaccharides of 6.8 kDa and an anti-CD44 blocking antibody prevented ERK1/2 phosphorylation and inhibited AoSMCs migration. These results indicate that, during aging, HA can modulate cell migration involving CD44-mediated signaling through ERK1/2. These data suggest that age-related HA accumulation could promote SMC migration and intima thickening during vascular neointima formation.  相似文献   

5.
In this study we initially examined the interaction between CD44v3 (a hyaluronan (HA) receptor) and Vav2 (a guanine nucleotide exchange factor) in human ovarian tumor cells (SK-OV-3.ipl cell line). Immunological data indicate that both CD44v3 and Vav2 are expressed in SK-OV-3.ipl cells and that these two proteins are physically linked as a complex in vivo. By using recombinant fragments of Vav2 and in vitro binding assays, we have detected a specific binding interaction between the SH3-SH2-SH3 domain of Vav2 and the cytoplasmic domain of CD44. In addition, we have observed that the binding of HA to CD44v3 activates Vav2-mediated Rac1 signaling leading to ovarian tumor cell migration. Further analyses indicate that the adaptor molecule, growth factor receptor-bound protein 2 (Grb2) that is bound to p185(HER2) (an oncogene product), is also associated with the CD44v3-Vav2 complex. HA binding to SK-OV-3.ipl cells promotes recruitment of both Grb2 and p185(HER2) to the CD44v3-Vav2 complex leading to Ras activation and ovarian tumor cell growth. In order to determine the role of Grb2 in CD44v3 signaling, we have transfected SK-OV-3.ipl cells with Grb2 mutant cDNAs (e.g. Delta N-Grb2 that has a deletion in the amino-terminal SH3 domain or Delta C-Grb2 that has a deletion in the carboxyl-terminal SH3 domain). Our results clearly indicate that the SH3 domain deletion mutants of Grb2 (i.e. the Delta N-Grb2 (and to a lesser extent the Delta C-Grb2) mutant) not only block their association with p185(HER2) but also significantly impair their binding to the CD44v3-Vav2 complex and inhibit HA/CD44v3-induced ovarian tumor cell behaviors. Taken together, these findings strongly suggest that the interaction of CD44v3-Vav2 with Grb2-p185(HER2) plays an important role in the co-activation of both Rac1 and Ras signaling that is required for HA-mediated human ovarian tumor progression.  相似文献   

6.
Fibroblast to myofibroblast differentiation drives effective wound healing and is largely regulated by the cytokine transforming growth factor-β1 (TGF-β1). Myofibroblasts express α-smooth muscle actin and are present in granulation tissue, where they are responsible for wound contraction. Our previous studies show that fibroblast differentiation in response to TGF-β1 is dependent on and mediated by the linear polysaccharide hyaluronan (HA). Both the HA receptor, CD44, and the epidermal growth factor receptor (EGFR) are involved in this differentiation response. The aim of this study was to understand the mechanisms linking HA-, CD44-, and EGFR-regulated TGF-β1-dependent differentiation. CD44 and EGFR co-localization within membrane-bound lipid rafts was necessary for differentiation, and this triggered downstream mitogen-activated protein kinase (MAPK/ERK) and Ca2+/calmodulin kinase II (CaMKII) activation. We also found that ERK phosphorylation was upstream of CaMKII phosphorylation, that ERK activation was necessary for CaMKII signaling, and that both kinases were essential for differentiation. In addition, HA synthase-2 (HAS2) siRNA attenuated both ERK and CaMKII signaling and sequestration of CD44 into lipid rafts, preventing differentiation. In summary, the data suggest that HAS2-dependent production of HA facilitates TGF-β1-dependent fibroblast differentiation through promoting CD44 interaction with EGFR held within membrane-bound lipid rafts. This induces MAPK/ERK, followed by CaMKII activation, leading to differentiation. This pathway is synergistic with the classical TGF-β1-dependent SMAD-signaling pathway and may provide a novel opportunity for intervention in wound healing.  相似文献   

7.
The ErbB family of receptor kinases is composed of four members: epidermal growth factor receptor (EGFR/ErbB1), ErbB2/neu, ErbB3, and ErbB4. Amplification of the ErbB2/neu is found in about 30% of breast cancer patients and is associated with a poor prognosis. Heregulin (HRG) activates the ErbB2 via induction of heterodimerization with ErbB3 and ErbB4 receptors. With suppression subtractive hybridization, we demonstrated that the expression of cytochrome c oxidase subunit II (COXII) is HRG-responsive. Two nontransformed human mammary epithelial cell lines, the HB2 and the HB2(ErbB2) (the HB2 engineered to overexpress ErbB2), displayed an opposite response to HRG-mediated regulation. HRG upregulated mRNA expression of COXII in the HB2 cells, but suppressed COXII expression in the HB2(ErbB2) cells. A human breast cancer cell line (T47D), which expresses ErbB2 at a level similar to that of the HB2 cells, also responded to HRG by increasing COXII mRNA levels. Therefore, HRG regulation of COXII expression depends on the levels of ErbB2 expression. Furthermore, the expression of COXII was inversely correlated to the levels of ErbB2, i.e., the cells overexpressing ErbB2 exhibited lower COXII levels. HRG-evoked signal transduction differed between the cells with normal ErbB expression and the cells overexpressing ErbB2. The activation of both ERK and PI3-K was essential for HRG regulation of COXII, i.e., blockage of either pathway eliminated HRG-mediated alteration. This is the first report demonstrating that the expression of mitochondria-encoded COXII is HRG-responsive. The levels of ErbB2 expression are decisive for the diverse biological activities of HRG.  相似文献   

8.
In the developing heart, the epicardium is a major source of progenitor cells that contribute to the formation of the coronary vessel system. These epicardial progenitors give rise to the different cellular components of the coronary vasculature by undergoing a number of morphological and physiological changes collectively known as epithelial to mesenchymal transformation (EMT). However, the specific signaling mechanisms that regulate epicardial EMT are yet to be delineated. In this study we investigated the role of TGFβ2 and hyaluronan (HA) during epicardial EMT and how signals from these two molecules are integrated during this important process. Here we show that TGFβ2 induces MEKK3 activation, which in turn promotes ERK1/2 and ERK5 phosphorylation. TGFβ2 also increases Has2 expression and subsequent HA production. Nevertheless, inhibition of MEKK3 kinase activity, silencing of ERK5 or pharmacological disruption of ERK1/2 activation significantly abrogates this response. Thus, TGFβ2 promotes Has2 expression and HA production through a MEKK3/ERK1/2/5-dependent cascade. Furthermore, TGFβ2 is able to induce epicardial cell invasion and differentiation but not proliferation. However, inhibition of MEKK3-dependent pathways, degradation of HA by hyaluronidases or blockade of CD44, significantly impairs the biological response to TGFβ2. Taken together, these findings demonstrate that TGFβ2 activation of MEKK3/ERK1/2/5 signaling modulates Has2 expression and HA production leading to the induction of EMT events. This is an important and novel mechanism showing how TGFβ2 and HA signals are integrated to regulate changes in epicardial cell behavior.  相似文献   

9.
Heregulins are a family of ligands for the ErbB3/ErbB4 receptors that play important roles in breast cancer cell proliferation and tumorigenesis. Limited information is available on the contribution of Rho GTPases to heregulin-mediated signaling. In breast cancer cells, heregulin beta1 (HRG) causes a strong activation of Rac; however, it does so with striking differences in kinetics compared to epidermal growth factor, which signals through ErbB1 (epidermal growth factor receptor [EGFR]). Using specific ErbB receptor inhibitors and depletion of receptors by RNA interference (RNAi), we established that, surprisingly, activation of Rac by HRG is mediated not only by ErbB3 and ErbB2 but also by transactivation of EGFR, and it is independent of ErbB4. Similar receptor requirements are observed for HRG-induced actin cytoskeleton reorganization and mitogenic activity via extracellular signal-regulated kinase (ERK). HRG-induced Rac activation was phosphatidylinositol 3-kinase dependent and Src independent. Furthermore, inactivation of Rac by expression of the Rac GTPase-activating protein beta2-chimerin inhibited HRG-induced ERK activation, mitogenicity, and migration in breast cancer cells. HRG mitogenic activity was also impaired by depletion of Rac1 using RNAi. Our studies established that Rac is a critical mediator of HRG mitogenic signaling in breast cancer cells and highlight additional levels of complexity for ErbB receptor coupling to downstream effectors that control aberrant proliferation and transformation.  相似文献   

10.
In this study we have examined the interaction of CD44 (a major hyaluronan (HA) receptor) with a RhoA-specific guanine nucleotide exchange factor (leukemia-associated RhoGEF (LARG)) in human head and neck squamous carcinoma cells (HNSCC-HSC-3 cell line). Immunoprecipitation and immunoblot analyses indicate that CD44 and the LARG protein are expressed in HSC-3 cells and that these two proteins are physically associated as a complex. HA-CD44 binding induces LARG-specific RhoA signaling and phospholipase C epsilon (PLC epsilon) activity. In particular, the activation of RhoA-PLC epsilon by HA stimulates inositol 1,4,5-triphosphate production, intracellular Ca2+ mobilization, and the up-regulation of Ca2+/calmodulin-dependent kinase II (CaMKII), leading to phosphorylation of the cytoskeletal protein, filamin. The phosphorylation of filamin reduces its interaction with filamentous actin, promoting tumor cell migration. The CD44-LARG complex also interacts with the EGF receptor (EGFR). Most importantly, the binding of HA to the CD44-LARG-EGFR complex activates the EGFR receptor kinase, which in turn promotes Ras-mediated stimulation of a downstream kinase cascade including the Raf-1 and ERK pathways leading to HNSCC cell growth. Using a recombinant fragment of LARG (the LARG-PDZ domain) and a binding assay, we have determined that the LARG-PDZ domain serves as a direct linker between CD44 and EGFR. Transfection of the HSC-3 cells with LARG-PDZcDNA significantly reduces LARG association with CD44 and EGFR. Overexpression of the LARG-PDZ domain also functions as a dominant-negative mutant (similar to the PLC/Ca2+-calmodulin-dependent kinase II (CaMKII) and EGFR/MAPK inhibitor effects) to block HA/CD44-mediated signaling events (e.g. EGFR kinase activation, Ras/RhoA co-activation, Raf-ERK signaling, PLC epsilon-mediated inositol 1,4,5-triphosphate production, intracellular Ca2+ mobilization, CaMKII activity, filamin phosphorylation, and filamin-actin binding) and to abrogate tumor cell growth/migration. Taken together, our findings suggest that CD44 interaction with LARG and EGFR plays a pivotal role in Rho/Ras co-activation, PLC epsilon-Ca2+ signaling, and Raf/ERK up-regulation required for CaMKII-mediated cytoskeleton function and in head and neck squamous cell carcinoma progression.  相似文献   

11.
12.
Rhamm (receptor for hyaluronan-mediated motility) is an hyaluronan binding protein with limited expression in normal tissues and high expression in advanced cancers. To understand its physiological functions and identify the molecular mechanisms underlying these functions, we created mice with a genetic deletion of Rhamm. We show that Rhamm(-/-) fibroblasts fail to resurface scratch wounds >3 mm or invade hyaluronan-supplemented collagen gels in culture. We identify a requirement for Rhamm in the localization of CD44 to the cell surface, formation of CD44-ERK1,2 (extracellular-regulated kinase 1,2) complexes, and activation/subcellular targeting of ERK1,2 to the cell nucleus. We also show that cell surface Rhamm, restricted to the extracellular compartment by linking recombinant protein to beads, and expression of mutant active mitogen-activated kinase kinase 1 (Mek1) are sufficient to rescue aberrant signaling through CD44-ERK1,2 complexes in Rh(-/-) fibroblasts. ERK1,2 activation and fibroblast migration/differentiation is also defective during repair of Rh(-/-) excisional skin wounds and results in aberrant granulation tissue in vivo. These results identify Rhamm as an essential regulator of CD44-ERK1,2 fibroblast motogenic signaling required for wound repair.  相似文献   

13.
Both hyaluronan [HA, the major glycosaminoglycans in the extracellular matrix (ECM)] and CD44 (a primary HA receptor) are associated with astrocyte activation and tissue repair following central nervous system (CNS) injury. In this study we investigated the question of whether HA-CD44 interaction influences astrocyte signaling and migration. Our data indicated that HA binding to the cultured astrocytes stimulated Rac1 signaling and cytoskeleton-mediated migration. To determine the cellular and molecular basis of these events, we focused on PKN gamma, a Rac1-activated serine/threonine kinase in astrocytes. We determined that HA binding to astrocytes stimulated Rac1-dependent PKN gamma kinase activity which, in turn, up-regulated the phosphorylation of the cytoskeletal protein, cortactin, and attenuated the ability of cortactin to cross-link F-actin. Further analyses indicated that the N-terminal antiparallel coiled-coil (ACC) domains of PKN gamma interacted with Rac1, and transfection of astrocytes with PKN gamma-ACCcDNA inhibited PKN gamma activity. Over-expression of the PKN gamma-ACC domain also functions as a dominant-negative mutant to block HA/CD44-mediated PKN gamma activation of cortactin and astrocyte migration. Taken together, these findings strongly suggest that hyaluronan/CD44 interaction with Rac1-PKN gamma plays a pivotal role in cytoskeleton activation and astrocyte migration. These newly discovered HA/CD44-induced astrocyte function may provide important insight into novel therapeutic treatments for tissue repair following CNS injury.  相似文献   

14.
Hyaluronan is a major component of the pericellular matrix surrounding tumor cells, including colon carcinomas. Elevated cycooxygenase-2 levels have been implicated in several malignant properties of colon cancer. We now show for the first time a strong link between hyaluronan-CD44 interaction and cyclooxygenase-2 in colon cancer cells. First, we have shown that increased expression of hyaluronan synthase-2 induces malignant cell properties, including increased proliferation, anchorage-independent growth, and epithelial-mesenchymal transition in HIEC6 cells. Second, constitutive hyaluronan-CD44 interaction stimulates a signaling pathway involving ErbB2, phosphoinositide 3-kinase/AKT, beta-catenin, and cyclooxygenase-2/prostaglandin E(2) in HCA7 colon carcinoma cells. Third, the HA/CD44-activated ErbB2 --> phosphoinositide 3-kinase/AKT --> beta-catenin pathway stimulates cell survival/cell proliferation through COX-2 induction in hyaluronan-overexpressing HIEC6 cells and in HCA7 cells. Fourth, perturbation of hyaluronan-CD44 interaction by hyaluronan oligomers or CD44-silencing RNA decreases cyclooxygenase-2 expression and enzyme activity, and inhibition of cyclooxygenase-2 decreases hyaluronan production suggesting the possibility of an amplifying positive feedback loop between hyaluronan and cyclooxygenase-2. We conclude that hyaluronan is an important endogenous regulator of colon cancer cell survival properties and that cyclooxygenase-2 is a major mediator of these hyaluronan-induced effects. Defining hyaluronan-dependent cyclooxygenase-2/prostaglandin E(2)-associated signaling pathways will provide a platform for developing novel therapeutic approaches for colon cancer.  相似文献   

15.
The hyaluronan (HA) receptor for endocytosis (HARE) mediates the endocytotic clearance of HA and other glycosaminoglycans from lymph and blood. Two isoforms of human HARE, 315- and 190-kDa, are highly expressed in sinusoidal endothelial cells of liver, lymph node, and spleen; HARE is also in specialized cells in the eye, heart, brain, and kidney. Here we determined whether HA binding to HARE initiates intracellular signaling in Flp-In 293 cells stably expressing either the 315- and 190-kDa HARE or the 190-kDa HARE alone. HARE was co-immunoprecipitated with extracellular signal-regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal protein kinase (JNK), and p38 members of the mitogen-activated protein kinase signaling cascade. ERK phosphorylation increased in a dose- and time-dependent manner when HA was added to cells expressing full-length or 190-kDa HARE, but not cells with vector-only or a HARE(DeltaLink) construct with greatly decreased ( approximately 90%) HA uptake. HA did not induce phosphorylation of JNK or p38. A maximum increase in phospho-ERK1/2 occurred within 30 min at 5 mug/ml HA, and the response was dampened at >20 mug/ml HA. HA binding did not increase the level of HARE-ERK complexes, but did increase HARE phosphorylation. These findings demonstrate a novel functional response, when HARE binds HA, that leads to activation of ERK1/2, important mediators of intracellular signal transduction.  相似文献   

16.
Interleukin-3 (IL-3)-dependent murine 32D cells do not detectably express epidermal growth factor receptors (EGFRs) and do not proliferate in response to EGF, heregulin (HRG) or other known EGF-like ligands. Here, we report that EGF specifically binds to and can be crosslinked to 32D transfectants co-expressing ErbB2 and ErbB3 (32D.E2/E3), but not to transfectants expressing either ErbB2 or ErbB3 individually. [125I]EGF-crosslinked species detected in 32D. E2/E3 cells were displaced by HRG and betacellulin (BTC) but not by other EGF-like ligands that were analyzed. EGF, BTC and HRG also induced receptor tyrosine phosphorylation, activation of downstream signaling molecules and proliferation of 32D.E2/E3 cells. 32D transfectants were also generated which expressed an ErbB3-EGFR chimera alone (32D.E3-E1) or in combination with ErbB2 (32D. E2/E3-E1). While HRG stimulation of 32D.E3-E1 cells resulted in DNA synthesis and receptor phosphorylation, EGF and BTC were inactive. However, EGF and BTC were as effective as HRG in mediating signaling when ErbB2 was co-expressed with the chimera in the 32D.E2/E3-E1 transfectant. These results provide evidence that ErbB2/ErbB3 binding sites for EGF and BTC are formed by a previously undescribed mechanism that requires co-expression of two distinct receptors. Additional data utilizing MDA MB134 human breast carcinoma cells, which naturally express ErbB2 and ErbB3 in the absence of EGFRs, supported the results obtained employing 32D cells and suggest that EGF and BTC may contribute to the progression of carcinomas that co-express ErbB2 and ErbB3.  相似文献   

17.
Fibroblast growth factor‐2 (FGF‐2) regulates a variety of functions of the periodontal ligament (PDL) cell, which is a key player during tissue regeneration following periodontal tissue breakdown by periodontal disease. In this study, we investigated the effects of FGF‐2 on the cell migration and related signaling pathways of MPDL22, a mouse PDL cell clone. FGF‐2 activated the migration of MPDL22 cells and phosphorylation of phosphatidylinositol 3‐kinase (PI3K) and akt. The P13K inhibitors, Wortmannin and LY294002, suppressed both cell migration and akt activation in MPDL22, suggesting that the PI3K/akt pathway is involved in FGF‐2‐stimulated migration of MPDL22 cells. Moreover, in response to FGF‐2, MPDL22 showed increased CD44 expression, avidity to hyaluronan (HA) partly via CD44, HA production and mRNA expression of HA synthase (Has)‐1, 2, and 3. However, the distribution of HA molecular mass produced by MPDL22 was not altered by FGF‐2 stimulation. Treatment of transwell membrane with HA facilitated the migration of MPDL22 cells and an anti‐CD44 neutralizing antibody inhibited it. Interestingly, the expression of CD44 was colocalized with HA on the migrating cells when stimulated with FGF‐2. Furthermore, an anti‐CD44 antibody and small interfering RNA for CD44 significantly decreased the FGF‐2‐induced migration of MPDL22 cells. Taken together, PI3K/akt and CD44/HA signaling pathways are responsible for FGF‐2‐mediated cell motility of PDL cells, suggesting that FGF‐2 accelerates periodontal regeneration by regulating the cellular functions including migration, proliferation and modulation of extracellular matrix production. J. Cell. Physiol. 226: 809–821, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
19.
Heregulin (HRG) has been implicated in the progression of breast cancer cells to a malignant phenotype, a process that involves changes in cell motility and adhesion. Here we demonstrate that HRG differentially regulates the site-specific phosphorylation of the focal adhesion components focal adhesion kinase (FAK) and paxilin in a dose-dependent manner. HRG at suboptimal doses (0.01 and 0.1 nM) increased adhesion of cells to the substratum, induced phosphorylation of FAK at Tyr-577, -925, and induced formation of well-defined focal points in breast cancer cell line MCF-7. HRG at a dose of 1 nM, increased migratory potential of breast cancer cells, selectively dephosphorylated FAK at Tyr-577, -925, and paxillin at Tyr-31. Tyrosine phosphorylation of FAK at Tyr-397 remained unaffected by HRG stimulation. FAK associated with HER2 only in response to 0.01 nM HRG. In contrast, 1 nM HRG induced activation and increased association of tyrosine phosphatase SHP-2 with HER2 but decreased association of HER2 with FAK. Expression of dominant-negative SHP-2 blocked HRG-mediated dephosphorylation of FAK and paxillin, leading to persistent accumulation of mature focal points. Our results suggest that HRG differentially regulates signaling from focal adhesion complexes through selective phosphorylation and dephosphorylation and that tyrosine phosphatase SHP-2 has a role in the HRG signaling.  相似文献   

20.
In this report, we analyzed the expression and kinase activities of Csk and CHK kinases in normal breast tissues and breast tumors and their involvement in HRG-mediated signaling in breast cancer cells. Csk expression and kinase activity were abundant in normal human breast tissues, breast carcinomas, and breast cancer cell lines, whereas CHK expression was negative in normal breast tissues and low in some breast tumors and in the MCF-7 breast cancer cell line. CHK kinase activity was not detected in human breast carcinoma tissues (12 of 12) or in the MCF-7 breast cancer cell line (due to the low level of CHK protein expression), but was significantly induced upon heregulin (HRG) stimulation. We have previously shown that CHK associates with the ErbB-2/neu receptor upon HRG stimulation via its SH2 domain and that it down-regulates the ErbB-2/neu-activated Src kinases. Our new findings demonstrate that Csk has no effect on ErbB-2/neu-activated Src kinases upon HRG treatment and that its kinase activity is not modulated by HRG. CHK significantly inhibited in vitro cell growth, transformation, and invasion induced upon HRG stimulation. In addition, tumor growth of wt CHK-transfected MCF-7 cells was significantly inhibited in nude mice. Furthermore, CHK down-regulated c-Src and Lyn protein expression and kinase activity, and the entry into mitosis was delayed in the wt CHK-transfected MCF-7 cells upon HRG treatment. These results indicate that CHK, but not Csk, is involved in HRG-mediated signaling pathways, down-regulates ErbB-2/neu-activated Src kinases, and inhibits invasion and transformation of breast cancer cells upon HRG stimulation. These findings strongly suggest that CHK is a novel negative growth regulator of HRG-mediated ErbB-2/neu and Src family kinase signaling pathways in breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号